3,999
Views
9
CrossRef citations to date
0
Altmetric
Reviews

Dusty plasmas: from Saturn’s rings to semiconductor processing devices

Article: 1873859 | Received 08 Oct 2019, Accepted 05 Jan 2021, Published online: 15 Sep 2021

References

  • Boufendi L, Mikikian M, Shukla PK (eds.), New Vistas in Dusty Plasmas. AIP Conference Proceedings, vol. 799, Melville, N. Y, 2005, p.3.
  • Bouchoule A, ed. Dusty Plasmas - Physics, chemistry, and technological impacts, Chichester: J. Wiley; 1999.
  • Olthoff JK, Greenberg KE. The Gaseous Electronics Conference RF Reference Cell—An Introduction. J Res Natl Inst Stand Technol. 1995;100:327.
  • Mestal L, Spitzer L Jr. Star Formation in magnetic dust clouds. Mon Not Roy Astro Soc. 1956;116:503.
  • Öpik EJ. Interplanetary dust and terrestrial accretion of meteoric matter. Irish Astron. J. 1956;4:84.
  • Thomas HM, Schwabe M, Pustylnik MY, et al. Complex plasma research on the International Space Station, Plasma Phys. Control. Fus. 2019;61:014004.
  • Shukla PK, Mamun AA. Mamun, Introduction to dusty plasma physics. Bristol: Institute of Physics; 2002.
  • Fortov VE, Morfill GE, eds. Complex and dusty plasmas: from laboratory to space. London: CRC; 2010.
  • Vladimirov SV, Ostrikov K, Samarian AA. Physics and applications of complex plasmas. London: Imperial College; 2005.
  • Tsytovich VN, Morfill GE, Vladimirov SV, et al. Elementary physics of complex plasmas. Berlin: Springer; 2008.
  • Melzer A, Goree J. Fundamentals of dusty plasmas. chapter 6. In: Hippler R, Kersten H, Schmidt M, et al., editors. Low temperature plasmas fundamentals, technologies, and techniques. 2nd ed. Vol. 1. Weinheim: Wiley-VCH; 2008, 157:206.
  • Ivlev A, Löwen H, Morfill G, et al. Complex plasmas and colloidal dispersions: particle-resolved studies of classical liquids and solids. New Jersey: World Scientific; 2012.
  • Verheest F. Waves in dusty space plasmas. Dordrecht: Kluwer Academic. Pub; 2001.
  • Shukla PK, Eliasson B. Rev Mod Phys. 2009;81:25. Colloquium: Fundamentals of dust-plasma interactions.
  • Morfill GE, Ivlev AV. Complex plasmas: An interdisciplinary research firld. Rev Mod Phys. 2009;81:1353. (A review article focusing on dusty plasmas as a new state of soft matter, with emphasis on complex plasmas in the strongly coupled state).
  • Mendis DA, Rosenberg M. Cosmic dusty plasma. Annu Rev Astron Astrophys. 1994;32:419. a review of cosmic dusty plasmas.
  • Mendis, Mendis DA. Advances in dusty plasmas. Shukla PK, Mendis DA, Desai T, eds. Singapore:World Scientific; 1997, pp. 3–70. A historical overview of dusty plasmas was given by one of the pioneers in the field, Asoka.
  • Vladimirov SV, Ostrikov K. Dynamic self-organization phenomena in complex ionized gas systems: new paradigms and technological aspects. Phys Rep. 2004;393:175.
  • Fortov VE, Ivlev AV, Khrapak SA, et al. Complex (dusty) plasmas: Current status, open issues, perspectives. Phys Rep. 2005;421:1.
  • Lieberman MA, Lichtenberg AJ. Principles of plasma discharges and materials processing. 2nd ed. Hoboken: Wiley-Interscience; 2005.
  • Bellan P. Fundamentals of plasma physics. Cambridge, UK: Cambridge University Press; 2006.
  • Piel A. Plasma physics an introduction to laboratory, space, and fusion plasmas. Heidelberg: Springer; 2010.
  • Chen FF. Introduction to plasma physics and controlled fusion. 3rd ed. Heidelberg: Springer; 2016.
  • Stimmel RG, Rogers EH, Waterfall FE, et al. Electrification of aircraft flying in precipitation areas. Proc I R E. 1946;34:167.
  • Jones JJ. Electric charge acquired by airplanes penetrating thunderstorms. J Geophys Res. 1990;95:16,589.
  • DeForest SE. Spacecraft charging at synchronous orbit. J Geophys Res. 1972;77:651.
  • Rosen A. Spacecraft charging: Environment-induced anomalies. J Spacecraft Rockets. 1976;13:129.
  • Sarno-Smith LK, Larsen BA, Skoug RM, et al. Mitigating in-space charging effects—A Guideline. Space Weather. 2016;14:151.
  • Mott-Smith HM, Langmuir I. The theory of collectors in gaseous discharges. Phys Rev. 1926;28:727.
  • Bohm D, Burhop HES, Massey HSW, Chapter 2. In: Guthrie A, Wakerling RK, editors. The characteristics of electrical discharges in magnetic fields. New York: McGraw- Hill; 1949, p. 13–76.
  • Allen JE, Boyd RLF, Reynolds P. The collection of positive ions by a probe immersed in a plasma. Proc Phys Soc. 1957;B70:497.
  • Bernstein IB, Rabinowitz IN. Theory of electrostatic probes in a low–density plasma. Phys Fluids. 1959;2:112.
  • Chen F Chapter 4. In: Huddlestone RH, Leonard SL, editors. Plasma diagnostic techniques. New York: Academic Press; 1965. (This is perhaps the most comprehensive treatise on electric probe theory).
  • Laframboise JG. 1966. The Theory of Spherical and Cylindrical Probes in a Collisionless, Maxwellian Plasma, Institute of Aerospace Studies, University of Toronto Report No. 100.
  • Hutchinson IH. Principles of plasma diagnostics. 2nd ed. Cambridge, U. K: Cambridge University Press; 2002. (This textbook provides a very instructive discussion, very accessible to students, of the various regimes that must be considered when calculating probe currents).
  • Zobnin AV, Nefedov AP, Sinel’shchikov VA, Morfill GE. On the charge of dust particles in a low-pressure gas discharge plasma. JETP. 2000;91:483.
  • Lampe M, Goswami R, Sternovsky Z, et al. Trapped ion effect on shielding, current flow, and charging of a small object in a plasma. Phys Plasmas. 2003;10:1500.
  • Melandsø F, Goree J. Polarized supersonic plasma flow simulation for charged bodies such as dust particles and spacecraft. Phys Rev E. 1995;53:5312.
  • Winske D, Jones ME. Particulate dynamics at the plasma-sheath boundary in DC glow discharges. IEEE Trans Plasma Sci. 1994;22:454. (This article presents numerical results of dust grain dynamics at the plasma-sheath boundary of a DC glow discharge, including the effect of finite spacing between grains on grain charging).
  • Goertz CK, Ip W-H. Limitation of electrostatic charging of dust particles in a plasma. Geophys Res Lett. 1984;11:349.
  • Havnes O, Morfill GE, Goertz CK, Plasma potential and grain charges in a dust cloud embedded in a plasma. J Geophys Res. 1984;89:10,999.
  • Whipple EC, Northrop TG, Mendis DA, The electrostatics of a dusty plasma.J Geophys Res. 1985;90:7405. (This article provides a rather detailed analysis of the electrostatics of a dusty plasma).
  • Goertz CK. Dusty plasmas in the solar system, Rev Geophys. 1989;2:271.
  • Xu W, D’Angelo N, Merlino RL, Dusty plasmas: The effect of closely packed grains. J Geophys Res. 1993;98:7843.
  • Barkan A, D’Angelo N, Merlino RL, Charging of dust grains in a plasma. Phys Rev Lett. 1994;73:3093.
  • Bouchoule A, Boufendi L. High concentration effects in dusty plasmas. Plas Sources Sci Technol. 1994;3:292.
  • Cui C, Goree J. Fluctuations of the charge on a dust grain in a plasma. IEEE Trans Plasma Sci. 1994;22:151.
  • Matsoukas T, Russell M. Particle charging in low–pressure plasmas. J Appl Phys. 1995;77:4285.
  • Pustylnik MY, Ohno N, Takamura S, et al. Modification of the damping rate of the oscillations of a dust particle levitating in a plasma due to the delayed charging effect. Phys Rev E. 2006;74:056402.
  • Nonomura S, Misawa T, Ohno N, et al. Instability of dust particles in a coulomb crystal due to delayed charging, Phys Rev Lett. 1999;83:1970.
  • Houpis HLF, Whipple EC Jr. Electrostatic charge on a dust size distribution in a plasma, J Geophys Res. 1987;92:12057.
  • Havnes O, Aanesen TK, Melandsø F, On dust charges and plasma potentials in a dusty plasma with dust size distribution, J Geophys Res. 1990;95:6581.
  • Sodha MS, Misra S, Mishra SK, Kinetics of complex plasmas having spherical dust particles with a size distribution, Phys Plasmas. 2010;17:113705.
  • Kodanova SK, Bastykova NK, Ramazanov TS, Dust particle evolution in the divertor plasma, IEEE Trans Plasma Sci. 2018;46:832.
  • Thomas E Jr., Merlino RL, Rosenberg M, Magnetized dusty plasmas: the next frontier for complex plasma research, Plasma Phys Control Fusion. 2012;54:124034.
  • Xu W, Song B, Merlino RL, D’Angelo N. A dusty plasma device for producing extended, steady state, magnetized, dusty plasma columns, Rev Sci Instrum. 1992;63:5266.
  • Walch B, Horány M, Robertson S, Charging of dust grains in plasma with energetic electrons, Phys Rev Lett. 1995;75:838.
  • Trottenberg T, Melzer A, Piel A, Sheath measurement in rf-discharge plasma with dust grains, Plasma Sources Sci Technol. 1995;4:450.
  • Homan A, Melzer A, Piel A, Measuring the charge on single particles by laser-excited resonances in plasma crystals, Phys Rev E. 1999;59:R3835.
  • Barkan A, Merlino RL. Confinement of dust particles in a double layer, Phys Plasmas. 1995;2:3261.
  • Fortov VE, Petrov OF, Usachev AD, Zobnin AV. Micron-sized particle-charge measurements in an inductive rf gas-discharge plasma using gravity-driven probe grains, Phys Rev E. 2004;70:046415.
  • Ratynskaia S, Khrapak S, Thoma MH, et al. Experimental determination of dust particle charge in a discharge plasma at elevated pressures, Phys Rev Lett. 2004;93:085001.
  • Khrapak SA, Ratynskaia SV, Zobnin AV, et al. Particle charge in the bulk of gas discharges, Phys Rev E. 2005;72:016406.
  • Barnes MS, Keller HH, Forster JC, et al. Transport of dust particles in glow-discharge plasmas. Phys Rev Lett. 1992;68:313. (This letter summarizes a theoretical analysis of the transport of dust particles in devices used in the semiconductor manufacturing industry. It covers basic dust charging theory and forces on dust, and provides a quantitative comparison of the various forces for typical glow discharge dusty plasma conditions).
  • Epstein PS. On the resistance experienced by spheres in their motion through gases, Phys Rev. 1924;23:710.
  • Rothermel H, Hagl T, Morfill GE, et al. Gravity compensation in complex plasmas by application of a temperature gradient, Phys Rev Lett. 2002;89:175001.
  • Khrapak SA, Ivlev AV, Morfill GE, Morfill GE. Momentum transfer in complex plasmas, Phys Rev E. 2004;70:056405.
  • Khrapak SA, Morfill GE. Dusty plasmas in a constant electric field: Role of the electron drag force, Phys Rev E. 2004;69:066411.
  • Ivlev AV, Zhdanov SK, Khrapak SA, Morfill GE. Ion drag force in dusty plasmas, Plasma Phys Control Fusion. 2004;46:B267. (This paper provides a summary of theoretical and numerical work on the ion drag force).
  • Jastrow R, Pearse CA. Atmospheric drag on the satellite, Jour Geophys Res. 1957;62:413.
  • Praburam G, Goree Experimental observation of very low–frequency macroscopic modes in a dusty plasma, J. Phys Plasmas. 1996;3:1212.
  • Morfill GE, Thomas HM, Konopka U, et al. Condensed plasmas under microgravity, Phys Rev Lett. 1999;83:1598. (A report on observations of voids made in dusty plasmas on parabolic test flight experiments).
  • Nefedov A, Morfill GE, Fortov VE, et al. Semenov, PKE-Nefedov*: plasma crystal experiments on the International Space Station, New Jour Phys. 2003;5:33.1. (An example of a void in a dusty plasma using the PKE-Nefedov plasma crystal experiment on the International Space Station).
  • Konopka U, Morfill GE, Ratke L, et al. Measurement of the interaction potential of microspheres in the sheath of a rf discharge, Phys Rev Lett. 2000;84:891.
  • Chu JH, Lin I. Structural formation and stability of Coulomb clouds in medium through low gas pressure range, Phys Rev Lett. 1994;72:4009.
  • Hayashi Y, Tachibana K. Crystallography and statics of Coulomb crystals, Jpn J Appl Phys. 1994;L804. DOI: https://doi.org/10.1143/JJAP.33.L804.
  • Trottenberg T, Melzer A, Piel A, Sheath measurement in rf-discharge plasma with dust grains, Plasma Sources Sci Technol. 1995;4:450.
  • Schweigert VA, Schweigert IV, Melzer A, Homann A, and Piel A, Alignment and instability of dust crystals in plasmas, Phys. Rev. E. 1996;54:R46.
  • Melzer A, Schweigert VA, Schweigert IV, et al. Effect of overlapping Debye spheres on structures of 2D dusty plasmas, Phys Rev E. 1996;54:R46.
  • Vladimirov SV, Nambu M. Attraction of charged particulates in plasmas with finite flows, Phys Rev E. 1995;52:R2172.
  • Xu W, Song B, Merlino RL, D’Angelo N. A dusty plasma device for producing extended, steady state, magnetized, dusty plasma columns, Rev Sci Instrum. 1992;63:5266.
  • Thomas E Jr., Watson M. First experiments in the dusty plasma experiment device, Phys Plasmas. 1999;6:4111.
  • Thomas E Jr. Measurements of spatially growing dust acoustic waves in a dc glow discharge plasma, Phys Plasmas. 2006;13:042107.
  • Williams J, Thomas E Jr., Marcus L, Observations of vertically propagating driven dust acoustic waves: Finite temperature effects, Phys Plasmas. 2008;15:043704.
  • Thompson C, Barkan A, D’Angelo N, Merlino RL. Waves and instabilities in dusty plasmas, Phys Plasmas. 1997;4:2331.
  • Trottenberg T, Block D, Piel A, Dust confinement and dust-acoustic waves in weakly magnetized anodic plasmas, Phys Plasmas. 2006;13:042105.
  • Hofmann P, Seurig R, Stettner A, et al. Complex plasma research on ISS: PK-3 Plus, PK-4 and impact/plasmalab, Acta Astronaut. 2008;63:53.
  • Wigner E. On the interaction of electrons in metals, Phys Rev. 1934;46:1002.
  • Ikezi H. Coulomb solid of small particles in plasmas, Phys Fluids. 1986;29:1764.
  • Thomas HM, Morfill GE. Melting dynamics of a plasma crystal, Nature. 1996;379:806.
  • Chu JH, Du JB, Lin I, Coulomb solids and low-frequency fluctuations in RF dusty plasmas, J Phys D: Appl Phys. 1994;27:296.
  • Slattery WL, Doolen GD, DeWitt HE, Improved equation of state for the classical one-component plasma, Phys Rev A. 1980;21:2087.
  • Ichimaru S. Strongly coupled plasmas: high-density classical plasmas and degenerate electron liquids, Rev Mod Phys. 1982;54:1017.
  • Ott T, Bonitz M, Stanton LG, Murillo MS. Coupling strength in Coulomb and Yukawa one-component plasmas, Phys Plasmas. 2014;21:113704.
  • Farouki RT, Hamagichi S. Thermodynamics of strongly–coupled Yukawa systems near the one–component–plasma limit. II. Molecular dynamics simulations, J Chem Phys. 1994;101:9885.
  • Tsytovich VN, De Angelis U. The kinetic approach to dusty plasmas. In: Nakamura Y, Yokota T, Shukla PK, editors. Frontiers inDusty Plasmas. Amsterdam: Elsevier Science B. V; 2000. p. 21.
  • Wang X, Bhattacharjee A. On a kinetic theory for strongly coupled dusty plasmas, Phys Plasmas. 1996;3:1189.
  • Schram PPJM, Sitenko AG, Trigger SA, Zagorodny AG. Statistical theory of dusty plasmas: Microscopic equations and Bogolyubov-Born-Green-Kirkwood-Yvon hierarchy, Phys Rev E. 2000;63:016403.
  • Zagorodny AG, Sitenko AG, Bystrenko OV, et al. Statistical theory of dusty plasmas: Microscopic description and numerical simulations, Phys Plasmas. 2001;8:1893.
  • Tsytovich VN, de Angelis U. Kinetic theory of dusty plasmas. I. General approach, Phys Plasmas. 1999;6:1093.
  • Tsytovich VN, De Angelis U. Kinetic theory of dusty plasmas II. Dust–plasma particle collision integrals, Phys Plasmas. 2000;7:554.
  • Tsytovich VN, De Angelis U. Kinetic theory of dusty plasmas. III. Dust–dust collision integrals, Phys Plasmas. 2001;8:1141.
  • Tsytovich VN, de Angelis U. Kinetic theory of dusty plasmas. IV. Distribution and fluctuations of dust charges, Phys Plasmas. 2002;9:2497.
  • Tsytovich VN, De Angelis U. Kinetic theory of dusty plasmas. V. The hydrodynamic equations, Phys Plasmas. 2004;11:496.
  • Tsytovich VN, Morfill GE, Ivlev AV, Van der Waal’s approach in the theory of phase transitions in complex plasmas, Contrib Plasma Phys. 2003;43:439.
  • Morfill GE, Ivlev AV, Khrapak SA, Ten Years of plasma crystals - from ICPIG (Bochum) to ICPIG (Greifswald), Contrib Plasma Phys. 2004;44:450.
  • Thomas H, Morfill GE, Demmel V, et al. Plasma crystal: Coulomb crystallization in a dusty plasma, Phys Rev Lett. 1994;73:652.
  • Melzer A, Trottenberg T, Piel A. Experimental determination of the charge on dust particles forming Coulomb lattices, Phys Lett A. 1994;191:301.
  • Thoma MH, Kretschmer M, Rothermel H, et al. The plasma crystal, Am J Phys. 2005;73:420.
  • Morfill GE, Thomas H, Zuzic M, et al. Plasma crystals – a review. In: Shukla PK, Mendis DA, Desai T, editors. Advances in Dusty Plasmas. Singapore: World Scientific; 1997. p. 99–142.
  • Arp O, Block D, Piel A, Dust Coulomb balls: Three-dimensional plasma crystals, Phys Rev Lett. 2004;93:165004.
  • Melzer A, Homann A, Piel A, Experimental evidence for attractive and repulsive forces in dust molecules, Phys Rev E. 1996;53:2757.
  • Pieper JB, Goree J, Quinn RA, Experimental studies of two–dimensional and three–dimensional structure in a crystallized dusty plasma, J Vac Sci Technol A. 1996;14:519.
  • Morfill GE, Thomas HM. Plasma crystal, J Vac Sci Technol A. 1996;14:490.
  • Keskinen MJ, Fernsler R. Photonic band gaps in dusty plasma crystals, App Phys Lett. 2000;77:1925.
  • De Angelis U, Formisano V, Giordano M, Ion plasma waves in dusty plasmas: Halley’s comet, J. Plasma Phys. 1988;40:399.
  • De Angelis U, Bingham R, Tsytovich VN, Dispersion properties of dusty plasmas, J. Plasma Phys. 1989;42:445.
  • Rao NN, Shukla PK, Yu MY, Dust–acoustic waves in dusty plasmas, Planet Space Sci. 1990;38:543.
  • D’Angelo N. Low–frequency electrostatic waves in dusty plasmas, Planet Space Sci. 1990;38:1143.
  • Shukla PK, Silin VP. Dust ion-acoustic wave, Phys Scr. 1992;45:508.
  • Jana MR, Sen A, Kaw PK, Ion-and dust–acoustic instabilities in dusty plasmas, Phys Rev E. 1993;48:3930.
  • Rosenberg M. Ion–and dust–acoustic instabilities in dusty plasmas, Planet Space Sci. 1993;41:229.
  • Li F, Havnes O, Melandsø F, Longitudinal waves in a dusty plasma, Planet Space Sci. 1994;42:401.
  • Chow VW, Rosenberg M. Electrostatic ion cyclotron instability in dusty plasmas, Planet Space Sci. 1995;43:613.
  • Mamun AA, Shukla PK. Discoveries of waves in dusty plasmas, J Plasma Phys. 2011;77:437.
  • Melzer A. Effects in Dusty Plasmas, In: Dinklage A., Klinger T., Marx G., Schweikhard L. (eds) Plasma Physics. Lecture Notes in Physics. 2005;670:297. https://doi.org/10.1007/11360360_11
  • Barkan A, D’Angelo N, Merlino RL, Laboratory experiments on electrostatic ion cyclotron waves in a dusty plasma, Planet Space Sci. 1995;43:905.
  • V. W. Chow, Dust-Plasma Interactions, Ph.D. Thesis, Univ. California at San Diego. 1996.
  • Barkan A, D’Angelo N, Merlino RL, Experiments on ion-acoustic waves in dusty plasmas, Planet Space Sci. 1996;44:239.
  • Merlino RL, Barkan A, Thompson C, D’Angelo. Laboratory studies of waves and instabilities in dusty plasmas, Phys Plasmas. 1998;5:1607.
  • Barkan A, Merlino RL, D’Angelo N, Laboratory observation of the dust–acoustic wave mode, Phys Plasmas. 1995;2:3563.
  • Rosenberg M. Ion–dust streaming instability in processing plasmas, J Vac Sci Technol A. 1996;14:631.
  • Thompson C, Barkan A, D’Angelo N, Dust acoustic waves in a direct current glow discharge, Phys Plasmas. 1997;4:2331.
  • Merlino RL. Dust-acoustic waves driven by an ion-dust streaming instability in laboratory discharge dusty plasma experiments Phys Plasmas. 2009;16:124501.
  • Popel SI, Morfill GE, Shukla PK, Thomas H. Waves in a dusty plasma over the illuminated part of the Moon, J Plasma Phys. 2013;79:1071.
  • Horányi M, Szalay JR, Kempf S, et al. A permanent, asymmetric dust cloud around the Moon, Nature. 2015;522:324.
  • Morozova TI, Kopnin SI, Popel SI, Wave processes in dusty plasma near the Moon’s surface Plasma Phys Rep. 2015;41:799.
  • Zelenyi LM, Popel SI, Zakharov AV, Dusty Plasma at the Moon. Challenges of Modeling and Measurements Plasma Phys Rep. 2020;46:527.
  • Mendis DA, Horányi M. Dusty plasma effects in comets: Expectations for Rosetta, Rev Geophys. 2013;51:53.
  • Du C-R, Thomas HM, Ivlev AV, Meyer JK. Agglomeration of microparticles in complex plasmas Phys Plasmas. 2010;17:113710.
  • Merlino RL, Heinrich JR, Kim S-H, Meyer JK. Dusty plasmas: experiments on nonlinear dust acoustic waves, shocks and structures, Plasma Control Fusion. 2012;54:124014. This paper also discusses possible role of dust acoustic shock waves as a trigger mechanism for grain condensation.
  • Dap S, Lacroix D, Hugon R, et al. Cluster agglomeration induced by dust-density waves in complex plasmas, Phys Rev Lett. 2010;109:245002.
  • Merlino RL, 25 years of dust acoustic waves, Plasma Phys J. This article is based on a talk given by the author at the 7th International Conference on the Physics of Dusty Plasmas (ICPDP) Delhi, India 2014, 2014;80, 773c786. It contains 70 references and provides some historical context on the discovery of the dust acoustic wave in 1989.
  • Shukla PK. Nonlinear waves and structures in dusty plasmas, Phys Plasmas. 2003;10:1619.
  • Mamun AA, Shukla PK. Nonlinear waves and structures in dusty plasmas, Plasma Phys Control Fusion. 2005;47:A1.
  • Merlino RL, Heinrich JR, Kim S-H, Meyer JK. Nonlinear dust acoustic waves and shocks, Phys Plasmas. 2012;19:057301.
  • Liu B, Goree J, Flanagan TM, et al. Experimental observation of cnoidal waveform of nonlinear dust acoustic waves, Phys Plasmas. 2018;25:113701.
  • Flanagan TM, Goree J. Development of nonlinearity in a growing self-excited dust-density wave, Phys Plasmas. 2011;18:013705.
  • Merlino RL. Second-order dust acoustic wave theory, Phys Scr. 2012;85:035506.
  • Flanagan TM, Goree J. Observation of the spatial growth of self-excited dust-density waves, Phys Plasmas. 2010;17:123702.
  • Heinrich JR, Kim S-H, Meyer JK, Merlino RL. Experimental quiescent drifting dusty plasmas and temporal dust acoustic wave growth, Phys Plasmas. 2011;18:113706.
  • Bandyopadhyay P, Prasad G, Sen A, Kaw PK. Experimental study of nonlinear dust acoustic solitary waves in a dusty plasma, Phys Rev Lett. 2008;101:065006.
  • Boruah A, Sharma SK, Bailung H, Nakamura Y. Oblique collision of dust acoustic solitons in a strongly coupled dusty plasma, H Phys Plasmas. 2015;22:093706.
  • Jaiswal S, Bandyopadhyay P, Sen A, Experimental observation of precursor solitons in a flowing complex plasma, Phys Rev E. 2016;93:041201.
  • Meyer JK, Merlino RL. Transient bow shock around a cylinder in a supersonic dusty plasma, Phys Plasmas. 2013;20:074501.
  • Heinrich J, Kim S,-H, Merlino RL, Laboratory observations of self-excited dust acoustic shocks, Phys Rev Lett. 2009;103:115002.
  • Eliasson B, Shukla PK. Dust acoustic shock waves, Phys Rev E. 2004;69:067401.
  • Heinrich JR, Kim S-H, Merlino RL, Observations of a structure-forming instability in a dc-glow-discharge dusty plasma, Phys Rev E. 2011;84:026403.
  • Rosenberg M, Kalman G. Dust acoustic waves in strongly coupled dusty plasmas, Phys Rev E. 1997;56:7166.
  • Murillo MS. Longitudinal collective modes of strongly coupled dusty plasmas at finite frequencies and wavevectors, Phys Plasmas. 2000;7:33.
  • Wang X, Bhattacharjee A. Hydrodynamic waves and correlation functions in dusty plasmas, Phys Plasmas. 1997;4:3759.
  • Kaw PK, Sen A. Low frequency modes in strongly coupled dusty plasmas, Phys Plasmas. 2001;5:3552.
  • Winske D, Murillo MS, Rosenberg M, Rosenberg, Numerical simulation of dust-acoustic waves, Phys Rev E. 1999;59:2263.
  • Piper JB, Goree J. Dispersion of plasma dust acoustic waves in the strong-coupling regime, Phys Rev Lett. 1996;77:3137.
  • Homan A, Melzer A, Peters S, Piel, Determination of the dust screening length by laser-excited lattice waves. Phys Rev E. 1997;56:7138.
  • Nonomura S, Samsonov S, Goree J, Transverse waves in a two-dimensional screened-Coulomb crystal (dusty plasma), Phys Rev Lett. 2000;84:5141.
  • Misawa T, Ohno N, Asano K, et al. Experimental observation of vertically polarized transverse dust-lattice wave propagating in a one-dimensional strongly coupled dust chain, Phys Rev Lett. 2001;86:1219.
  • Pramanik J, Prasad G, Sen A, Kaw PK. Experimental observations of transverse shear waves in strongly coupled dusty plasmas, Phys Rev Lett. 2102;88:175001.
  • Liu B, Avinash K, Goree J, Transverse optical mode in a one-dimensional Yukawa chain, Phys Rev Lett. 2003;91:255003.
  • Meyer JK, Laut I, Zhdanov SK, et al. Coupling of Noncrossing Wave Modes in a Two-Dimensional Plasma Crystal, Phys Rev Lett. 2017;119:255001.
  • Samsonov D, Goree J, Ma ZW, Bhattacharjee A. Mach cones in a coulomb lattice and a dusty plasma, Phys Rev Lett. 1999;83:3649.
  • Havnes O, Aslaksen T, Hartquist TW, et al. Probing the properties of planetary ring dust by the observation of Mach cones, J Geophys Res. 1995;100:1731.
  • Graps AL, Grün E, Svedhem H, et al. Lammers, Io as a source of the Jovian dust streams, Nature. 2000;405:48. This article explains the role of Jupiter’s magnetic field in producing dust streams flowing away from the planet.
  • Shoji M, Kasahara H, Tokitani M, The LHD Experiment Group, et al. Nucl Fusion. 2015;55:053014.
  • Autricque A, Hong SH, Fedorczak N, et al. Simulation of W dust transport in the KSTAR tokamak, comparison with fast camera data, Nucl Mat Energy. 2017;12:599.
  • Kodanova SK, Bastykova NK, Ramazanov TS, et al. Maiorov, The Effect of magnetic field on dust dynamic in the edge fusion plasma, IEEE TPS. 2018;46:832.
  • Delzanno GL, Tang X-Z. Chapter 13. In: Colonna G, D’Angola A, editors. Plasma modeling methods and applications. Bristol, U. K: IOP Plasma Physics Series, IOP Publishing Ltd; 2016 p.13-1:13–26.
  • Thomas E Jr., Merlino RL, Rosenberg M, Magnetized dusty plasmas: the next frontier for complex plasma research, Plasma Phys Control Fusion. 2012;54:124034.
  • Thomas E Jr., Merlino RL, Rosenberg M, Design criteria for the magnetized dusty plasma experiment, IEEE Trans Plasma Sci. 2013;41:811.
  • Thomas E Jr., Dubois AM, Lynch B, et al. Preliminary characteristics of magnetic field and plasma performance in the Magnetized Dusty Plasma Experiment (MDPX), J Plasma Phys. 2014;80:803.
  • Thomas E Jr., Konopka U, Artis D, et al. The magnetized dusty plasma experiment (MDPX), J Plasma Phys. 2015;81:345810206.
  • Thomas E Jr., Lynch B, Konopka U, et al. Rosenberg, Observations of imposed ordered structures in a dusty plasma at high magnetic field, Phys Plasmas. 2015;22:030701.
  • Lynch B. Microparticle Dynamics in Strongly Magnetized Low Temperature Plasmas. Ph.D. thesis, Auburn University, 2017.
  • Merlino RL, Thomas E Jr., Lynch B, et al. The magnetized dusty plasma experiment (MDPX), AIP Conf Proc. 2018;1928:010011.
  • Rosenberg M. A note on the electrostatic dust cyclotron instability in a collisional plasma with warm dust, Phys Scr. 2010;82:035505.
  • Merlino RL. Dusty plasma and applications in space and industry. In: Crockett G, editor. Plasma Physics Applied. Kerala, India: Transworld Research Network; 2006p.73–110.
  • Selwyn GS, Singh J, Bennett RS, J Vac Sci Technol A. 1989;7:2758. In situ laser diagnostic studies of plasma-generated particulate contamination.
  • Stoffels E, Stoffels WW. Physics and application of dusty low pressure plasmas, Trends Vac Sci Technol. 2001;4:1.
  • Bouchoule A and Buofendi Ll. Particulate formation and dusty plasma behaviour in argon-silane RF discharge, Plasma Sources Sci Techno. 1993;2:204.
  • Selwyn GS, Heidenreich JE, Haller KL, Rastered laser light scattering studies during plasma processing: Particle contamination trapping phenomena, J Vac Sci Technol A. 1991;9:2817.
  • Selwyn GS. Optical characterization of particle traps, Plasma Sources Sci Technol. 1994;3:340.
  • Roth RM, Spears KG, Stein GD, Wong G. Spatial dependence of particle light scattering in an rf silane discharge, Appl Phys Lett. 1985;46:253.
  • Watanabe Y. Formation and behaviour of nano/micro-particles in low pressure plasmas, J Phys D: Appl Phys. 2006;39:R329.
  • O’Hanlon JF. Contamination reduction in vacuum processing systems, J Vac Sci Technol A. 1989;7:2500.
  • Buofendi L, Bouchoule A. Industrial developments of scientific insights in dusty plasmas, Plasma Sources Sci Technol. 2002;11:A211.
  • Ticoş CM, Jepu I, Lungu CP, et al. Removal of floating dust in glow discharge using plasma jet, Appl Phys Lett. 2010;97:011501.
  • Imazato N, Imano M, Hayashi Y, Synthesis of Single–Walled Carbon Nanotubes in a Glow Discharge Fine Particle Plasma, AIP Conf Proc. 2008;1041:223.
  • Kuteev BV, Sergeev VY, Timokhin VM, et al. Dust technologies for magnetic fusion. J Nuc Mat. 2011;415:S1073.
  • Autricque A, Hong SH, Fedorczak N, et al. Dust technologies for magnetic fusion, J. Nuc Mat Energy. 2017;12:599.
  • Chapline G. Fission fragment rocket concept, Nuc Instrum Meth. 1988;A271:207.
  • Clark RA, Sheldon RB. A half-gigawatt space power system using dusty plasma fission fragment reactor, Proc. of the 41st AIAA/ASME/SAE/ASEE JPC conference, Tucson, AZ, AIAA paper No. 2005–4460, 2005.
  • Schwabe M, Rubin-Zuzic M, Zhdanov S, et al. Formation of bubbles, blobs, and surface cusps in complex plasmas, Phys Rev Lett. 2009;102:255005.
  • Schwabe M, Zhdanov S, Räth C, et al. Collective effects in vortex movements in complex plasmas, Phys Rev Lett. 2014;112:115002.
  • Pacha KA, Heinrich JR, Kim S-H, Merlino, RL. Observation of the Taylor instability in a dusty plasma, Phys Plasmas. 2012;19:014501.
  • Jaiswal S, Bandyopadhyay P, Sen A, Flowing dusty plasma experiments: generation of flow and measurement techniques, Plasma Sources Sci Technol. 2016;25:065021.
  • Nosenko V, Goree J. Shear flows and shear viscosity in a two-dimensional Yukawa system (dusty plasma), Phys Rev Lett. 2004;93:155004.
  • Feng Y, Goree J, Liu B, Viscoelasticity of 2D liquids quantified in a dusty plasma experiment, Phys Rev Lett. 2010;105:025002.
  • Feng Y, Goree J, Liu B, Observation of temperature peaks due to strong viscous heating in a dusty plasma flow, Phys Rev Lett. 2012;109:185002.
  • Feng Y, Goree J, Liu B, Cohen, EGD. Green-Kubo relation for viscosity tested using experimental data for a two-dimensional dusty plasma, Phys Rev E. 2011;84:046412.
  • Liu B, Goree J. Superdiffusion and non-Gaussian statistics in a driven-dissipative 2D dusty plasma, Phys Rev Lett. 2008;100:055003.
  • Harralson Z, Goree J, Belousov R, Dusty plasma experiment to confirm an expression for the decay of autocorrelation functions, Phys Rev E. 2018;98:023201.
  • Schwabe M, Rubin-Zuzik M, Shdanov S, et al. Highly resolved self-excited density waves in a complex plasma, Phys Rev Lett. 2007;99:095002.
  • Liao C-T, Teng L-W, Tsai C-Y, et al. Lagrangian-Eulerian micromotion and wave heating in nonlinear self-excited dust-acoustic waves, Phys Rev Lett. 2008;100:185004.
  • Heinrich JR, Kim S-H, Meyer JK, Merlino RL. Secondary dust density waves excited by nonlinear dust acoustic waves, Phys Plasmas. 2012;19:083702.
  • Williams JD. Spatial evolution of the dust-acoustic wave, IEEE Trans Plasma Sci. 2013;41:788.
  • Tsai -Y-Y, Chang MC, I L, Observation of multifractal intermittent dust-acoustic-wave turbulence. Phys Rev E. 2012;86:045402.
  • Hu HW, Wang W, I L, Multiscale coherent excitations in microscopic acoustic wave turbulence of cold dusty plasma liquids. Phys Rev Lett. 2019;123:065002.
  • Block D, Melzer A. Dusty (complex) plasmas—routes towards magnetized and polydisperse systems, J Phys B At Mol Opt Phys. 2019;52:063001. This review article discusses some of the most advanced optical diagnostics of dusty plasmas that are used to measure the particle size and density.
  • Alfvén H. The Plasma Universe, Physics Today. 1986;39:22.
  • Schmidt S, Dent JD. A theoretical prediction of the effects of electrostatic forces on saltating snow particles, Ann Glaciolo. 1993;18:234.
  • De Bleecker K, Bogaerts A, Goedheer W, Annemie Bogaerts and Wim Goedheer, Modelling of nanoparticle coagulation and transport dynamics in dusty silane discharges, New Jour Phys. 2006;8:178.
  • Winter J. Dust in fusion devices-experimental evidence, possible sources and consequences, Plasma Phys Control Fusion. 1998;40:1201.
  • Havnes H, Goertz CK, Morfill GE, et al. Dust charges, cloud potential, and instabilities in a dust cloud embedded in a plasma, J Geophys Res. 1987;92:2281.
  • Mendis DA. The role of field emission in the electrostatic disruption of cosmic dust, Astrophys Space Sci. 1991;176:163.
  • Langmuir I. The pressure effect and other phenomena in gaseous discharges, J Franklin Inst. 1923;196:751.
  • Havnes O, Aslaksen T, Brattli A, Charged dust in the Earth’s middle atmosphere, Phys Scr. 2001;T89:133.
  • Whipple EC. Potentials of surfaces in space, Rep Prog Phys. 1981;44:1197.
  • Garrett HB. The charging of spacecraft surfaces, Rev Geophys Space Phys. 1981;19:577.
  • Motley R. Q-Machines. Academic Press, San Diego: Academic Press; 1975.
  • Filinov AV, Bonita M, Lozovik YE, Wigner crystallization in mesoscopic 2D electron systems, Phys Rev Lett. 2001;86:3851.
  • Tsytovich VN, Khodataev YK, Bingham R, Formation of a Dust Molecule in Plasmas as a First Step to Super-Chemistry., Comm Plasma Phys Control Fusion. 1996;17:249.
  • Choudhary M, Berger R, Mitic S, Thoma MH. Surface potential of spherical objects in a magnetized rf discharge plasma. 21 Aug. 2020. https://arxiv.org/abs/1901.10955.
  • Melzer A, Homann A, Piel A, Experimental evidence for attractive and repulsive forces in dust molecules, Phys Rev E. 1996;53:2757.
  • Melzer A, Kruger H, Schütt S, Mulsow M. Finite dust clusters under strong magnetic fields, Phys Plasmas. 2019;26:093702.
  • Nosenko V, Goree J. Laser method of heating monolayer dusty plasmas, Phys Plasmas. 2016;13:032106.
  • Gibson RG. Experimental observation of ionization waves, Am J Phys. 1983;51:1028.