3,790
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Advances in ultrashallow doping of silicon

, &
Article: 1871407 | Received 17 Nov 2020, Accepted 30 Dec 2020, Published online: 25 Jan 2021

References

  • Brews JR, Fichtner W, Nicollian EH, et al. Generalized guide for MOSFET miniaturization. IEEE Electr Device L. 1980;1:2–25.
  • Sze SM. Physics of semiconductor devices: physics and technology. 2nd ed.  New York: Wiley; 2001.
  • Neamen DA. Semiconductor physics and devices: basic principles. New York, NY: McGraw-Hill; 2012.
  • Hisamoto D, Lee WC, Kedzierski J, et al. A folded-channel MOSFET for deep-sub-tenth micron era. International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217), San Francisco, CA, USA. 1998 6-9 Dec. 1998.
  • Hisamoto D, Wen-Chin L, Kedzierski J, et al. FinFET-a self-aligned double-gate MOSFET scalable to 20 nm. IEEE Trans Electron Devices. 2000;47:2320–2325.
  • Hong S, Ruggles G, Paulos J, et al. Formation of ultrashallow p+‐n junctions by low‐energy boron implantation using a modified ion implanter. Appl Phys Lett. 1988;53:1741–1743.
  • Kim SD, Park CM, Woo JCS. Advanced source/drain engineering for box-shaped ultrashallow junction formation using laser annealing and pre-amorphization implantation in sub-100-nm SOI CMOS. IEEE Trans Electron Devices. 2002;49: 1748–1754
  • Ho JC, Yerushalmi R, Smith G, et al. Wafer-scale, Sub-5 nm junction formation by monolayer doping and conventional spike annealing. Nano Lett. 2009;9:725–730.
  • Wang Q, Osburn CM, Canovai CA. Ultra-shallow junction formation using silicide as a diffusion source and low thermal budget. IEEE Trans Electron Devices. 1992;39:2486–2496.
  • Baik S, Kwon DJ, Kang H, et al. Conformal and ultra shallow junction formation achieved using a pulsed-laser annealing process integrated with a modified plasma assisted doping method. IEEE Access. 2020;8:172166–172174.
  • Sarubbi F, Nanver LK, Scholtes TL. CVD delta-doped boron surface layers for ultra-shallow junction formation. ECS Trans. 2006;3:35.
  • Chuang S, Cho T, Sung P, et al. Ultra-shallow junction formation by monolayer doping process in single crystalline Si and Ge for future CMOS devices. ECS Journal of Solid State Science and Technology. 2017;6:350–355
  • Kane BE. A silicon-based nuclear spin quantum computer. Nature. 1998;393:133–137.
  • Schofield SR, Curson NJ, Simmons MY, et al. Atomically precise placement of single dopants in Si. Phys Rev Lett. 2003;91:136104.
  • Koch M, Keizer JG, Pakkiam P, et al. Spin read-out in atomic qubits in an all-epitaxial three-dimensional transistor. Nat Nanotechnol. 2019;14:137–140.
  • Veldhorst M, Yang CH, Hwang JC, et al. A two-qubit logic gate in silicon. Nature. 2015;526:410–414.
  • Linford MR, Chidsey CED. Alkyl monolayers covalently bonded to silicon surfaces. J Am Chem Soc. 1993;115:12631–12632.
  • Wasserman SR, Tao YT, Whitesides GM. Structure and reactivity of alkylsiloxane monolayers formed by reaction of alkyltrichlorosilanes on silicon substrates. Langmuir. 1989;5:1074–1087.
  • Sieval AB, Demirel AL, Nissink JWM, et al. Highly stable Si-C linked functionalized monolayers on the silicon (100) surface. Langmuir. 1998;14:1759–1768.
  • Ho JC, Yerushalmi R, Jacobson ZA, et al. Controlled nanoscale doping of semiconductors via molecular monolayers. Nat Mater. 2007;7:62–67.
  • Ye L, Pujari SP, Zuilhof H, et al. Controlling the dopant dose in silicon by mixed-monolayer doping. ACS Appl Mater Interfaces. 2015;7:3231–3236.
  • Gao X, Guan B, Mesli A, et al. Deep level transient spectroscopic investigation of phosphorus-doped silicon by self-assembled molecular monolayers. Nat Commun. 2018;9:118.
  • Wu H, Li K, Gao X, et al. Phosphorus ionization in silicon doped by self-assembled macromolecular monolayers. AIP Adv. 2017;7:105310.
  • Wu H, Guan B, Sun Y, et al. Controlled doping by self-assembled dendrimer-like macromolecules. Sci Rep. 2017;7:41299.
  • Alphazan T, Mathey L, Schwarzwälder M, et al. Monolayer doping of silicon through grafting a tailored molecular phosphorus precursor onto oxide-passivated silicon surfaces. Chem Mater. 2016;28:3634–3640.
  • van Druenen M, Collins G, Glynn C, et al. Functionalization of SiO2 surfaces for Si monolayer doping with minimal carbon contamination. ACS Appl Mater Interfaces. 2018;10:2191–2201.
  • O’Connell J, Collins G, McGlacken GP, et al. Monolayer doping of Si with improved oxidation resistance. ACS Appl Mater Interfaces. 2016;8:4101–4108.
  • Perego M, Seguini G, Arduca E, et al. Control of doping level in semiconductors via self-limited grafting of phosphorus end-terminated polymers. ACS Nano. 2018;12:178–186.
  • Zhi K, Zhang C, Wei H, et al. Thermal pyrolysis investigation of self-assembled molecular monolayer for defect-free doping in silicon. Chem Phys. 2020;531:110658.
  • Zhang C, Peng M, Hu W, et al. Toward scalable fabrication of atomic wires in silicon by nanopatterning self-assembled molecular monolayers. ACS Appl Electron Mater. 2020;2:275–281.
  • Ye L, González-Campo A, Núñez R, et al. Boosting the boron dopant level in monolayer doping by carboranes. ACS Appl Mater Interfaces. 2015;7:27357–27361.
  • Gao X, Kolevatov I, Chen K, et al. Full activation of boron in silicon doped by self-assembled molecular monolayers. ACS Appl Electron Mater. 2020;2:268–274.
  • Veerbeek J, Ye L, Vijselaar W, et al. Highly doped silicon nanowires by monolayer doping. Nanoscale. 2017;9:2836–2844.
  • Fu J, Chen K, Chang S, et al. Dopant activation and photoresponses of boron-doped silicon by self-assembled molecular monolayers. AIP Adv. 2019;9:125219.
  • Guan B, Siampour H, Fan Z, et al. Nanoscale nitrogen doping in silicon by self-assembled monolayers. Sci Rep. 2015;5:12641.
  • O’Connell J, Verni GA, Gangnaik A, et al. Organo-arsenic molecular layers on silicon for high-density doping. ACS Appl Mater Interfaces. 2015;7:15514–15521.
  • Popere BC, Russ B, Heitsch AT, et al. Large-area, nanometer-scale discrete doping of semiconductors via block copolymer self-assembly. Adv Mater Interfaces. 2015;2:18.
  • Wu H, Chen Q, Huang N, et al. Evolution of hyperbranched polyglycerols as single-dopant carriers. Colloids Surf A Physicochem Eng Asp. 2020;592:124608.
  • Longo RC, Cho K, Schmidt WG, et al. Monolayer doping via phosphonic acid grafting on silicon: microscopic insight from infrared spectroscopy and density functional theory calculations. Adv Funct Mater. 2013;23:3471–3477.
  • Chang R, Lin C. Deactivation of phosphorus in silicon due to implanted nitrogen. physica status solidi (c)). 2014;11: 24–27.
  • Citrin PH, Muller DA, Gossmann HJ, et al. Geometric frustration of 2D dopants in silicon: surpassing electrical saturation. Phys Rev Lett. 1999;83:3234–3237.
  • Oberbeck L, Curson NJ, Simmons MY, et al. Encapsulation of phosphorus dopants in silicon for the fabrication of a quantum computer. Appl Phys Lett. 2002;81:3197–3199.
  • Ruess FJ, Oberbeck L, Simmons MY, et al. Toward atomic-scale device fabrication in silicon using scanning probe microscopy. Nano Lett. 2004;4:1969–1973.
  • O’Brien JL, Schofield SR, Simmons MY, et al. Towards the fabrication of phosphorus qubits for a silicon quantum computer. Phys Rev B. 2001;64:161401.
  • Fuechsle M, Miwa JA, Mahapatra S, et al. A single-atom transistor. Nat Nanotechnol. 2012;7:242–246.
  • Oberbeck L, Curson NJ, Hallam T, et al. Measurement of phosphorus segregation in silicon at the atomic scale using scanning tunneling microscopy. Appl Phys Lett. 2004;85:1359–1361.
  • McKibbin SR, Clarke WR, Simmons MY. Investigating the surface quality and confinement of Si: pδ-layers at different growth temperatures. Physica E. 2010;42:1180–1183.
  • Polley CM, Clarke WR, Miwa JA, et al. Exploring the limits of N-type ultra-shallow junction formation. ACS Nano. 2013;7:5499–5505.
  • McKibbin SR, Polley CM, Scappucci G, et al. Low resistivity, super-saturation phosphorus-in-silicon monolayer doping. Appl Phys Lett. 2014;104:123502.
  • McKibbin SR, Clarke WR, Fuhrer A, et al. Optimizing dopant activation in Si:P double δ-layers. J Cryst Growth. 2010;312:3247–3250.
  • Keizer JG, McKibbin SR, Simmons MY. The impact of dopant segregation on the maximum carrier density in Si: P Multilayers. ACS Nano. 2015;9:7080–7084.
  • Mack M. Charging and charge neutralization in ion implantation. Nucl Instrum Methods Phys Res, Sect B. 1989;37:472–477.
  • Liu F, Monteiro O, Yu K, et al. Self-neutralized ion implantation into insulators. Nucl Instrum Methods Phys Res, Sect B. 1997;132:188–192.
  • White N, Chen J, Mulcahy C, et al., Chicane deceleration—an innovative energy contamination control technique in low energy ion implantation. AIP Conference Proceeding, 16th International Conference on Ion Implantation Technology, Marseille, Frances. 2006; 866:1, 335-339.
  • Beanland DG. The behaviour of boron molecular ion implants into silicon. Solid-State Electron. 1978;21:537–547.
  • Müller H, Ryssel H, Schmid K. Electrical properties of silicon layers implanted with BF2 molecules. J Appl Phys. 1972;43:2006–2008.
  • Wilson H, Prawer S, Spizzirri P, et al. P2 dimer implantation in silicon: a molecular dynamics study. Nucl Instrum Methods Phys Res, Sect B. 2006;251:395–401.
  • Mizuno B, Nakayama I, Takase M, et al. Plasma doping for silicon. Surf Coat Technol. 1996;85:51–55.
  • Felch SB, Fang Z, Koo BW, et al. Plasma doping for the fabrication of ultra-shallow junctions. Surf Coat Technol. 2002;156:229–236.
  • Ensinger W. Semiconductor processing by plasma immersion ion implantation. Mater Sci Eng A. 1998;253:258–268.
  • Normann HB, Vines L, Privitera V, et al. Phosphorus in-diffusion from a surface source by millisecond flash lamp annealing for shallow emitter solar cells. Appl Phys Lett. 2013;102:132108.
  • Scheit A, Lenke T, Bolze D, et al. Dopant profile engineering using ArF excimer laser, flash lamp and spike annealing for junction formation. 2014 20th International Conference on Ion Implantation Technology (IIT), Portland, Oregon, USA; 2014 2014-06-01: IEEE.
  • Riise HN, Schumann T, Azarov A, et al. Formation of shallow boron emitters in crystalline silicon using flash lamp annealing: role of excess silicon interstitials. Appl Phys Lett. 2015;107:022105.
  • Kalkofen B, Ahmed B, Beljakowa S, et al. Atomic layer deposition of phosphorus oxide films as solid sources for doping of semiconductor structures. 2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO), Cork, Ireland; 2018 23-26 July 2018.
  • Whelan S, La Magna A, Privitera V, et al. Dopant redistribution and electrical activation in silicon following ultra-low energy boron implantation and excimer laser annealing. Phys Rev B. 2003;67:075201.
  • Florakis A, Papadimitriou A, Chatzipanagiotis N, et al. Formation of silicon ultra shallow junction by non-melt excimer laser treatment. Solid-State Electron. 2010;54:903–908.
  • Lorito G, Qi L, Nanver L. Arbitrarily shallow arsenic-deposited junctions on silicon tuned by excimer laser annealing. 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology, Shanghai, China; 2010 2010-11-01: IEEE.
  • Qiu Y, Cristiano F, Huet K, et al. Extended defects formation in nanosecond laser-annealed ion implanted silicon. Nano Lett. 2014;14:1769–1775.
  • Florakis A, Misra N, Grigoropoulos C, et al. Non-melt laser annealing of plasma implanted boron for ultra shallow junctions in silicon. Mater Sci Eng, B. 2008;154-155:39–42.
  • White CW, Christie WH, Appleton BR, et al. Redistribution of dopants in ion‐implanted silicon by pulsed‐laser annealing. Appl Phys Lett. 1978;33:662–664.
  • Wu CP, Magee CW. Pulsed‐laser annealing of ion‐implanted polycrystalline silicon films. Appl Phys Lett. 1979;34:737–739.
  • Alba PA, Kerdiles S, Mathieu B, et al. Nanosecond laser annealing for phosphorous activation in ultra-thin implanted silicon-on-insulator substrates. 2016 21st International Conference on Ion Implantation Technology (IIT), Tainan, Taiwan; 2016 2016-09-01: IEEE.
  • Popadic M, Nanver LK, Biasotto C, et al. Ultrashallow doping by excimer laser drive-in of RPCVD surface deposited arsenic monolayers. 2008 16th IEEE International Conference on Advanced Thermal Processing of Semiconductors, Las Vegas, NV, USA, 2008, pp. 141–146
  • Thompson DC, Decker J, Alford TL, et al. Microwave activation of dopants & solid phase epitaxy in silicon. 2007 MRS Spring Meeting - San Francisco, CA, United States; 989, 0989-A06-18.
  • Alford TL, Ahmad I, Hubbard R. Variable frequency microwave induced low temperature dopant activation in ion implanted silicon. 2009 17th International Conference on Advanced Thermal Processing of Semiconductors, Albany, NY, USA; 2009 2009-09-01: IEEE.
  • Lee Y, Hsueh F, Current MI, et al. Susceptor coupling for the uniformity and dopant activation efficiency in implanted Si under fixed-frequency microwave anneal. IEEE Electr Device L. 2012;33:248–250.
  • Xu P, Fu C, Hu C, et al. Ultra-shallow junctions formed using microwave annealing. Appl Phys Lett. 2013;102:122114.
  • Zhao Z, David Theodore N, Vemuri RNP, et al. Effective dopant activation via low temperature microwave annealing of ion implanted silicon. Appl Phys Lett. 2013;103:192103.