2,971
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Progress of nematic superconductivity in iron-based superconductors

, , , , , , , , & show all

References

  • Hinkov V, Haug D, Fauqué B, et al. Electronic liquid crystal state in the high-temperature superconductor YBa2Cu3O6.45. Science. 2008;319:597–600.
  • Daou R, Chang J, LeBoeuf D, et al. Broken rotational symmetry in the pseudogap phase of a high –Tc superconductor. Nature. 2010;463:519–522.
  • Okazaki R, Shibauchi T, Shi HJ, et al. Rotational symmetry breaking in the hidden-order phase of URu2Si2. Science. 2011;331:439–442.
  • Ronning F, Helm T, Shirer KR, et al. Electronic in-plane symmetry breaking at field-tuned quantum criticality in CeRhIn5. Nature. 2017;548:313–317.
  • Chu JH, Kuo HH, Analytis JG, et al. Divergent nematic susceptibility in an iron arsenide superconductor. Science. 2012;337:710–712.
  • Kuo HH, Chu JH, Palmstrom JC, et al. Ubiquitous signatures of nematic quantum criticality in optimally doped Fe-based superconductors. Science. 2016;352:958–16.
  • Fisher IR, Degiorgi L, Shen ZX, In-plane electronic anisotropy of underdoped ’122ʹ Fe-arsenide superconductors revealed by measurements of detwinned single crystals, Reports on Progress in Physics 74, 124506 (2011).
  • Liu Z, Gu Y, Zhang W, et al. Nematic quantum critical fluctuations in BaFe2-xNixAs2. Phys Rev Lett. 2016;117:157002.
  • Tanatar MA, Böhmer AE, Timmons EI, et al. Origin of the resistivity anisotropy in the nematic phase of FeSe. Phys Rev Lett. 2016;117:127001.
  • Gastiasoro MN, Paul I, Wang Y, et al. Emergent defect states as a source of resistivity anisotropy in the nematic phase of iron pnictides. Phys Rev Lett. 2014;113:127001.
  • Ying JJ, Wang XF, Wu T, et al. Measurements of the anisotropic in-plane resistivity of underdoped FeAs-based pnictide superconductors. Phys Rev Lett. 2011;107:067001.
  • Baek SH, Efremov DV, Ok JM, et al. Orbital-driven nematicity in FeSe. Nat Mater. 2015;14:210.
  • Alexander GP, Chen BG, Matsumoto EA, et al. Colloquium: disclination loops, point defects, and all that in nematic liquid crystals. Rev Mod Phys. 2012;84:497.
  • Fernandes RM, Chubukov AV, Schmalian J. What drives nematic order in iron-based superconductors? Nat Phys. 2014;10:97.
  • Paglione J, Greene RL. High-temperature superconductivity in iron-based materials. Nat Phys. 2010;6:645.
  • Johnston DC. The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides. Adv Phys. 2010;59:803.
  • Hirschfeld PJ, Korshunov MM, Mazin II. Gap symmetry and structure of Fe-based superconductors, Rep Prog Phys. 2011;74:124508.
  • Chubukov A. Pairing mechanism in Fe-based superconductors. Annu Rev Condens Matter Phys. 2012;3:57.
  • Mazin II. Superconductivity gets an iron boost. Nature. 2010;464:183–186.
  • Wang F, Lee DH. The electron-pairing mechanism of iron-based superconductors. Science. 2011;332:200–204.
  • Norman MR. The challenge of unconventional superconductivity. Science. 2011;332:196–200.
  • Luo H, Lu X, Zhang R, et al. Electron doping evolution of the magnetic excitations in BaFe2-xNixAs2. Phys Rev B. 2013;88:144516.
  • Prozorov R, Koczykowski M, Tanatar MA, et al. Interplay between superconductivity and itinerant magnetism in underdoped Ba1-xKxFe2As2 (x=0.2) probed by the response to controlled point-like disorder. Npj Quantum Material. 2019;4:34.
  • Zhao J, Rotundu CR, Marty K, et al. Effect of electron correlations on magnetic excitations in the isovalently doped iron-based superconductor Ba(Fe1-xRux)2As2. Phys Rev Lett. 2013;110:147003.
  • Kreisel A, Hirschfeld PJ, Andersen BM. On the remarkable superconductivity of FeSe and its close cousins. Symmetry-Basel. 2020;12:1402.
  • Chen T, Yi M, Dai PC. Electronic and magnetic anisotropies in FeSe family of iron-based superconductors. Front Phys. 2020;8:314.
  • Bohmer AE, Kreisel A. Nematicity, magnetism and superconductivity in FeSe. J Phys-Condens Matter. 2018;30:023001.
  • Shibauchi T, Hanaguri T, Matsuda Y. Exotic superconducting states in FeSe-based materials. J Phys Soc Jpn. 2020;89:102002.
  • Chu JH, Analytis JG, De Greve K, et al. In-plane resistivity anisotropy in an underdoped iron arsenide superconductor. Science. 2010;329:824–826.
  • Licciardello S, Buhot J, Lu J, et al. Electrical resistivity across a nematic quantum critical point. Nature. 2019;567:213–217.
  • Pratt DK, Tian W, Kreyssig A, et al. Coexistence of competing antiferromagnetic and superconducting phases in the underdoped Ba(Fe0.953Co0.047)2As2. Phys Rev Lett. 2009;103:087001.
  • Wen J. Magnetic neutron scattering studies on the fe-based superconductor system Fe1+yTe1-xSex. Ann Phys. 2015;358:92.
  • Zhang Y, Chen F, He C, et al. Orbital characters of bands in the iron-based superconductor BaFe1.85Co0.15As2. Phys Rev B. 2011;83:054510.
  • Song CL, Wang YL, Cheng P, et al. Direct observation of nodes and twofold symmetry in FeSe superconductor. Science. 2011;332:1410–1413.
  • Lu DC, Lv YY, Li J, et al. Elliptical vortex and oblique vortex lattice in the FeSe superconductor based on the nematicity and mixed superconducting orders. npj Quantum Material. 2018;3:12.
  • Sprau PO, Kostin A, Kreisel A, et al. Discovery of orbital-selective cooper pairing in FeSe. Science. 2017;357:75–80.
  • Hashimoto T, Ota Y, Yamamoto HQ, et al. Superconducting gap anisotropy sensitive to nematic domains in FeSe. Nat Commun. 2018;9:282.
  • Liu D, Li C, Huang J, et al. Orbital origin of extremely anisotropic superconducting gap in nematic phase of FeSe superconductor. Phys Rev X. 2018;8:031033.
  • Kang J, Chubukov AV, Fernandes RM. Time-reversal symmetry-breaking nematic superconductivity in FeSe. Phys Rev B. 2018;98:064508.
  • Li J, Pereira PJ, Yuan J, et al. Nematic superconducting state in iron pnictide superconductors. Nat Commun. 2017;8:1880.
  • Liu X, Tao R, Ren MQ, et al. Evidence of nematic order and nodal superconducting gap along [110] direction in RbFe2As2, Nat. Commun. 2019;10:1039.
  • Dai P, Hu J, Dagotto E. Magnetism and its microscopic origin in iron-based high-temperature superconductors. Nat Phys. 2012;8:709.
  • Ding H, Richard P, Nakayama K, et al. Observation of fermi-surface–dependent nodeless superconducting gaps in Ba0.6K0.4Fe2As2. Europhys Lett. 2008;83:47001.
  • Ishida K, Tsujii M, Hosoi S, et al. Novel electronic nematicity in heavily hole-doped iron pnictide superconductors. Proc Nat Acad Sci. 2020;117:6424.
  • Sato T, Nakayama K, Sekiba Y, et al. Band structure and fermi surface of an extremely overdoped iron-based superconductor KFe2As2. Phys Rev Lett. 2009;103:047002.
  • Yoshida T, Nishi I, Fujimori A, et al. Fermi surfaces and quasi-particle band dispersions of the iron pnictides superconductor KFe2As2 observed by angle-resolved photoemission spectroscopy. J Phys Chem Solids. 2011;72:465–468.
  • Okazaki K, Ota Y, Kotani Y, et al. Octet-line node structure of superconducting order parameter in KFe2As2. Science. 2012;337:1314.
  • Dong Y, Lv Y, Xu Z, et al. Observation of a ubiquitous (π,π)-type nematic superconducting order in the whole superconducting dome of ultra-thin BaFe2-xNixAs2 in single crystals. Present at Young Scientists Symposium on Superconductivity-2019, Beijing. 2019 (unpublished).
  • Koike Y, Takabayashi T, Noji T, et al. Fourfold symmetry in the ab plane of the upper critical field for single-crystal Pb2Sr2Y0.62Ca0.38Cu3O8: evidence for dx2-y2 pairing in a high-Tc superconductor. Phys Rev B. 1996;54:R776.
  • Mao ZQ, Maeno Y, NishiZaki S, et al. In-plane anisotropy of upper critical field in Sr2RuO4. Phys Rev Lett. 2000;84:991.
  • Wu J, Bollinger AT, He X, et al. Spontaneous breaking of rotational symmetry in copper oxide superconductors. Nature. 2017;547:432–435.
  • Onari S, Kontani H. Origin of diverse nematic orders in Fe-based superconductors: 45° rotated nematicity in AFe2As2(A=Cs,Rb). Phys Rev B. 2019;100:020507.
  • Wang Y, Hu W, Yu R, et al. Broken mirror symmetry, incommensurate spin correlations, and B2g nematic order in iron pnictides. Phys Rev B. 2019;100:100502.
  • Borisov V, Fernandes RM, Valent R. Evolution from B2g nematics to B1g nematics in heavily hole-doped iron-based superconductors. Phys Rev Lett. 2019;123:146402.
  • Wiecki P, Haghighirad -A-A, Weber F, et al. Böhmer, Dominant in-plane symmetric elastoresistance in CsFe2As2. Phys Rev Lett. 2020;125: 187001