3,369
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Recent development of new inductively coupled thermal plasmas for materials processing

Article: 1867637 | Received 26 Aug 2020, Accepted 16 Dec 2020, Published online: 20 Jan 2021

References

  • Reed TB. Induction–coupled plasma torch. J Appl Phys. 1961;32(5):821–27.
  • Fazekas P, Czegeny Z, Mink J, et al. Decomposition of poly(vinyl chloride) in inductively coupled radiofrequency thermal plasma. Chem Eng J. 2016;302:163–171.
  • Darthout E, Gitzhofer F. Structure stabilization by zirconia pinning effect of Y2Si2O7 environmental barrier coatings synthesized by solution precursor plasma spraying process. Surf Coat Technol. 2017;309:1081–1088.
  • Darthout E, Gitzhofer F. Thermal cycling and high-temperature corrosion tests of rare earth silicate environmental barrier coatings. J Therm Spray Technol. 2017;26(8):1823–1837.
  • Major K, Veilleux J, Brisard G. Lithium iron phosphate powders and coatings obtained by means of inductively coupled thermal plasma. J Therm Spray Technol. 2016;25(1–2):357–364.
  • Berghaus JO, Meunier JL, Gitzhofer F. Monitoring and control of RF thermal plasma diamond deposition via substrate biasing. Meas Sci Technol. 2004;15:161–164.
  • Matsumoto S, Hino M, Kobayashi T. Synthesis of diamond films in an rf induction thermal plasma. Appl Phys Lett. 1987;51:737–739.
  • Wang C, Inazaki A, Shirai T, et al. Effect of ambient gas and pressure on fullerene synthesis in induction thermal plasma. Thin Solid Films. 2003;425:41–48.
  • Todorovic-Markovic B, Markovic Z, Mohai I, et al. Efficient synthesis of fullerenes in RF thermal plasma reactor. Chem Phys Lett. 2003;378:434–439.
  • Park J-Y, Park KB, Kang J-W, et al. Spheroidization behavior of water-atomized 316 stainless steel powder by inductively coupled thermal plasma. Mater Today Commun. 2020;25:101488.
  • Yu C, Zhou X, Wang D, et al. Study on the RF inductively coupled plasma spheroidization of refractory W and W-Ta alloy powders. Plasma Sci Technol. 2018;20(1):014019.
  • Tong JB, Lu X, Liu CC, et al. Numerical simulation and prediction of radio frequency inductively coupled plasma spheroidization. Appl Therm Eng. 2016;100:1198–1206.
  • Lee M-Y, Kim J-S, Seo J-H. Radio-frequency thermal plasma synthesis of nano-sized indium zinc tin oxide powders with reduced indium content. Thin Solid Films. 2012;521:60–64.
  • Lee M-Y, Song M-K, Kim J-S, et al. 2014 Synthesis of single-phase Gd-doped ceria nanopowders by radio frequency thermal plasma treatment. J Am Ceram Soc. 2014;97(5):1379–1382.
  • Boselli M, Ceschini L, Colombo V, et al. Cast Al-based nanocomposites reinforced with thermal plasma synthesized ceramic nanoparticles. Mater Sci Forum. 2014;783-786:1567–1572.
  • Han C, Na H, Kim Y, et al. In-situ synthesis of tungsten nanoparticle attached spherical tungsten micro-powder by inductively coupled thermal plasma process. Int J Refract Metals Hard Mater. 2015;53:7–12.
  • Na H, Lee W, Choi H. Characteristics of Ni-W bimetallic nanoparticle via reactive RF thermal plasma synthesis. Int J Refract Metals Hard Mater. 2015;53:17–22.
  • Dhamale GD, Mathe VL, Bhoraskar SV, et al. Synthesis and characterization of Nd2O3 nanoparticles in a radiofrequency thermal plasma reactor. Nanotechnology. 2016;27(8):085603.
  • Bianconi S, Boselli M, Gherardi M, et al. Numerical investigation of the joint impact of thermophoresis and radiative losses in induction plasma synthesis of copper nanoparticles. J Phys D Appl Phys. 2017;50(16):165204.
  • Zhao X, Chen HY, Shu CY, et al. Synthesis and characterization of Si3N4 nanopowder by RF induction thermal plasma. Mater Sci Forum. 2017;898:1597–1602.
  • Kim K-H, Choi H, Han C. Tungsten micropowder/copper nanoparticle core/shell-structured composite powder synthesized by inductively coupled thermal plasma process, metallurgical and materials transactions A. Phys Metallurgy Mater Sci. 2017;48(1):439–445.
  • Dhamale GD, Tak AK, Mathe VL, et al. Nucleation and growth of Y2O3 nanoparticles in a RF-ICTP reactor: A discrete sectional study based on CFD simulation supported with experiments. J Phys D Appl Phys. 2018;51(25):255202.
  • Oh J-W, Na H, Cho YS, et al. In situ synthesis of bimetallic tungsten-copper nanoparticles via reactive radio-frequency (RF) thermal plasma. Nanoscale Res Lett. 2018;13(220). DOI:https://doi.org/10.1186/s11671-018-2623-1
  • Zhang X, Hayashida R, Tanaka M, et al. Synthesis of carbon-coated silicon nanoparticles by induction thermal plasma for lithium ion battery. Powder Technol. 2020;371:26–36.
  • Arabzadeh Esfarjani S, Mostaghimi J, Kim KS, et al. Radio frequency thermal plasma: the cutting edge technology in production of single-walled carbon nanotubes. J Therm Sci Tech. 2011;6(2):307–322.
  • Kim KS, Kingston CT, Ruth D, et al. Synthesis of high quality single-walled carbon nanotubes with purity enhancement and diameter control by liquid precursor Ar-H2 plasma spraying. Chem Eng J. 2014;250:331–341.
  • Kim KS, Couillard M, Shin H, et al. Role of hydrogen in high-yield growth of boron nitride nanotubes at atmospheric pressure by induction thermal plasma. ACS Nano. 2018;12(1):884–893.
  • Li J, Hu R, Qu H, et al. Radio-frequency thermal plasma-induced novel chainmail-like core–shell MoO2 as highly stable catalyst for converting syngas to higher alcohols. Appl Catal B Environ. 2019;249:63–71.
  • Takigawa A, Kim T-H, Igami Y, et al. Formation of transition alumina dust around asymptotic giant branch stars: condensation experiments using induction thermal plasma systems. Astrophys J Letters. 2019;878(1):L7.
  • Boulos MI. Heating of powders in the fire ball of an induction plasma. IEEE Trans Plasma Sci. 1978;6(2):93–106.
  • Boulos MI. The inductively coupled r.f. (radio frequency) plasma. Pure Appl Chem. 1985;57(9):1321–1352.
  • Mostaghimi J, Proulx P, Boulos MI. An analysis of the computer modeling of the flow and temperature fields in an inductively coupled plasma. Numerical Heat Transfer. 1985;8(2):187–201.
  • Proulx P, Mostaghimi J, Boulos MI. Plasma–particle interaction effects in induction plasma modeling under dense loading conditions. Int J Heat Mass Transfer. 1985;28(7):1327–1336.
  • Mostaghimi J, Proulx P, Boulos MI. A two-temperature model of the inductively coupled rf plasma. J Appl Phys. 1987;61(5):1753–1760.
  • Proulx P, Mostaghimi J, Boulos MI. Heating of powders in an r.f. inductively coupled plasma under dense loading conditions. Plasma Chem Plasma Process. 1987;7(1):29–52.
  • Mostaghimi J, Boulos MI. Two-dimensional electromagnetic field effects in induction plasma modelling. Plasma Chem Plasma Process. 1989;9(1):25–44.
  • Boulos MI. Thermal Plasma Processing. IEEE Trans Plasma Sci. 1991;19(6):1078–1089.
  • Boulos MI. RF induction plasma spraying: state-of-the-art review. J Therm Spray Technol. 1992;1(1):33–40.
  • Boulos MI. The inductively coupled radio frequency plasma. High Temperature Material Processes. 1997;1(1):17–39.
  • Ye R, Proulx P, Boulos MI. Turbulence phenomena in the radio frequency induction plasma torch. Int J Heat Mass Transfer. 1999;42(9):1585–1595.
  • Xue S, Proulx P, Boulos MI. Extended-field electromagnetic model for inductively coupled plasma. J Phys D Appl Phys. 2001;34(12):1897–1906.
  • Mostaghimi J, Boulos MI. Thermal plasma sources: how well are they adopted to process needs? Plasma Chem Plasma Process. 2015;35(3):421–436.
  • Yoshida T, Tawi T, Nishimura H, et al. Characterization of a hybrid plasma and its application to a chemical synthesis. J Appl Phys. 1983;54:640–646.
  • Tani T, Yoshida T, Akashi K. Synthesis of ultrafine Si3N4 in a hybrid plasma, Yogyo Kyokai Shi. J Ceram Soc Jpn. 1986;94(1):1–6.
  • Lee HJ, Eguchi K, Yoshida T. Preparation of ultrafine silicon nitride, and silicon nitride and silicon carbide mixed powders in a hybrid plasma. J Am Ceram Soc. 1990;73(11):3356–3362.
  • Eguchi K, Yoshida T. Size distribution of SiC powders synthesized in hybrid plasma. J Mater Sci Lett. 1993;12(11):858–861.
  • Nomoto N, Okazaki Y, Kuroda K, et al. Integrated fabrication process for solid oxide fuel cells using hybrid plasma spraying. High Temperature Material Processes. 1997;1(1):pp.41–47.
  • Uesugi T, Nakamura O, Yoshida T, et al. A tandem radio-frequency plasma torch. J Appl Phys. 1988;64:3874–3879.
  • Boulos MI, Jurewicz J, 2004 Multi-coil induction plasma torch for solid-state power supply, US patent 6, 693, 253, 17 Feb.
  • Boulos MI, Jurewicz J, 2005 Multi-coil induction plasma torch for solid-state power supply, US patent 6, 919, 527, 19 July
  • Dresvin SV. Physics and technology of low temperature plasmas. Iowa, USA: Iowa State University Press; 1977.
  • Alavi S, Mostaghimi J, Novel A. ICP torch with conical geometry. Plasma Chem Plasma Process. 2019;39(2):359–376.
  • Ishigaki T, Xiaobao F, Sakuta T, et al. Generation of pulse-modulated induction thermal plasma at atmospheric pressure. Appl Phys Lett. 1997;71:3787–3789.
  • Sakuta T, Ishigaki T. Non-equilibrium effects in pulse modulated induction thermal plasma for advanced material processing. Pure Appl Chem. 1999;71:1845–1852.
  • Tanaka Y, Sakuta T. Measurement of dynamic response time in pulse modulated thermal plasma. Trans Mater Res Soc Jpn. 2000;25:293–296.
  • Sakuta T, Tanaka Y, Hashimoto Y, et al. Novel system of an inductively coupled thermal plasma with pulse amplitude modulation of electromagnetic field. Electr Eng Jpn. 2002;138:26–33.
  • Tanaka Y, Sakuta T. Stable operation region and dynamic behavior of pulse modulated Ar thermal plasma with different molecular gases. Electr Eng Jpn. 2003;143:1–11.
  • Tanaka Y, Sakuta T. Temperature control of Ar induction thermal plasma with diatomic molecular gases by pulse-amplitude modulation of coil-current. Plasma Sources Sci Technol. 2003;12:69–77.
  • Tanaka Y. Time-dependent two-temperature chemically non-equilibrium modelling of high-power Ar-N2 pulse-modulated inductively coupled plasmas at atmospheric pressure. J Phys D: Appl Phys. 2006;39:307–319.
  • Tanaka Y, Morishita Y, Okunaga K, et al. Generation of high-power arbitrary-waveform modulated inductively coupled plasmas for materials processing. Appl Phys Lett. 2007;90:071502.
  • Tsubokawa Y, Tanaka Y, Uesugi Y. Control of induction thermal plasmas by coil current modulation in arbitrary-waveform. J Plasma Fusion Res Series. 2009;8:1353–1357.
  • Tanaka Y, Muroya T, Hayashi K, et al. Simultaneous control of numerical enhancement of N atom and decrease in heat flux into reaction chamber using Ar-N2 pulse-modulated induction thermal plasmas. Appl Phys Lett. 2006;89:031501.
  • Tanaka Y, Hayashi K, Nakamura T, et al. Influence of ontime on increased number density of excited nitrogen atom in pulse modulated induction thermal plasmas. J Phys D: Appl Phys. 2008;41:185–203.
  • Betsuin T, Tanaka Y, Arai T, et al. Influence of coil current modulation on polycrystalline diamond film deposition by irradiation of Ar/CH4/H2 inductively coupled thermal plasmas. J Phys D Appl Phys. 2018;51:095601.
  • Hata K, Tanaka Y, Nakano Y, et al. Polycrystalline diamond film fabrication using modulated inductively coupled thermal plasmas at different pressure conditions. J Appl Phys. 2019;126:223302.
  • Kuraishi K, Akao M, Tanaka Y, et al. Temperature behavior in a tandem type of modulated induction thermal plasma for materials processing. J Phys Conf Ser. 2013;441:012016.
  • Onda K, Tanaka Y, Akashi K, et al. Numerical thermofluid simulation on tandem type of inductively coupled thermal plasmas with and without current modulation in a lower coil. J Physics D: Appl Physics. 2020;53(16):165201.
  • Tanaka Y, Nagumo T, Sakai H, et al. Nanoparticle synthesis using high-powered pulse-modulated induction thermal plasma. J Phys D: Appl Phys. 2010;43:265201.
  • Tanaka Y, Sakai H, Tsuke T, et al. Influence of coil current modulation on TiO2 nanoparticle synthesis using pulse-modulated induction thermal plasmas. Thin Solid Films. 2011;519(20):7100–7105.
  • Tanaka Y, Tsuke T, Guo W, et al. A large amount synthesis of nanopowder using modulated induction thermal plasmas synchronized with intermittent feeding of raw materials. J Phys Conf Ser. 2012;406:012001.
  • Kodama N, Tanaka Y, Kita K, et al. A method for large-scale synthesis of Al-doped TiO2 nanopowder using pulse-modulated induction thermal plasmas with time-controlled feedstock feeding. J Phys D: Appl Phys. 2014;47:195304.
  • Kodama N, Tanaka Y, Kita K, et al. Spatiotemporal distribution of thermal plasma temperature and nucleation process in the torch during TiO2 nanopowder synthesis. Plasma Sources Sci Technol. 2017;26(7):075008.
  • Ishisaka Y, Kodama N, Kita K, et al. High-rate synthesis of Si nanowires using modulated induction thermal plasmas. Appl Phys Express. 2017;10:096201.
  • Kodama N, Tanaka Y, Ishisaka Y, et al. Spatial distribution of Ti vapor admixture ratio in ar induction thermal plasma torch during Ti feedstock injection. Jpn J Appl Phys. 2018;57(3):036101.
  • Kambara M, Hamazaki S, Kodama N, et al. Efficient modification of Si/SiOz nanoparticles by pulse-modulated plasma flash evaporation for an improved capacity of lithium-ion storage. J Phys D: Appl Phys. 2019;52:325502.
  • Tanaka Y, Shimizu K, Akashi K, et al. High rate synthesis of graphene-encapsulated silicon nanoparticles using pulse-modulated induction thermal plasmas with intermittent feedstock feeding. Jpn J Appl Phys. 2020;59:SHHE07.
  • Tial MKS, Irie H, Maruyama Y, et al. Fundamentals of planar-type inductively coupled thermal plasmas on a substrate for large-area material processing. Jpn J Appl Phys. 2016;55(7S2):07LB03.
  • Tial MKS, Tanaka Y, Akao M, et al. Fundamental properties of a planar type of inductively coupled thermal plasmas with current modulation. J Phys D Appl Phys. 2016;49:385204.
  • Tial MKS, Tanaka Y, Maruyama Y, et al. Uniform surface oxidation of an si substrate by a planar modulated inductively coupled thermal plasma with molecular gas feed. Plasma Chem Plasma Process. 2017;37(3):857–876.
  • Maruyama Y, Tanaka Y, Irie H, et al. Rapid surface oxidation of the Si substrate using longitudinally long Ar/O2 loop type of inductively coupled thermal plasmas. IEEE Trans Plasma Sci. 2016;44(12):3164–3171.
  • Tsuchiya T, Tanaka Y, Maruyama Y, et al. Loop type of inductively coupled thermal plasmas system for rapid two-dimensional oxidation of Si substrate surface. Plasma Chem Plasma Process. 2018;38(3):599–620.
  • Tanaka Y, Tsubokawa Y, Uesaka Y, et al. Development of a quasi-direct temperature control system of modulated induction thermal plasmas for advanced materials processing. Plasma Sources Sci Technol. 2013;22:065016.
  • Ishigaki T, Haneda H, Okada N, et al. Surface modification of titanium oxide in pulse-modulated induction thermal plasma. Thin Solid Films. 2001;390:20–25.
  • Ohashi N, Ishigaki T, Okada N, et al. Effect of hydrogen doping on ultraviolet emission spectra of various types of ZnO. Appl Phys Lett. 2002;80:2869–2871.
  • Ohashi N, Ishigaki T, Okada N, et al. Passivation of active recombination centers in ZnO by hydrogen doping. J Appl Phys. 2003;93:6386–6392.
  • Tanaka Y, Uesugi Y, Sakuta T. Controlling the number of excited atoms flowing into the reaction chamber using pulse-modulated induction thermal plasmas at atmospheric pressure. Plasma Sources Sci Technol. 2007;16:281–289.
  • Tanaka Y, Muroya T, Hayashi K, et al. Control of nitrogen atomic density and enthalpy flow into reaction chamber in Ar-N2 pulse-modulated induction thermal plasmas. IEEE Trans Plasma Sci. 2007;35(2):197–203. Part 1.