1,796
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Future applications of the high-flux thermal neutron spectroscopy: the ever-green case of collective excitations in liquid metals

&
Article: 1871862 | Received 17 Nov 2020, Accepted 23 Dec 2020, Published online: 07 Feb 2021

References

  • Lovesey SW. Theory of neutron scattering from condensed matter. Oxford (UK): Clarendon; 1987.
  • Skold K, Price DL, editors. Methods in experimental physics; Vol. 23. Part A. London (UK): Academic Press; 1986.
  • Windsor CG. Pulsed neutron scattering. London (UK): Taylor & Francis; 1981.
  • Dianoux AJ, Lander G, editors. Neutron data booklet. Philadelphia (US): Old City Publishing; 2003.
  • Cavaye CH. Neutron spectroscopy: an under-utilised tool for organic electronics research? Angew Chem Int Ed. 2019 Jul;58:9338–60.
  • Hippert F, Geissler E, Hodeau JL, et al., editors. Neutron and X-ray spectroscopy. The Netherlands: Springer; 2006.
  • Liebschner D, Afonine PV, Baker ML, et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Cryst. 2019;D75:861–877.
  • Doktorova M, Kučerka N, Kinnun JJ, et al. Molecular structure of sphingomyelin in fluid phase bilayers determined by the joint analysis of small-angle neutron and X-ray scattering data. J Phys Chem B. 2020 May;124:5186–5200.
  • Semeraro EF, Marx L, Frewein MPK, et al. Increasing complexity in small-angle X-ray and neutron scattering experiments: from biological membrane mimics to live cells. Soft Matter. Feb 2020; doi:https://doi.org/10.1039/c9sm02352f.
  • Weinberg AM. Oak ridge national laboratory. Science. 1949 Mar;109:245–248.
  • Shull CG, Strauser WA, Wollan EO. Neutron diffraction by paramagnetic and antiferromagnetic substances. Phys Rev. 1951 Jul;83:333–345.
  • Anderson PW. More and different: notes from a thoughtful curmudgeon. Singapore: World Scientific. 2011;pp. 404–408.
  • Carlile CJ The ILL Millennium programme. Institut Laue-Langevin, Grenoble (FR): April 2001 Internal Report.
  • Petry W. Advanced neutron instrumentation at FRM-II. Atw Internationale Zeitschrift fuer Kernenergie. 2003;48:315–318.
  • Bennington SM, Campbell SI, Broome TA, et al. ISIS target station II: preliminary target and moderator simulations. J Neutron Res. 2003 May;11:93–98.
  • Henderson S, Abraham W, Aleksandrov A, et al. The spallation neutron source accelerator system design. Nuc Inst Methods Phys Res Sec A. 2014 Jun;763:610–763.
  • Carlile CJ, Petrillo C. editors.Neutron scattering facilities in Europe present status and future perspectives. Vol. 1. ESFRI Scripta Universitá degli Studi di Milano (IT): September 2016.
  • Peggs S, editor, ESS technical design report, April 2013. doi:https://doi.org/10.13140/RG.2.1.2040.6483/1
  • Mezei MF. The raison d’être of long pulse spallation sources. J Neutron Res. 1997;6:3–32.
  • Zanini L, Andersen KH, Batkov K, et al. Design of the cold and thermal neutron moderators for the European spallation source. Nucl Instrum Methods Phys Res A. 2019;925:33–52.
  • Andersen KH, Argyriou DN, Jackson AJ, et al. The instrument suite of the European spallation source. Nuc Inst Methods Phys Res Sec A. 2020;957:163402.
  • Blume M. Polarization effects in the magnetic elastic scattering of slow neutrons. Phys Rev. 1963 Jun;130:1670–1676.
  • Maleev SV, Bar’yakhtar VG, Suris RA. Fiz. Tverd Tela (Leningrad). 1962;4:3461.
  • Blume M. Neutron polarization phenomena in scattering processes. Physica B. 1999;267- 268:211–214.
  • Moon RM, Riste T, Koehler WC. Polarization analysis of Thermal-Neutron Scattering. Phys Rev. 1969 May;181:920–931.
  • Halpern O, Johnson MH. On the magnetic scattering of neutrons. Phys Rev. 1939 May;55:898–923.
  • Hicks TJ. Experiments with neutron polarization analysis. Adv Phys. 1996 Nov;45:243–298.
  • Chatterji T, editor. Neutron scattering from magnetic materials. Amsterdam (NL): Elsevier B.V; 2006.
  • Chisnell R, Helton JS, Freedman DE, et al. Topological magnon bands in a kagome lattice ferromagnet. Phys Rev Lett. 2015 Sep;115:147201.
  • Soh J-R, de Juan F, Qureshi N, et al. Ground-state magnetic structure of Mn3Ge. Phys Rev B. 2020 Apr;101:140411(R).
  • Brown PJ, Nunez V, Tasset F, et al. Determination of the magnetic structure of Mn3Sn using generalized neutron polarization analysis. J Phys Condens Matter. 1990 Aug;2:9409–9422.
  • Leliévre-Berna E, Bourgeat-Lami E, Fouilloux P, et al. Advances in spherical neutron polarimetry with Cryopad. Physica B: Condens Matter. 2005;356:131–135.
  • Di Fabrizio E, Mazzone G, Petrillo C, et al. Spin-density of ordered FeCo - A failure of the local-spin-density approximation. Phys Rev B. 1989 Nov;40:9502–9507.
  • Dalla Piazza B, Mourigal M, Christensen NB, et al. Fractional excitations in the square-lattice quantum antiferromagnet. Nat Phys. 2015 Jan;11:62–68.
  • Arbe A, Malo de Molina P, Alvarez F, et al. Dielectric susceptibility of liquid water: microscopic insights from coherent and incoherent neutron scattering. Phys Rev Lett. 2016 Oct;117:185501.
  • Arbe A, Nilsen GJ, Stewart JR, et al. Coherent structural relaxation of water from meso- to intermolecular scales measured using neutron spectroscopy with polarization analysis. Phys Rev Research. 2020 Apr;2:022015(R).
  • Burankova T, Hempelmann R, Wildes A, et al. Collective ion diffusion and localized single particle dynamics in pyridinium-based ionic liquids. J Phys Chem B. 2014 Nov;118:14452–14460.
  • Cassella G, Stewart JR, Paternó GM, et al. Polarization analysis on the LET cold neutron spectrometer using a 3He spin-fllter: flrst results. J Phys. 2019;1316:012007.
  • Landau LD, Lifshitz EM. Statistical physics. Amsterdam (NL): Elsevier Ltd; 1980.
  • Boon JP, Yip S. Molecular hydrodynamics. New York (US): McGraw-Hill; 1980.
  • Hansen J-P , McDonald I. Theory of Simple Liquids. New York (US): Academic; 1986.
  • March N, Tosi M. Atomic dynamics in liquids. New York (US): Dover; 1991.
  • Ziman J. Models of disorder. Cambridge (UK): Cambridge University Press; 1979.
  • Barker JA, Henderson D. What is ”liquid”? Understanding the states of matter. Rev Mod Phys. 1976 Oct;48:587–671.
  • Egelstaff P. An introduction to the liquid state. New York (US): Academic; 1967.
  • Balucani U, Zoppi M. Dynamics of the liquid state. Oxford (UK): Clarendon; 1983.
  • Allen MP, Tildesley DJ. Computer simulation of liquids. New York (US): Oxford University Press; 2017.
  • Montfrooij W, de Schepper I. Excitations in simple liquids, liquid metals and superfluids. New York (US): Oxford University Press; 2010.
  • Cunsolo A. The THz dynamics of liquids probed by inelastic X-ray scattering. Singapore: World Scientific; 2020.
  • Bulavin L, Lebovka N, editors, Physics of liquid matter: modern problems. Proceedings, Kyiv, Ukraine, 23–27 May 2014. Springer Proceedings in Physics. Volume 171. Switzerland (CH): Springer International Publishing 2015.
  • Copley JRD, Lovesey SW. The dynamic properties of monatomic liquids. Rep Prog Phys. 1975 Apr;38:461–563.
  • Scopigno T, Ruocco G, Sette F. Microscopic dynamics in liquid metals: the experimental point of view. Rev Mod Physics. 2005 Jul;77:881–933.
  • Pilgrim W-C, Morkel Chr. State dependent particle dynamics in liquid alkali metals. J Phys Condens Matter. 2006 Aug;18:R585–R633.
  • Takeno S, Goda MA. A theory of phonons in amorphous solids and its implications to collective motion in simple liquids. Prog Theoretical Phys. 1971 Feb;45:331–352.
  • Hubbard J, Beeby JL. Collective motion in liquids. J Phys C. 1969 Mar;2:556–571.
  • Yoshida F, Takeno TS. Dynamical correlations and collective excitations in liquids. Phys Rep. 1989;173:301–379.
  • Schirmacher W, Schmid B, Sinn H. Theory of collective excitations in simple liquids. Eur Phys J Special Topics. 2011 May;196:3–13.
  • Trachenko K, Brazhkin VV. Duality of liquids. Sci Rep. 2013 Jul;3:2188.
  • Bolmatov D, Musaev ET, Trachenko K. Symmetry breaking gives rise to energy spectra of three states of matter. Sci Rep. 2013 Sep;3:2794.
  • Trachenko K, Brazhkin VV. Collective modes and thermodynamics of the liquid state. Rep Prog Phys. 2016 Jan; 79:3016502.
  • Trachenko K. Lagrangian formulation and symmetrical description of liquid dynamics. Phys Rev E. 2017 Dec;96:062134.
  • Baggioli M, Vasin M, Brazhkin V, et al. Gapped momentum states. Phys Rep. 2020 Apr;865:1–44.
  • Copley JRD, Rowe JM. Short-wavelength collective excitations in liquid rubidium observed by coherent neutron scattering. Phys Rev Lett. 1974 Jan;32:49–52.
  • Bove LE, Sacchetti F, Petrillo C, et al. Neutron investigation of collective excitations in liquid K-Cs alloys: the role of the electron density. Phys Rev Lett. 2000 Dec;85:5352–5355.
  • Sinn H, Sette F, Bergmann U, et al. Coherent dynamic structure factor of liquid lithium by inelastic X-Ray scattering. Phys Rev Lett. 1997 Mar;78:1715–1718.
  • de Schepper IM, Verkerk P, van Well AA, et al. Short-wavelength sound modes in liquid argon. Phys Rev Lett. 1983 Mar;50:974–977.
  • Cunsolo A, Pratesi G, Verbeni R, et al. Microscopic relaxation in supercritical and liquid neon. J Chem Phys. 2001 Feb;114:2259–2267.
  • Demmel F, Hosokawa S, Lorenzen M, et al. Propagating particle density fluctuations in molten NaCl. Phys Rev B. 2004 Jan;69:012203.
  • Giura P, Angelini R, Datchi F, et al. High frequency dynamics and structural relaxation process in liquid ammonia. J Chem Phys. 2007 Aug;127:084508.
  • Monaco G, Masciovecchio C, Ruocco G, et al. Determination of the infinite frequency sound velocity in the glass formero-terphenyl.. Phys Rev Lett. 1998 Mar;80:2161–2164.
  • Orecchini A, Paciaroni A, De Francesco A, et al. Collective dynamics of protein hydration water by brillouin neutron spectroscopy. J Am Chem Soc. 2009 Apr;131:4664–4669.
  • Teixeira J, Bellissent-Funel MC, Chen SH, et al. Observation of new short-wavelength collective excitations in heavy water by coherent inelastic neutron scattering. Physical Review Letters. 1985 Jun;54:2681–2683.
  • Sette F, Ruocco G, Krisch M, et al. Collective dynamics in water by high energy resolution inelastic X-Ray scattering. Physical Review Letters. 1995 Jul;75:850–853.
  • Petrillo C, Sacchetti F, Dorner B, et al. High-resolution neutron scattering measurement of the dynamic structure factor of heavy water. Physical Review E. 2000 Sep;62:3611–3618.
  • Sacchetti F, Suck J-B, Petrillo C, et al. Brillouin neutron scattering in heavy water: evidence for two-mode collective dynamics. Physical Review E. 2004 Jun;69:061203.
  • Cunsolo A, Kodituwakku CN, Bencivenga F, et al. Transverse dynamics of water across the melting point: A parallel neutron and X-ray inelastic scattering study. Physical Review B. 2012 May;85:174305.
  • Pontecorvo E, Krisch M, Cunsolo A, et al. High-frequency longitudinal and transverse dynamics in water. Physical Review E. 2005 Jan;71:011501.
  • Giordano VM, Monaco G. Fingerprints of order and disorder on the high-frequency dynamics of liquids. PNAS. 2010 Dec;107:21985–21989.
  • Hosokawa S, Inui M, Kajihara Y, et al. Transverse acoustic excitations in liquid Ga. Phys Rev Lett. 2009 Mar;102:105502.
  • Hosokawa S, Inui M, Kajihara Y, et al. Transverse excitations in liquid Fe, Cu and Zn. J Phys. 2015 Apr;27:194104.
  • Zanatta M, Sacchetti F, Guarini E, et al. Collective Ion dynamics in liquid zinc: evidence for complex dynamics in a non-free-electron liquid metal. Phys Rev Lett. 2015 May;114:187801.
  • Hosokawa S, Munejiri S, Inui M, et al. Transverse excitations in liquid Sn. J Phys. 2013 Feb;25:112101.
  • Brockhouse BN, Pope NK. Time-dependent pair correlations in liquid lead. Phys Rev Lett. 1959 Sep;3:259–262.
  • Brockhouse BN. Bull. Am Phys Soc Ser. II 1958;3:233.
  • Rahman A. Propagation of Density Fluctuations in Liquid Rubidium: A Molecular-Dynamics Study. Phys Rev Lett. 1974 Jan;32:52–54.
  • Ichimaru S. Strongly coupled plasmas: high-density classical plasmas and degenerate electron liquids. Rev Mod Phys. 1982 Oct;54:1017–1059.
  • March NH. Liquid Metals. New York (US): Cambridge University Press; 1990.
  • Bove LE, Petrillo C, Sacchetti F. Ion density fluctuations in liquid metals: the strongly interacting ion-electron plasma. Condens Matter Phys. 2008;11:119–126.
  • Sani L, Petrillo C, Sacchetti F. Determination of the interstitial electron density in liquid metals: basic quantity to calculate the ion collective-mode velocity and related properties. Phys Rev B. 2014 Jul;90:024207.
  • Ashcroft NW, Stroud D. Theory of the thermodynamics of simple liquid metals. Solid State Phys. 1978;33:1–81.
  • Pines D, Nozieres P. The theory of quantum liquids. New York (US): W. A. Benjamin, Inc; 1966.
  • Lide DR. Boca Raton (Florida, US): CRC Press LLC 2005. J Am Chem Soc. 2005;127:4542–14542. editor CRC Handbook of Chemistry and Physics, 85th ed. .
  • Daeneke T, Khoshmanesh K, Mahmood N, et al. Liquid metals: fundamentals and applications in chemistry. Chem Soc Rev. 2018 Jan;47:4073–4111.
  • Chen S, Wang H-Z, Sun X-Y, et al. Generalized way to make temperature tunable conductor–insulator transition liquid metal composites in a diverse range. Mater Horiz. 2019 Jun;6:1854–1861.
  • Guyue B, Ren L, Xun X et al. Recent Progress on Liquid Metals and Their Applications. Adv Phys X. 2018 Mar;3:412–442.
  • Chen S, Wang H-Z, Zhao R-Q, et al. Liquid metal composites. Matter. 2020 Jun;2:1446–1480.
  • Van Hove L. Correlations in space and time and born approximation scattering in systems of interacting particles. Phys Rev. 1954 Jul;95:249–262.
  • Mori H. Transport, collective motion, and brownian motion. Prog Theoretical Phys. 1965 Mar;33:423–455.
  • Mori H. A continued-fraction representation of the time-correlation functions. Prog Theoretical Phys. 1965 Sep;34:399–416.
  • Qureshi N, Ressouche E, Mukhin A, et al. Proof of the elusive high-temperature incommensurate phase in CuO by spherical neutron polarimetry. Sci Adv. 2020 Feb;6:eaay7661.
  • Lovesey SW, Chatterji T, Stunault A, et al. Direct observation of anapoles by neutron diffraction. Phys Rev Lett. 2019 Feb;122:047203.
  • Nambu Y, Barker J, Okino Y, et al. Observation of magnon polarization. Phys Rev Lett. 2020 Jul;125:027201.
  • Steffens P, Sidis Y, Kulda J, et al. Spin fluctuations in Sr_2RuO_4 (Sr(sub2)RuO(sub4) from polarized neutron scattering: implications for superconductivity. Phys Rev Lett. 2019 Feb;122:047004.
  • Patty M, Schoen K, Montfrooij W, et al. Polarized neutron scattering investigation of excitations at low momentum transfer in liquid Ga: the mystery continues. J Non-Crystalline Solids. 2011 Nov;357:1000–1003.
  • Zhaoa JK, Robertson L, Herwig K, et al. Polarized neutron in structural biology – present and future outlook. Paper Presented at 9th International Workshop on Polarised Neutrons in Condensed Matter Investigations (PNCMI2012). Physics Procedia. 2013;42:39–45.
  • Hutanu V, Luberstetter W, Bourgeat-Lami E, et al. Implementation of a new Cryopad on the diffractometer POLI at MLZ. Rev Sci Instrum. 2016 Oct;87:105108.
  • https://europeanspallationsource.se/instruments/t-rex#science-case. Available from: https://www.fz-juelich.de/jcns/jcns-2/EN/Forschung/Instruments-for-ESS/Instruments/T-REX/artikel.html (26 Jan 2021)
  • de Schepper IM, Cohen EGD, Bruin C, et al. Hydrodynamic time correlation functions for a Lennard-Jones fluid. Phys Rev A. 1988 Jul;38:271–287.
  • Mryglod IM, Omelyan IP, Tokarchuk MV. Generalized collective modes for the Lennard-Jones fluid. Mol Phys. 1995 Aug;84:235–259.
  • Bryk T, Ruocco G, Scopigno T, et al. Pressure-induced emergence of unusually high-frequency transverse excitations in a liquid alkali metal: evidence of two types of collective excitations contributing to the transverse dynamics at high pressures. J Chem Phys. 2015 Sep;143:104502.
  • Bryk T, Wax J-F. A search for manifestation of two types of collective excitations in dynamic structure of a liquid metal: ab initio study of collective excitations in liquid Na. J Chem Phys. 2016 May;144:194501.
  • Bryk T, Huerta A, Hordiichuk V, et al. Non-hydrodynamic transverse collective excitations in hard-sphere fluids. J Chem Phys. 2017 Aug;147:064509.
  • Bryk T, Demchuk T, Wax J-F JN. Pressure-induced effects in the spectra of collective excitations in pure liquid metals. J Phys-Condens Matter. 2020 May;32:184002.
  • Chushak Y, Bryk T, Baumketner A, et al. Dynamical properties of liquid binary alloys: A memory function study. Phys Chem Liq. 1996;32:87–102.
  • Bryk T, Mryglod I. Generalized hydrodynamics of binary liquids: transverse collective modes. Phys Rev E. 2000 Aug;62:2188–2199.
  • Bryk T, Mryglod I. Concentration fluctuations and boson peak in a binary metallic glass: A generalized collective modes study. Phys Rev B. 2010 Nov;82:174205.
  • Del Rio BG, Pascual P, Rodriguez R, et al. First principles determination of some static and dynamic properties of the liquid 3d transition metals near melting. Condens Matter Phys. 2020;23:23606.
  • Del Rio BG, Gonzalez LE. Longitudinal, transverse, and single-particle dynamics in liquid Zn: ab initio study and theoretical analysis. Phys Rev B. 2017 Jun;95:224201.
  • Del Rio BG, Gonzalez LE, Gonzalez DJ. Ab initio study of several static and dynamic properties of bulk liquid Ni near melting. J Chem Phys. 2017 Jan;146:034501.
  • Guarini E, De Francesco A, Bafile U, et al. Neutron Brillouin scattering and ab initio simulation study of the collective dynamics of liquid silver. Phys Rev B. 2020 Aug;102:054210.
  • Hosokawa S, Inui M, Matsuda K, et al. Damping of the collective modes in liquid Fe. Phys Rev B. 2008 May;77:174203.
  • Bafile U, Guarini E, Barocchi F. Collective acoustic modes as renormalized damped oscillators: unifled description of neutron and x-ray scattering data from classical fluids. Phys Rev E. 2006 Jun;73:061203.
  • Bryk T. Non-hydrodynamic collective modes in liquid metals and alloys. Eur Phys J Special Topics. 2011 May;196:65–83.
  • D’Angelo G, Conti Nibali V, Wanderlingh U, et al. Multiple interacting collective modes and phonon gap in phospholipid membranes. J Phys Chem Lett. 2018 Jul;9:4367–4372.
  • Zanatta M, Fontana A, Orecchini A, et al. Inelastic neutron scattering investigation in glassy SiSe2: complex dynamics at the atomic scale. J Phys Chem Lett. 2013 Mar;4:1143–1147.
  • Inui M, Koura A, Kajihara Y, et al. Peculiar atomic dynamics in liquid GeTe with asymmetrical bonding: observation by inelastic x-ray scattering. Phys Rev B. 2018 May;97:174203.
  • Verkerk P. Dynamics in liquids. J Phys Condens Matter. 2001 Aug;13:7775–7799.
  • Ruocco G, Sette F, Bergmann U, et al. Equivalence of the sound velocity in water and ice at mesoscopic wavelengths. Nature. 1996 Feb;379:521–523.
  • Burns CA, Platzman PM, Sinn H, et al. Evidence for an instability near twice the fermi wave vector in the low electronic density liquid metal Li (NH3)4. Phys Rev Lett. 2001 Mar;86:2357–2360.
  • Maradudin AA, Ambegaokar V. Calculation of the scattering function S (k, ω)for the inelastic scattering of neutrons by anharmonic crystals. Phys Rev. 1964 Aug;135:A1071–A1080.
  • Pathak KN. Theory of Anharmonic Crystals. Phys Rev. 1965 Aug;139:A1569–A1580.
  • Blairs S. Correlation between surface tension, density, and sound velocity of liquid metals. J Colloid and Interface Science. 2006 Oct;302:312–314.
  • Khrapak SA. Practical dispersion relations for strongly coupled plasma fluids. AIP Adv. 2017 Dec;7:125026.
  • Kryuchkov NP, Brazhkin VV, Yurchenko SO. Anticrossing of longitudinal and transverse modes in simple fluids. J Phys Chem Lett. 2019 Jul;10:4470–4475.
  • Khrapak SA, Khrapak AG, Kryuchkov NP, et al. Onset of transverse (shear) waves in strongly-coupled Yukawa fluids. J Chem Phys. 2019 Mar;150:104503.
  • Bryk T, Gorelli FA, Mryglod I, et al. Behavior of Supercritical Fluids across the “Frenkel Line”. J Phys Chem Lett. 2017 Sep;8:4995–5001.
  • Brazhkin VV, Prescher C, Fomin YD, et al. Comment on “Behavior of supercritical fluids across the ‘Frenkel Line. J Phys Chem B. 2018 May;122:6124–6128.
  • Bryk T, Gorelli FA, Mryglod I, et al. Reply to “Comment on ‘behavior of supercritical fluids across the Frenkel Line. J Phys Chem B. 2018 May;122:6120–6123. Reply to. .
  • Mokshin AV, Khusnutdinov RM, Akhmerova AR, et al. Universality of microscopic structural and dynamic features in liquid alkali metals near the melting point. JETP Lett. 2017 Sep;106:366–370.
  • Giordano VM, Monaco G. Universal acoustic dispersion in liquid alkali metals. Phys Rev B. 2009 Jan;79:020201(R).
  • Shaw GH, Caldwell DA. Sound-wave velocities in liquid alkali metals studied at temperatures up to 150°C and pressures up to 0.7 GPa. Phys Rev B. 1985 Dec;32:7937–7947.
  • Scopigno T, Balucani U, Ruocco G, et al. Evidence of two viscous relaxation processes in the collective dynamics of liquid lithium. Phys Rev Lett. 2000 Nov;85:4076–4079.
  • Scopigno T, Balucani U, Ruocco G, et al. Inelastic x-ray scattering study of the collective dynamics in liquid sodium. Phys Rev E. 2002 Mar;65:031205.
  • Monaco A, Scopigno T, Benassi P, et al. Collective dynamics in molten potassium: an inelastic x-ray scattering study. J Chem Phys. 2004 Apr;120:8089–8094.
  • Bodensteiner T, Morkel C, Glaser W, et al. Collective dynamics in liquid cesium near the melting point. Phys Rev A. 1992 Apr;45:5709–5720.
  • Pilgrim W-C, Hosokawa S, Saggau H, et al. Temperature dependence of collective modes in liquid sodium. J Non-Crystalline Solids. 1999 Aug;250-252:96–101.
  • Demmel F, Pasqualini D, Morkel C. Inelastic collective dynamics of liquid rubidium with increasing temperature by neutron scattering studies. Phys Rev B. 2006 Nov;74:184207.
  • Kittel C. Quantum Theory of Solids. New York (NY): John Wiley & Sons, Inc; 1987.
  • Baus M, Hansen J-P. Statistical mechanics of simple coulomb systems. Phys Rep. 1980 Mar;59:1–94.
  • Bohm D, Staver T. Application of collective treatment of electron and ion vibrations to theories of conductivity and superconductivity. Phys Rev. 1951 Nov;84:836–837.
  • Giustino F. Electron-phonon interactions from first principles. Rev Modern Phys. 2017 Feb; 89: 015003. Erratum Rev. Mod. Phys. 2019 Jan; 91: 019901.
  • Baroni S, de Gironcoli S, Dal Corso A, et al. Phonons and related crystal properties from density-functional perturbation theory. Rev Modern Phys. 2001 Jul;73:515–562.
  • Fasolato C, Sacchetti F, Postorino P, et al. Ultrafast plasmon dynamics in crystalline LiF triggered by intense extreme UV pulses. Phys Rev Lett. 2020 May;124:184801.
  • Zubarev DN. Double-Time green functions in statistical physics. Sov Phys Usp. 1960 Nov-Dec;3:320–345.
  • Paciaroni A, Comez L, Longo M, et al. Terahertz collective dynamics of DNA as affected by hydration and counterions. J Mol Liq. 2020 Nov;318:113956.
  • Blairs S. Correlation between surface tension, density, and sound velocity of liquid metals. J Colloid Interface Sci. 2006 Oct;302:312–314.
  • Zhang Y, Evans JRG, Yang S. Corrected values for boiling points and enthalpies of vaporization of elements in handbooks. J Chem Eng Data. 2011 Jan;56:328–337.
  • Haynes WM editor, CRC Handbook of Chemistry and Physics (92nd ed.) Hoboken (NJ): CRC Press 4121–4123 (2011), ISBN 143955110.
  • Bove LE, Sacchetti F, Petrillo C, et al. Neutron Investigation of the ion dynamics in liquid mercury: evidence for collective excitations. Phys Rev Lett. 2001 Nov;87:215504.
  • Hosokawa S, Sinn H, Hensel F, et al. Short-wavelength collective excitations in liquid mercury investigated by inelastic X-ray scattering. Appl Phys A. 2002;74:S1648–S1650. [ [Suppl.]].
  • Bove LE, Sacchetti F, Petrillo C, et al. Dynamic structure factor of liquid mercury. J Non-Crystalline Solids. 2002 Sep;307-310:842–847.
  • Bove LE, Sacchetti F, Petrillo C, et al. Self-dynamics and collective dynamics of liquid mercury. Philos Mag B. 2002;82:365–374.
  • Badyal YS, Bafile U, Miyazaki K, et al. Cage diffusion in liquid mercury. Phys Rev E. 2003 Dec;68:061208.
  • Calderín L, González LE, González DJ. Ab initio molecular dynamics study of the static, dynamic, and electronic properties of liquid mercury at room temperature. J Chem Phys. 2009 May;130:194502.
  • Patty M, Schoen K, Montfrooij W. Fluctuating magnetic moments in liquid metals. Phys Rev E. 2006 Feb;73:021202.
  • Meyer RE. Self-diffusion of liquid mercury. J Phys Chem. 1961 Mar;65:567–568.
  • Nachtrieb NH, Petit J. Self-Diffusion in Liquid Mercury. J Chem Phys. 1956;24:746–750.
  • Kamitakahara WA, Smith HG. Lattice-dynamics and electron-phonon interaction in solid mercury. Bull Am Phys Soc. 1975; 20: 299–1299. (Meeting Abstract).
  • Ishikawa D, Inui M, Matsuda K, et al. Fast sound in expanded fluid Hg accompanying the metal-nonmetal transition. Phys Rev Lett. 2004 Aug;93:097801.
  • Inui M, Ishikawa D, Matsuda K, et al. Observation of fast sound in metal–nonmetal transition in liquid Hg. J Phys Chem Solids. 2005 Dec;66:2223–2229.
  • Young DA. Phase diagrams of the elements. Berkeley, Los Angeles, Oxford: University of California Press; 1991. (ISBN 0–520-07483–1).
  • Bermejo FJ, García-Hernández M, Martinez JL, et al. Microscopic Dynamics of Liquid Gallium. Phys Rev E. 1994 Apr;49:3133–3142.
  • Bermejo FJ, Fernández-Perea R, Alvarez M, et al. Collective, short-wavelength excitations in liquid gallium. Phys Rev E. 1997 Sep;56:3358–3369.
  • Bove LE, Formisano F, Sacchetti F, et al. Vibrational dynamics of liquid gallium at 320 and 970K. Phys Rev B. 2005 Jan;71:014207.
  • Scopigno T, Filipponi A, Krisch M, et al. High-Frequency acoustic modes in liquid gallium at the melting point. Phys Rev Lett. 2002 Dec;89:255506.
  • Hosokawa S, Pilgrim W-C, Sinn H, et al. Microscopic dynamics in trivalent liquid Ga. Physica B. 2004 Jul;350:262–264.
  • Inui M, Takeda S, Uechi TJ. Ultrasonic velocity and density measurement of liquid Bi–Ga alloys with miscibility gap region. J Phys Soc Jpn. 1992;61:3203–3208.
  • Khusnutdinoff RM, Cockrell C, Dicks OA, et al. Collective modes and gapped momentum states in liquid Ga: experiment, theory, and simulation. Phys Rev B. 2020 Jun;101:214312.
  • Demmel F. Slow structural relaxation process facilitates solidification in liquid gallium. Phys Rev B. 2020; Jan;101:014207.
  • Yagodin DA, Filippov VV, Popel PS, et al. Density and ultrasound velocity in Ga-Bi melts. 13th International Conference on Liquid and Amorphous Metals. J Phys. 2008;98:062019.
  • Buttersack T, Mason PE, McMullen RS, et al. Photoelectron spectra of alkali metal–ammonia microjets: from blue electrolyte to bronze metal. Science. 2020 Jun;368:1086–1091.
  • Cohen MH, Thompson JC. The electronic and ionic structures of metal-ammonia solutions. Adv Phys. 1968;17:857–907.
  • Thompson JC. Metal-nonmetal transition in metal-ammonia solutions. Rev Mod Phys. 1968 Oct;40:704–710.
  • Heinzinger K. Computer simulations of metal-liquid ammonia solutions. J Mol Liq. 2000 Oct;88:77–85.
  • Howard CA, Thompson H, Wasse JC, et al. Formation of giant solvation shells around fulleride anions in liquid Ammonia. J Am Chem Soc. 2004 Sep;126:13228–13229.
  • Wasse JC, Hayama S, Skipper NT, et al. Structure of a metallic solution of lithium in ammonia. Phys Rev B. 2000 May;61:11993–11997.
  • Zurek E, Edwards PP, Hoffmann R. A molecular perspective on lithium-ammonia solutions. Angew Chem Int Ed. 2009 Oct;48:8198–8232.
  • Chuev GN, Quémerais P, Crain J. Nature of the metal–nonmetal transition in metal–ammonia solutions I. Solvated Electrons at Low Metal Concentrations. J. Chem. Phys. 2007 Dec;127:244501–244517.
  • Chuev GN, Quémerais P. Nature of metal–nonmetal transition in metal–ammonia solutions II. From uniform metallic state to inhomogeneous electronic microstructure. J. Chem. Phys. 2008 Apr;128:144503–144512.
  • Chaban VV, Prezhdo OV. Electron solvation in liquid ammonia: lithium, sodium, magnesium, and calcium as electron sources. J Phys Chem B. 2016 Feb;120:2500–2506.
  • Chieux P, Sienko MJ, DeBaecker F. Neutron diffraction study and phase diagram investigation of the solid lithium-ammonia compound. J Phys Chem. 1975 Dec;79:2996–3000.
  • Hayama S, Skipper NT, Wasse JC, et al. X-ray diffraction studies of solutions of lithium in ammonia: the structure of the metal–nonmetal transition. J Chem Phys. 2002 Feb;116:2991–2996.
  • Thompson H, Wasse JC, Skipper NT, et al. Structural studies of ammonia and metallic lithium−ammonia solutions. J Am Chem Soc. 2003 Feb;125:2572–2581.
  • Wasse JC, Hayama S, Masmanidis S, et al. The structure of lithium–ammonia and sodium–ammonia solutions by neutron diffraction. J Chem Phys. 2003 Apr;118:7486–7494.
  • Burns C, Giura P, Said A, et al. Electronic Interactions in the expanded metal compound Li−NH3. Phys Rev Lett. 2002 Nov;89:236404.
  • Said AH, Burns CA, Alp EE, et al. Collective excitations in metal-ammonia systems as a function of electron density. Phys Rev B. 2003 Sep;68:104302.
  • Giura P, Angelini R, Burns CA, et al. Electron correlation effects on the dielectric function of liquid metals. arXiv:cond-mat/. 2003 Oct;0310336:22.
  • Sacchetti F, Guarini E, Petrillo C, et al. Giant electron-driven anomaly in the ion dynamics of a saturated solution of lithium in deuterated ammonia, Phys. Phys Rev B. 2003 Jan;67:014207.
  • Petrillo C, Sacchetti F, Guarini E, et al. Collective modes in a saturated lithium-ammonia solution as a probe of the response of the low-density homogeneous electron gas. Phys Rev B. 2011 Sep;84:094206.
  • Petrillo C, Sacchetti F, Guarini E, et al. The unpublished data are from an experiment performed at IN8 spectrometer, ILL, and are discussed in a forthcoming publication.
  • Bowen DE, Thompson JC, Millett WE. Velocity of ultrasound in lithium-ammonia solutions. Phys Rev. 1968 Apr;168:114–120.
  • Zhang X, Ai J, Ma Z, et al. Liquid metal based stretchable magnetoelectric films and their capacity for mechanoelectrical conversion. Adv Func Mater. 2020;30:2003680.
  • Yu Z, Chen Y, Yun FF, et al. Discovery of a voltage-stimulated heartbeat effect in droplets of liquid gallium. Phys Rev Lett. 2018 Jul;121:024302.
  • Sun X, Cui B, Yuan B, et al. Liquid metal microparticles phase change medicated mechanical destruction for enhanced tumor Cryoablation and dual-mode imaging. Adv Func Mater. 2020;30:2003359.
  • Wallace DC. Liquid dynamics theory of high-temperature specific heat. Phys Rev E. 1998 Feb;57:1717–1722.
  • Russell RA, Garvey CJ, Darwish TA, et al. Chapter five - biopolymer deuteration for neutron scattering and other isotope-sensitive techniques.In Methods in Enzymology. 2015; Vol. 565: 97–121. https://www.ill.eu/users/support-labs-infrastructure/deuteration-laboratory
  • Paciaroni A, Orecchini A, Haertlein M, et al. Vibrational collective dynamics of dry proteins in the terahertz region. J Phys Chem B. 2012 Feb;116:3861–3865.