3,718
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Quantum control in open and periodically driven systems

, , & ORCID Icon
Article: 1870559 | Received 15 Oct 2020, Accepted 24 Dec 2020, Published online: 11 Jan 2021

References

  • Feynman RP. Simulating physics with computers. Int J Theor Phys. 1982 Jun;21:467–40.
  • Ekert A, Jozsa R. Quantum computation and shor’s factoring algorithm. Rev Mod Phys. 1996 Jul;68:733–753.
  • Law J. Quantum computation and quantum information. SIGSOFT Softw Eng Notes. 2001 July;26:91.
  • DiVincenzo DP. The physical implementation of quantum computation. Fortschritte der Physik. 2000;48:771–783.
  • Giovannetti V, Lloyd S, Maccone L. Quantum-enhanced measurements: beating the standard quantum limit. Science. 2004;306:1330–1336.
  • Leibfried D, Barrett MD, Schaetz T, et al. Toward Heisenberg-limited spectroscopy with multiparticle entangled states. Science. 2004;304:1476–1478.
  • Giovannetti V, Lloyd S, Maccone L. Advances in quantum metrology. Nat Photonics. 2011;5:222–229.
  • Escher BM, de Matos Filho RL, Davidovich L. General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology. Nat Phys. 2011;7:406–411.
  • Georgescu IM, Ashhab S, Nori F. Quantum simulation. Rev. Mod. Phys. 2014 Mar;86:153–185.
  • Bennett CH, Wiesner SJ. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 1992 Nov;69:2881–2884.
  • Mattle K, Weinfurter H, Kwiat PG, et al. Dense coding in experimental quantum communication. Phys. Rev. Lett. 1996 Jun;76:4656–4659.
  • Zurek WH. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 2003 May;75:715–775.
  • Bennett CH, Bernstein HJ, Popescu S, et al. Concentrating partial entanglement by local operations. Phys Rev A. 1996 Apr;53:2046–2052.
  • Zhao Z, Pan J-W, Zhan MS. Practical scheme for entanglement concentration. Phys Rev A. 2001 Jun;64:14301.
  • Viola L, Lloyd S. Dynamical suppression of decoherence in two-state quantum systems. Phys Rev A. 1998 Oct;58:2733–2744.
  • de Lange G, Wang ZH, Ristè D, et al. Universal dynamical decoupling of a single solid-state spin from a spin bath. Science. 2010;330:60–63.
  • Lloyd S. Coherent quantum feedback. Phys Rev A. 2000 Jul;62:22108.
  • Tombesi P, Vitali D. Macroscopic coherence via quantum feedback. Phys Rev A. 1995 Jun;51:4913–4917.
  • John S, Wang J. Quantum electrodynamics near a photonic band gap: photon bound states and dressed atoms. Phys. Rev. Lett. 1990 May;64:2418–2421.
  • Ogawa S, Imada M, Yoshimoto S, et al. Control of light emission by 3d photonic crystals. Science. 2004;305:227–229.
  • Fujita M, Takahashi S, Tanaka Y, et al. Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals. Science. 2005;308:1296–1298.
  • Jorgensen MR, Galusha JW, Bartl MH. Strongly modified spontaneous emission rates in diamond-structured photonic crystals. Phys Rev Lett. 2011 Sep;107:143902.
  • Chang DE, Sørensen AS, Hemmer PR, et al. Quantum optics with surface plasmons. Phys Rev Lett. 2006;97:1–4.
  • Tame MS, McEnery KR, Özdemir K, et al. Quantum plasmonics. Nat Phys. 2013;9:329–340.
  • Yang CJ, AnJ-H. Suppressed dissipation of a quantum emitter coupled to surface plasmon polaritons. Phys Rev B. 2017;95:5–9.
  • Yang C-J, An J-H, Lin H-Q. Signatures of quantized coupling between quantum emitters and localized surface plasmons. Phys Rev Res. 2019;1:23027.
  • Miyamoto M. Bound-state eigenenergy outside and inside the continuum for unstable multilevel systems. Phys Rev A. 2005 Dec;72:63405.
  • Tong Q-J, An J-H, Luo H-G, et al. Mechanism of entanglement preservation. Phys Rev A. 2010 May;81:52330.
  • Lü Y-Q, An J-H, Chen X-M, et al. Frozen gaussian quantum discord in photonic crystal cavity array system. Phys Rev A. 2013 Jul;88:12129.
  • Yang WL, An J-H, Zhang C, et al. Preservation of quantum correlation between separated nitrogen-vacancy centers embedded in photonic-crystal cavities. Phys Rev A. 2013 Feb;87:22312.
  • Yang C-J, An J-H, Luo H-G, et al. Canonical versus noncanonical equilibration dynamics of open quantum systems. Phys Rev E. 2014 Aug;90:22122.
  • Liu HB, Yang WL, AnJ-H, et al. Mechanism for quantum speedup in open quantum systems. Phys Rev A. 2016 Feb;93:20105.
  • Wang Y-S, Chen C,An J-H. Quantum metrology in local dissipative environments. New J Phys. 2017 nov;19:113019.
  • Bai K, Peng Z, Luo H-G, et al. Retrieving ideal precision in noisy quantum optical metrology. Phys Rev Lett. 2019 Jul;123:40402.
  • Wei W, Bai S-Y,An J-H, Non-markovian sensing to a quantum reservoir. arXiv:2005.08553.
  • Poyatos JF, Cirac JI, Zoller P. Quantum reservoir engineering with laser cooled trapped ions. Phys. Rev. Lett. 1996 Dec;77:4728–4731.
  • Metelmann A, Clerk AA. Nonreciprocal photon transmission and amplification via reservoir engineering. Phys Rev X. 2015 Jun;5:21025.
  • Oka T, Kitamura S. Floquet engineering of quantum materials. Ann Rev Condens Matter Phys. 2019;10:387–408.
  • Chen C, An J-H, Luo H-G, et al. Floquet control of quantum dissipation in spin chains. Phys Rev A. 2015 May;91:52122.
  • Chao M, Wang Y-S,An J-H. Floquet engineering of localized propagation of light in a waveguide array. Phys Rev A. 2018 Feb;97:23808.
  • Yang WL, Song WL, An J-H, et al. Floquet engineering to entanglement protection of distant nitrogen vacancy centers. New J Phys. 2019 jan;21:013007.
  • Bai S-Y,An J-H, Floquet engineering to reactivate a dissipative quantum battery. Phys Rev A. 2020 Dec;102:060201(R).
  • Grifoni M, Peter H. Driven quantum tunneling. Phys Rep. 1998;304:229–354.
  • Thorwart M, Hartmann L, Goychuk I, et al. Controlling decoherence of a two-level atom in a lossy cavity. null. 2000 November;47:2905–2919.
  • Kohler S, Lehmann J, Peter H. Driven quantum transport on the nanoscale. Phys Rep. 2005;406:379–443.
  • Lindner NH, Refael G, Galitski V. Floquet topological insulator in semiconductor quantum wells. Nat Phys. 2011;7:490–495.
  • Tong Q-J, An J-H, Gong J, et al. Generating many majorana modes via periodic driving: a superconductor model. Phys Rev B. 2013 May;87:201109.
  • Xiong T-S, Gong J,An J-H. Towards large-chern-number topological phases by periodic quenching. Phys Rev B. 2016 May;93:184306.
  • Liu H, Xiong T-S, Zhang W, et al. Floquet engineering of exotic topological phases in systems of cold atoms. Phys Rev A. 2019 Aug;100:23622.
  • Rudner MS, Lindner NH, Berg E, et al. Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems. Phys Rev X. 2013 Jul;3:31005.
  • Arijit Kundu HAF, Seradjeh B. Effective theory of floquet topological transitions. Phys Rev Lett. 2014 Dec;113:236803.
  • Lababidi M, Satija II, Zhao E. Counter-propagating edge modes and topological phases of a kicked quantum hall system. Phys Rev Lett. 2014 Jan;112:26805.
  • Hong W,An J-H. Floquet topological phases of non-hermitian systems. Phys Rev B. 2020 Jul;102:41119.
  • Cayssol J, Dóra B, Simon F, et al. Floquet topological insulators. Phys Status Solidi (RRL) Rapid Res Lett. 2013;7:101–108.
  • Mukherjee S, Spracklen A, Valiente M, et al. Experimental observation of anomalous topological edge modes in a slowly driven photonic lattice. Nat Commun. 2017;8:13918.
  • Scully MO, Zubairy MS. Quantum optics. New York: Cambridge University Press; 1997.
  • Khaetskii AV, Loss D, Glazman L. Electron spin decoherence in quantum dots due to interaction with nuclei. Phys Rev Lett. 2002 Apr;88:186802.
  • Merkulov IA, Efros AL, Rosen M. Electron spin relaxation by nuclei in semiconductor quantum dots. Phys Rev B. 2002 Apr;65:205309.
  • Bouchiat V, Vion D, Joyez P, et al. Quantum coherence with a single cooper pair. Phys Scr. 1998;T76:165.
  • Senitzky IR. Dissipation in quantum mechanics. the harmonic oscillator. Phys. Rev. 1960 Jul;119:670–679.
  • Senitzky IR. Dissipation in quantum mechanics. the harmonic oscillator. ii. Phys. Rev. 1961 Nov;124:642–648.
  • de Vega I, Alonso D. Dynamics of non-markovian open quantum systems. Rev Mod Phys. 2017 Jan;89:015001.
  • Kossakowski A. On quantum statistical mechanics of non-hamiltonian systems. Rep Math Phys. 1972;3:247–274.
  • Gardiner C and Zoller P, Quantum Noise (Springer-Verlarg, Berlin, 2004): a handbook of markovian and non-markovian quantum stochastic methods with applications to quantum optics. 2nd enlarged ed. Springer series in synergetics. Springer; 2004.
  • Ackerhalt JR, Knight PL, Eberly JH. Radiation reaction and radiative frequency shifts. Phys. Rev. Lett. 1973 Mar;30:456–460.
  • Ithier G, Collin E, Joyez P, et al. Decoherence in a superconducting quantum bit circuit. Phys Rev B. 2005 Oct;72:134519.
  • Breuer H-P, Laine E-M, Piilo J, et al. Colloquium: non-markovian dynamics in open quantum systems. Rev Mod Phys. 2016 Apr;88:21002.
  • Feynman RP, Vernon FL. The theory of a general quantum system interacting with a linear dissipative system. Ann Phys. 1963;24:118–173.
  • An J-H, Zhang W-M. Non-markovian entanglement dynamics of noisy continuous-variable quantum channels. Phys Rev A. 2007 Oct;76:42127.
  • Leggett AJ, Chakravarty S, Dorsey AT, et al. Dynamics of the dissipative two-state system. Rev. Mod. Phys. 1987 Jan;59:1–85.
  • Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 1935 May;47:777–780.
  • Horodecki R, Horodecki P, Horodecki M, et al. Quantum entanglement. Rev Mod Phys. 2009 Jun;81:865–942.
  • Bennett CH, Brassard G. Quantum cryptography: public key distribution and coin tossing. Theor Comput Sci. 2014;560:7–11. Theoretical Aspects of Quantum Cryptography: celebrating 30 years of BB84.
  • Ekert AK. Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 1991 Aug;67:661–663.
  • Gisin N, Ribordy G, Tittel W, et al. Quantum cryptography. Rev. Mod. Phys. 2002 Mar;74:145–195.
  • Ting Y, Eberly JH. Finite-time disentanglement via spontaneous emission. Phys Rev Lett. 2004 Sep;93:140404.
  • Almeida M P, de Melo F, Hor-Meyll M O, et al. Experimental observation of environment-induced sudden death of entanglement. Proc. SPIE 6603, Noise and Fluctuations in Photonics, Quantum Optics, and Communications, 660318 (8 June 2007).
  • Ting Y, Eberly JH. Sudden death of entanglement. Science. 2009;323:598–601.
  • Bellomo B, Lo Franco R, Compagno G. Entanglement dynamics of two independent qubits in environments with and without memory. Phys Rev A. 2008 Mar;77:32342.
  • Maniscalco S, Francica F, Zaffino RL, et al. Protecting entanglement via the quantum zeno effect. Phys Rev Lett. 2008 Mar;100:90503.
  • Xu J-S, Li C-F, Gong M, et al. Experimental demonstration of photonic entanglement collapse and revival. Phys Rev Lett. 2010 Mar;104:100502.
  • Bellomo B, Franco RL, Maniscalco S, et al. Entanglement trapping in structured environments. Phys Rev A. 2008 Dec;78:60302.
  • Tong Q-J, An J-H, Luo H-G, et al. Decoherence suppression of a dissipative qubit by the non-markovian effect. J Phys B: Atomic Mol Opt Phys. 2010 jul;43:155501.
  • Wootters WK. Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 1998 Mar;80:2245–2248.
  • Hildebrand R. Concurrence revisited. J Math Phys. 2007;48:102108.
  • An J-H, Yeo Y, Zhang W-M, et al. Entanglement oscillation and survival induced by non-markovian decoherence dynamics of the entangled squeezed state. J Phys A. 2008 nov;42:015302.
  • Anandan J, Aharonov Y. Geometry of quantum evolution. Phys. Rev. Lett. 1990 Oct;65:1697–1700.
  • Mandelstam L., Tamm I. (1991) The Uncertainty Relation Between Energy and Time in Non-relativistic Quantum Mechanics. In: Bolotovskii B.M., Frenkel V.Y., Peierls R. (eds) Selected Papers. Springer, Berlin, Heidelberg.
  • Vaidman L. Minimum time for the evolution to an orthogonal quantum state. Am J Phys. 1992;60:182–183.
  • Lloyd S. Ultimate physical limits to computation. Nature. 2000;406:1047–1054.
  • Luo S. How fast can a quantum state evolve into a target state? Phys D. 2004;189:1–7.
  • Margolus N, Levitin LB. The maximum speed of dynamical evolution. Phys D. 1998;120:188–195. Proceedings of the Fourth Workshop on Physics and Consumption.
  • Taddei MM, Escher BM, Davidovich L, et al. Quantum speed limit for physical processes. Phys Rev Lett. 2013 Jan;110:50402.
  • Del Campo A, Egusquiza IL, Plenio MB, et al. Quantum speed limits in open system dynamics. Phys Rev Lett. 2013 Jan;110:50403.
  • Pires DP, Marco Cianciaruso LC, Céleri GA, et al. Generalized geometric quantum speed limits. Phys Rev X. 2016 Jun;6:21031.
  • Deffner S, Lutz E. Generalized clausius inequality for nonequilibrium quantum processes. Phys Rev Lett. 2010 Oct;105:170402.
  • Alipour S, Mehboudi M, Rezakhani AT. Quantum metrology in open systems: dissipative cramér-rao bound. Phys Rev Lett. 2014 Mar;112:120405.
  • Miroslav Gajdacz KK, Das JA, Sherson JF, et al. Time-limited optimal dynamics beyond the quantum speed limit. Phys Rev A. 2015 Dec;92:62106.
  • Tran MC, Chen C-F, Ehrenberg A, et al. Hierarchy of linear light cones with long-range interactions. Phys Rev X. 2020 Jul;10:31009.
  • Yung M-H. Quantum speed limit for perfect state transfer in one dimension. Phys Rev A. 2006 Sep;74:30303.
  • Deffner S, Lutz E. Quantum speed limit for non-markovian dynamics. Phys Rev Lett. 2013 Jul;111:10402.
  • Cimmarusti AD, Yan Z, Patterson BD, et al. Environment-assisted speed-up of the field evolution in cavity quantum electrodynamics. Phys Rev Lett. 2015 Jun;114:233602.
  • Breuer H-P, Laine E-M, Piilo J. Measure for the degree of non-markovian behavior of quantum processes in open systems. Phys Rev Lett. 2009 Nov;103:210401.
  • Popescu S, Short AJ, Winter A. Entanglement and the foundations of statistical mechanics. Nat Phys. 2006;2:754–758.
  • Linden N, Popescu S, Short AJ, et al. Quantum mechanical evolution towards thermal equilibrium. Phys Rev E. 2009 Jun;79:61103.
  • Tasaki H. From quantum dynamics to the canonical distribution: general picture and a rigorous example. Phys. Rev. Lett. 1998 Feb;80:1373–1376.
  • Sheldon Goldstein JL, Lebowitz RT, Zangh N. Canonical typicality. Phys Rev Lett. 2006 Feb;96:50403.
  • Reimann P. Canonical thermalization. New J Phys. 2010 may;12:55027.
  • Lychkovskiy O. Necessary condition for the thermalization of a quantum system coupled to a quantum bath. Phys Rev E. 2010 Jul;82:11123.
  • Lee CK, Cao J, Gong J. Noncanonical statistics of a spin-boson model: theory and exact monte carlo simulations. Phys Rev E. 2012 Aug;86:21109.
  • Genway S, Ho AF, Lee DKK. Dynamics of thermalization and decoherence of a nanoscale system. Phys Rev Lett. 2013 Sep;111:130408.
  • Rigol M, Dunjko V, Olshanii M. Thermalization and its mechanism for generic isolated quantum systems. Nature. 2008;452:854–858.
  • Ponomarev AV, Denisov S, Hänggi P. Thermal equilibration between two quantum systems. Phys Rev Lett. 2011 Jan;106:10405.
  • Bañuls MC, Cirac JI, Hastings MB. Strong and weak thermalization of infinite nonintegrable quantum systems. Phys Rev Lett. 2011 Feb;106:50405.
  • Polkovnikov A, Sengupta K, Silva A, et al. Colloquium Nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys. 2011 Aug;83:863–883.
  • Geva E, Rosenman E, Tannor D. On the second-order corrections to the quantum canonical equilibrium density matrix. J Chem Phys. 2000;113:1380–1390.
  • Mori T, Miyashita S. Dynamics of the density matrix in contact with a thermal bath and the quantum master equation. J Phys Soc Jpn. 2008;77:124005.
  • Subasi Y, Fleming CH, Taylor JM, et al. Equilibrium states of open quantum systems in the strong coupling regime. Phys Rev E. 2012 Dec;86:61132.
  • Pagel D, Alvermann A, Fehske H. Equilibration and thermalization of the dissipative quantum harmonic oscillator in a nonthermal environment. Phys Rev E. 2013 Jan;87:12127.
  • Rançon A, Bonart J. Exact dynamics and thermalization of an open bosonic quantum system in the presence of a quantum phase transition induced by the environment. Europhys Lett. 2013 dec;104:50010.
  • Hoeppe U, Wolff C, Küchenmeister J, et al. Direct observation of non-markovian radiation dynamics in 3d bulk photonic crystals. Phys Rev Lett. 2012 Jan;108:43603.
  • Tahara H, Ogawa Y, Minami F. Non-markovian dynamics of spectral narrowing for excitons in the layered semiconductor gase observed using optical four-wave mixing spectroscopy. Phys Rev Lett. 2011 Jul;107:37402.
  • Galland C, Högele A, Türeci HE, et al. Non-markovian decoherence of localized nanotube excitons by acoustic phonons. Phys Rev Lett. 2008 Aug;101:67402.
  • Liu B-H, Li L, Huang Y-F, et al. Experimental control of the transition from markovian to non-markovian dynamics of open quantum systems. Nat Phys. 2011 December;7:931–934.
  • Madsen KH, Ates S, Lund-Hansen T, et al. Observation of non-markovian dynamics of a single quantum dot in a micropillar cavity. Phys Rev Lett. 2011 Jun;106:233601.
  • Liu H-B, An J-H, Chen C, et al. Anomalous decoherence in a dissipative two-level system. Phys Rev A. 2013 May;87:52139.
  • Giovannetti V, Lloyd S, Maccone L. Quantum metrology. Phys Rev Lett. 2006 Jan;96:10401.
  • Braunstein SL, Caves CM. Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 1994 May;72:3439–3443.
  • Degen CL, Reinhard F, Cappellaro P. Quantum sensing. Rev Mod Phys. 2017 Jul;89:35002.
  • Pezzè L, Augusto Smerzi MK, Oberthaler RS, et al. Quantum metrology with nonclassical states of atomic ensembles. Rev Mod Phys. 2018 Sep;90:35005.
  • Tse M, Yu H, Kijbunchoo N, et al. Quantum-enhanced advanced ligo detectors in the era of gravitational-wave astronomy. Physical Review Letters. 2019 Dec;123:231107.
  • Acernese et al. (Virgo Collaboration). Increasing the astrophysical reach of the advanced virgo detector via the application of squeezed vacuum states of light. Phys Rev Lett. 2019;1230:231108.
  • Andrew DL, Boyd MM, Ye J, et al.Optical atomic clocks. Rev Mod Phys. 2015 Jun;87:637–701.
  • Kruse I, Lange K, Peise J, et al. Improvement of an atomic clock using squeezed vacuum. Phys Rev Lett. 2016 Sep;117:143004.
  • Huelga SF, Macchiavello C, Pellizzari T, et al. Improvement of frequency standards with quantum entanglement. Phys Rev Lett. 1997 Nov;79:3865–3868.
  • Matsuzaki Y, Benjamin SC, Fitzsimons J. Magnetic field sensing beyond the standard quantum limit under the effect of decoherence. Phys Rev A. 2011 Jul;84:12103.
  • Chin AW, Huelga SF, Plenio MB. Quantum metrology in non-markovian environments. Phys Rev Lett. 2012 Dec;109:233601.
  • Macieszczak K. Zeno limit in frequency estimation with non-markovian environments. Phys Rev A. 2015 Jul;92:10102.
  • Caves CM. Quantum-mechanical noise in an interferometer. Phys Rev D. 1981 Apr;23:1693–1708.
  • Kabashin AV, Evans P, Pastkovsky S, et al. Plasmonic nanorod metamaterials for biosensing. Nat Mater. 2009;8:867–871.
  • Atwater HA, Polman A. Plasmonics for improved photovoltaic devices. Nat Mater. 2010;9:205–213.
  • Giannini V, Fernández-Domínguez AI, Heck SC, et al. Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem Rev. 2011 June;111:3888–3912.
  • Lee YH, Shi W, Lee HK, et al. Nanoscale surface chemistry directs the tunable assembly of silver octahedra into three two-dimensional plasmonic superlattices. Nat Commun. 2015;6:6990.
  • Pitarke JM, Silkin VM, Chulkov EV, et al. Theory of surface plasmons and surface-plasmon polaritons. Rep Prog Phys. 2006 dec;70:1–87.
  • Cacciola A, Omar Di S, Stassi R, et al. Ultrastrong coupling of plasmons and excitons in a nanoshell. ACS Nano. 2014 November;8:11483–11492.
  • Aberra Guebrou S, Symonds C, Homeyer E, et al. Coherent emission from a disordered organic semiconductor induced by strong coupling with surface plasmons. Phys Rev Lett. 2012 Feb;108:66401.
  • Törmä P, Barnes WL. Strong coupling between surface plasmon polaritons and emitters: a review. Rep Prog Phys. 2014 dec;78:013901.
  • González-Tudela A, Huidobro PA, Martn-Moreno L, et al. Theory of strong coupling between quantum emitters and propagating surface plasmons. Phys Rev Lett. 2013 Mar;110:126801.
  • Barnes WL. Surface plasmon–polariton length scales: a route to sub-wavelength optics. J Opt A:Pure Appl Opt. 2006 mar;8:S87–S93.
  • Aspnes D E, in Handbook of Optical Constants of Solids, edited by Palik E, (Academic, Boston, 1985).
  • Barnes WL, Dereux A, Ebbesen TW. Surface plasmon subwavelength optics. Nature. 2003;424:824–830.
  • Trügler A, Hohenester U. Strong coupling between a metallic nanoparticle and a single molecule. Phys Rev B. 2008 Mar;77:115403.
  • Wersäll M, Jorge Cuadra TJ, Antosiewicz SB, et al. Observation of mode splitting in photoluminescence of individual plasmonic nanoparticles strongly coupled to molecular excitons. Nano Lett. 2017 January;17:551–558.
  • Baranov DG, Wersäll M, Cuadra J, et al. Novel nanostructures and materials for strong light-matter interactions. ACS Photonics. 2018 January;5:24–42.
  • Chikkaraddy R, de Nijs B, Felix Benz SJ, et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature. 2016;535:127–130.
  • Matsuzaki K, Vassant S, Liu H-W, et al. Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna. Sci Rep. 2017;7:42307.
  • Kewes G, Binkowski F, Burger S, et al. Heuristic modeling of strong coupling in plasmonic resonators. ACS Photonics. 2018 Oct;5:4089–4097.
  • Vasa P, Lienau C. Strong light-matter interaction in quantum emitter/metal hybrid nanostructures. ACS Photonics. 2018 January;5:2–23.
  • Gruner T, Welsch D-G. Green-function approach to the radiation-field quantization for homogeneous and inhomogeneous kramers-kronig dielectrics. Phys Rev A. 1996 Mar;53:1818–1829.
  • Waks E, Sridharan D. Cavity qed treatment of interactions between a metal nanoparticle and a dipole emitter. Phys Rev A. 2010 Oct;82:043845.
  • Shah RA, Scherer NF, Pelton M, et al. Ultrafast reversal of a fano resonance in a plasmon-exciton system. Phys Rev B. 2013 Aug;88:075411.
  • Delga A, Feist J, Bravo-Abad J, et al. Quantum emitters near a metal nanoparticle: strong coupling and quenching. Phys Rev Lett. 2014 Jun;112:253601.
  • Rong-Chun G, Hughes S. Quantum dynamics of two quantum dots coupled through localized plasmons: an intuitive and accurate quantum optics approach using quasinormal modes. Phys Rev B. 2015 Nov;92:205420.
  • Li R-Q, Hernángomez-Pérez D, Garca-Vidal FJ, et al. Transformation optics approach to plasmon-exciton strong coupling in nanocavities. Phys Rev Lett. 2016 Aug;117:107401.
  • Peng P, Liu YC, Xu D, et al. Enhancing coherent light-matter interactions through microcavity-engineered plasmonic resonances. Phys Rev Lett. 2017 Dec;119:233901.
  • Gonzalez-Tudela A, Martin-Cano D, Moreno E, et al. Entanglement of two qubits mediated by one-dimensional plasmonic waveguides. Phys Rev Lett. 2011 Jan;106:20501.
  • Eckardt A. Colloquium: atomic quantum gases in periodically driven optical lattices. Rev Mod Phys. 2017 Mar;89:11004.
  • Meinert F, Mark MJ, Lauber K, et al. Floquet engineering of correlated tunneling in the bose-hubbard model with ultracold atoms. Phys Rev Lett. 2016 May;116:205301.
  • Rechtsman MC, Zeuner JM, Plotnik Y, et al. Photonic floquet topological insulators. Nature. 2013;496:196–200.
  • Cheng Q, Pan Y, Wang H, et al. Observation of anomalous π modes in photonic floquet engineering. Phys Rev Lett. 2019 May;122:173901.
  • Roushan P, Neill C, Megrant A, et al. Chiral ground-state currents of interacting photons in a synthetic magnetic field. Nat Phys. 2017;13:146–151.
  • McIver JW, Schulte B, Stein F-U, et al. Light-induced anomalous hall effect in graphene. Nat Phys. 2020;16:38–41.
  • Shirley JH. Solution of the schrödinger equation with a hamiltonian periodic in time. Phys Rev. 1965 May;138:B979–B987.
  • Sambe H. Steady states and quasienergies of a quantum-mechanical system in an oscillating field. Phys Rev A. 1973 Jun;7:2203–2213.
  • Russomanno A, Silva A, Santoro GE. Periodic steady regime and interference in a periodically driven quantum system. Phys Rev Lett. 2012 Dec;109:257201.
  • Leistikow MD, Mosk AP, Yeganegi E, et al. Inhibited spontaneous emission of quantum dots observed in a 3d photonic band gap. Phys Rev Lett. 2011 Nov;107:193903.
  • Alicki R, Fannes M. Entanglement boost for extractable work from ensembles of quantum batteries. Phys Rev E. 2013 Apr;87:42123.
  • Ferraro D, Campisi M, Andolina GM, et al. High-power collective charging of a solid-state quantum battery. Phys Rev Lett. 2018 Mar;120:117702.
  • Andolina GM, Keck M, Mari A, et al. Extractable work, the role of correlations, and asymptotic freedom in quantum batteries. Phys Rev Lett. 2019 Feb;122:47702.
  • Pirmoradian F, Klaus M. Aging of a quantum battery. Phys Rev A. 2019 Oct;100:43833.
  • Kamin FH, Tabesh FT, Salimi S, et al. Non-markovian effects on charging and self-discharging process of quantum batteries. New J Phys. 2020 aug;22:083007.
  • González-Tudela A, Cirac JI. Markovian and non-markovian dynamics of quantum emitters coupled to two-dimensional structured reservoirs. Phys Rev A. 2017 Oct;96:43811.
  • Kitagawa T, Berg E, Rudner M, et al. Topological characterization of periodically driven quantum systems. Phys Rev B. 2010 Dec;82:235114.
  • Liang F, Kane CL. Superconducting proximity effect and majorana fermions at the surface of a topological insulator. Phys Rev Lett. 2008 Mar;100:096407.
  • Sau JD, Lutchyn RM, Tewari S, et al. Generic new platform for topological quantum computation using semiconductor heterostructures. Phys Rev Lett. 2010 Jan;104:40502.
  • Sato M, Takahashi Y, Fujimoto S. Non-abelian topological order in s-wave superfluids of ultracold fermionic atoms. Phys Rev Lett. 2009 Jul;103:20401.
  • Gong M, Chen G, Jia S, et al. Searching for majorana fermions in 2d spin-orbit coupled fermi superfluids at finite temperature. Phys Rev Lett. 2012 Sep;109:105302.
  • Shi-Liang Zhu L-B, Shao ZD, Wang L-MD. Probing non-abelian statistics of majorana fermions in ultracold atomic superfluid. Phys Rev Lett. 2011 Mar;106:100404.
  • Williams JR, Bestwick AJ, Gallagher P, et al. Unconventional josephson effect in hybrid superconductor-topological insulator devices. Phys Rev Lett. 2012 Jul;109:56803.
  • Liu J, Potter AC, Law KT, et al. Zero-bias peaks in the tunneling conductance of spin-orbit-coupled superconducting wires with and without majorana end-states. Phys Rev Lett. 2012 Dec;109:267002.
  • Kells G, Meidan D, Brouwer PW. Near-zero-energy end states in topologically trivial spin-orbit coupled superconducting nanowires with a smooth confinement. Phys Rev B. 2012 Sep;86:100503.
  • Ryu S, Schnyder AP, Furusaki A, et al. Topological insulators and superconductors: tenfold way and dimensional hierarchy. New J Phys. 2010 jun;12:065010.
  • Wang J, Lian B, Zhang H, et al. Quantum anomalous hall effect with higher plateaus. Phys Rev Lett. 2013 Sep;111:136801.
  • Skirlo SA, Ling L, Marin S. Multimode one-way waveguides of large chern numbers. Phys Rev Lett. 2014 Sep;113:113904.
  • Fang C, Gilbert MJ, Andrei Bernevig B. Large-chern-number quantum anomalous hall effect in thin-film topological crystalline insulators. Phys Rev Lett. 2014 Jan;112:046801.
  • Möller G, Cooper NR. Fractional chern insulators in harper-hofstadter bands with higher chern number. Phys Rev Lett. 2015 Sep;115:126401.
  • Scaffidi T, Simon SH. Large chern number and edge currents in sr2ruo4. Phys Rev Lett. 2015 Aug;115:87003.
  • Röntynen J, Ojanen T. Topological superconductivity and high chern numbers in 2d ferromagnetic shiba lattices. Phys Rev Lett. 2015 Jun;114:236803.
  • Skirlo SA, Ling L, Igarashi Y, et al. Experimental observation of large chern numbers in photonic crystals. Phys Rev Lett. 2015 Dec;115:253901.
  • Jiang H, Qiao Z, Liu H, et al. Quantum anomalous hall effect with tunable chern number in magnetic topological insulator film. Phys Rev B. 2012 Jan;85:45445.
  • Yang S, Zheng-Cheng G, Sun K, et al. Topological flat band models with arbitrary chern numbers. Phys Rev B. 2012 Dec;86:241112.
  • Haldane FDM. Model for a quantum hall effect without landau levels: condensed-matter realization of the “parity anomaly”. Phys Rev Lett. 1988 Oct;61:2015–2018.
  • Jünemann J, Piga A, Ran S-J, et al. Exploring interacting topological insulators with ultracold atoms: the synthetic creutz-hubbard model. Phys Rev X. 2017 Sep;7:31057.
  • Potirniche I-D, Potter AC, Schleier-Smith M, et al. Floquet symmetry-protected topological phases in cold-atom systems. Phys Rev Lett. 2017 Sep;119:123601.
  • Ashida Y, Gong Z, Ueda M. Non-hermitian physics, 2020.
  • Lee TE. Anomalous edge state in a non-hermitian lattice. Phys Rev Lett. 2016 Apr;116:133903.
  • Yao S, Wang Z. Edge states and topological invariants of non-hermitian systems. Phys Rev Lett. 2018 Aug;121:86803.
  • Yokomizo K, Murakami S. Non-bloch band theory of non-hermitian systems. Phys Rev Lett. 2019 Aug;123:66404.
  • Asbóth JK, Tarasinski B, Delplace P. Chiral symmetry and bulk-boundary correspondence in periodically driven one-dimensional systems. Phys Rev B. 2014 Sep;90:125143.
  • Hood JD, Goban A, Asenjo-Garcia A, et al. Atom–atom interactions around the band edge of a photonic crystal waveguide. Proc Nat Acad Sci2. 2016;113:10507–10512.
  • Liu Y, Houck AA. Quantum electrodynamics near a photonic bandgap. Nat Phys. 2017;13:48–52.
  • Krinner L, Stewart M, Pazmiño A, et al. Spontaneous emission of matter waves from a tunable open quantum system. Nature. 2018 July;559:589–592.
  • Perczel J, Borregaard J, Chang DE, et al. Topological quantum optics using atomlike emitter arrays coupled to photonic crystals. Phys Rev Lett. 2020 Feb;124:83603.
  • Barik S, Karasahin A, Flower C, et al. A topological quantum optics interface. Science. 2018;359:666–668.
  • Bello M, Platero G, Cirac JI, et al. Unconventional quantum optics in topological waveguide qed. Sci Adv. 2019;5:eaaw0297.
  • Garca-Elcano I, González-Tudela A, Bravo-Abad J. Tunable and robust long-range coherent interactions between quantum emitters mediated by weyl bound states. Phys Rev Lett. 2020 Oct;125:163602.
  • Plotnik Y, Peleg O, Dreisow F, et al. Experimental observation of optical bound states in the continuum. Phys Rev Lett. 2011 Oct;107:183901.
  • Calajó G, Fang Y-L-L, Baranger HU, et al. Exciting a bound state in the continuum through multiphoton scattering plus delayed quantum feedback. Phys Rev Lett. 2019 Feb;122:73601.
  • Cerjan A, Marius Jürgensen WA, Benalcazar SM, et al. Observation of a higher-order topological bound state in the continuum. Phys Rev Lett. 2020 Nov;125:213901.
  • Yao NY, Potter AC, Potirniche I-D, et al. Discrete time crystals: rigidity, criticality, and realizations. Phys Rev Lett. 2017 Jan;118:30401.
  • Choi S, Choi J, Landig R, et al. Observation of discrete time-crystalline order in a disordered dipolar many-body system. Nature. 2017;543:221–225.
  • Regnault N, Nandkishore R. Floquet thermalization: symmetries and random matrix ensembles. Phys Rev B. 2016 Mar;93:104203.
  • Haldar A, Moessner R, Das A. Onset of floquet thermalization. Phys Rev B. 2018 Jun;97:245122.