2,967
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Disorder effects on quantum transport and quantum phase transition in low-dimensional superconducting and topological systems

, , &
Article: 1884133 | Received 18 Nov 2020, Accepted 19 Jan 2021, Published online: 16 Mar 2021

References

  • Saito Y, Kasahara Y, Jianting Y, et al. Metallic ground state in an ion-gated two-dimensional superconductor. Science. 2015;350:409–32.
  • Kapitulnik A, Kivelson SA, Spivak B. Colloquium: anomalous metals: failed superconductors. Rev Mod Phys. 2019 Jan;91:011002.
  • Reyren N, Thiel S, Caviglia AD, et al. Superconducting interfaces between insulating oxides. Science. 2007;317:1196–1199.
  • Zhang T, Cheng P, Wenjuan L, et al. Superconductivity in one-atomic-layer metal films grown on si(111). Nat Phys. 2010;6:104–108.
  • Weng H, Xi D, Zhong F. Topological semimetals predicted from first-principles calculations. J Phys. 2016;28:303001.
  • Wang S, Lin B-C, Wang A-Q, et al. Quantum transport in dirac and weyl semimetals: a review. Adv Phys X. 2017;2:518–544.
  • Ren Y, Qiao Z, Niu Q. Topological phases in two-dimensional materials: a review. Rep Prog Phys. 2016;79:066501.
  • Hohenberg PC. Existence of long-range order in one and two dimensions. Phys Rev. 1967 Jun;158:383–386.
  • Mermin ND, Wagner H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic heisenberg models. Phys Rev Lett. 1966;17:1133–1136.
  • Kosterlitz JM, Thouless DJ. Ordering, metastability and phase transitions in two-dimensional systems. J Phys C. 1973;6:1181–1203.
  • Berezinsky VL. Destruction of long range order in one-dimensional and two-dimensional systems having a continuous symmetry group. i. classical systems. J Exp Theor Phys. 1970;32:493–500.
  • Goldman A. Percolation, localization, and superconductivity. Vol. 109. Springer Science & Business Media, Berlin; 2013.
  • Uchihashi T. Two-dimensional superconductors with atomic-scale thickness. Superconductor SciTechnol. 2017;30:013002.
  • Liao M, Zang Y, Guan Z, et al. Superconductivity in few-layer stanene. Nat Phys. 2018;14:344–348.
  • Zang Y, Jiang T, Gong Y, et al. Realizing an epitaxial decorated stanene with an insulating bandgap. Adv Funct Mater. 2018;28:1802723.
  • Jianming L, Zheliuk O, Leermakers I, et al. Evidence for two-dimensional ising superconductivity in gated mos2. Science. 2015;350:1353–1357.
  • Bahramy NY, M. S. Kohama Y, Kasahara YJ, et al. Superconductivity protected by spin–valley locking in ion-gated mos2. Nat Phys. 2016;12:144–149.
  • Xiaoxiang X, Wang Z, Zhao W, et al. Ising pairing in superconducting nbse2 atomic layers. Nat Phys. 2016;12:139–143.
  • Xing Y, Zhao K, Shan P, et al. Ising superconductivity and quantum phase transition in macro-size monolayer nbse2. Nano Lett. 2017;17:6802–6807.
  • Saito Y, Nojima T, Iwasa Y. Highly crystalline 2d superconductors. Nat Rev Mater. 2017;2:1–18.
  • Liu Y, Wang Z, Zhang X, et al. Interface-induced zeeman-protected superconductivity in ultrathin crystalline lead films. Phys Rev X. 2018;8:021002.
  • Jianming L, Zheliuk O, Chen Q, et al. Full superconducting dome of strong ising protection in gated monolayer ws2. Proc Natl Acad Sci U S A. 2018;115:3551–3556.
  • De La Barrera SC, Sinko MR, Gopalan DP, et al. Tuning Ising superconductivity with layer and spin–orbit coupling in two-dimensional transition-metal dichalcogenides. Nat Commun. 2018;9:1427.
  • Sergio C, Sinko MR, Gopalan DP, et al. Tuning ising superconductivity with layer and spin–orbit coupling in two-dimensional transition-metal dichalcogenides. Nat Commun. 2018;9:1–8.
  • Cui J, Peiling L, Zhou J, et al. Transport evidence of asymmetric spin–orbit coupling in few-layer superconducting 1td-mote2. Nat Commun. 2019;10:2044.
  • Yang C, Liu Y, Yang W, et al. Intermediate bosonic metallic state in the superconductor-insulator transition. Science. 2019;366:1505–1509.
  • Xing Y, Zhang H, Hailong F, et al. Quantum griffiths singularity of superconductor-metal transition in ga thin films. Science. 2015;350:542–545.
  • Wang H, Liu H, Yanan L, et al. Discovery of log-periodic oscillations in ultraquantum topological materials. Sci Adv. 2018;4:eaau5096.
  • Liu H, Jiang H, Wang Z, et al. Discrete scale invariance in topological semimetals. arXiv preprint arXIv:1807.02459. 2018.
  • Wang H, Liu Y, Liu Y, et al. Log-periodic quantum magneto-oscillations and discrete-scale invariance in topological material hfte5. Natl Sci Rev. 2019;6:914–920.
  • Wang CM, Sun H-P, Hai-Zhou L, et al. 3d quantum hall effect of fermi arcs in topological semimetals. Phys Rev Lett. 2017 Sep;119:136806.
  • Hailong L, Liu H, Jiang H, et al. 3d quantum hall effect and a global picture of edge states in weyl semimetals. Phys Rev Lett. 2020 Jul;125:036602.
  • Liu H, Liu H, Joynt R, et al. Effect of coulomb screening on the discrete scale invariance of quasibound states in three-dimensional topological semimetals. Phys Rev B. 2019;100:195140.
  • Bardeen J, Cooper LN, Schrieffer JR. Theory of superconductivity. Phys Rev. 1957;108:1175–1204.
  • Cooper DEFLN. BCS: 50 years. 1 edition ed. World Scientific, Singapore; 2011.
  • Anderson PW. Theory of dirty superconductors. J Phys Chem Solids. 1959;11:26–30.
  • Abrikosov AA, Gorkov LP. On the theory of superconducting alloys. 1. the electrodynamics of alloys at absolute zero. Sov Phys JETP. 1959;8:1090–1098.
  • Abrikosov AA, Gorkov LP. Contribution to the theory of superconducting alloys with paramagnetic impurities. Sov Phys JETP. 1960;12:1243.
  • Maki K. The magnetic properties of superconducting alloys. Physics Physique Fizika. 1964;1:21.
  • De Gennes PG. Behavior of dirty superconductors in high magnetic fields. Physik der kondensierten Materie. 1964;3:79–90.
  • Clogston AM. Upper limit for the critical field in hard superconductors. Phys Rev Lett. 1962;9:266–267.
  • Chandrasekhar BS. A note on the maximum critical field of high‐field superconductors. Appl Phys Lett. 1962;1:7–8.
  • Maki K. Pauli paramagnetism and superconducting state. Prog Theoretical Phys. 1964;32:29–36.
  • Werthamer NR, Helfand E, Hohenberg PC. Temperature and purity dependence of the superconducting critical field, h c 2 . iii. electron spin and spin-orbit effects. Phys Rev. 1966;147:295–302.
  • Klemm RA, Luther A, Beasley MR. Theory of the upper critical field in layered superconductors. Phys Rev B. 1975;12:877–891.
  • Tedrow PM, Meservey R. Critical magnetic field of very thin superconducting aluminum films. Phys Rev B. 1982;25:171–178.
  • Falson J, Yong X, Liao M, et al. Type-ii ising pairing in few-layer stanene. Science. 2020;367:1454–1457.
  • Liu H, Liu H, Zhang D, et al. Microscopic theory of in-plane critical field in two-dimensional ising superconducting systems. Phys Rev B. 2020;102:174510.
  • Gorkov L, Abrikosov P, A A, et al. Methods of quantum field theory in statistical physics. Courier, Corporation, Massachusets; 2012.
  • Yuan NFQ, Mak KF, Law KT. Possible topological superconducting phases of mos 2. Phys Rev Lett. 2014;113:097001.
  • Yong X, Yan B, Zhang H, et al. Large-gap quantum spin hall insulators in tin films.. Phys Rev Lett. 2013;111:136804––1368045.
  • Wang C, Lian B, Guo X, et al. Type-ii ising superconductivity in two-dimensional materials with spin-orbit coupling. Phys Rev Lett. 2019;123:126402.
  • Tinkham M. Effect of fluxoid quantization on transitions of superconducting films. Phys Rev. 1963;129:2413–2422.
  • Guo Y, Zhang Y, Bao X, et al. Superconductivity modulated by quantum size effects. Science. 2004;306:1915–1917.
  • Ozer MM, Thompson JR, Weitering HH. Hard superconductivity of a soft metal in the quantum regime. Nat Phys. 2006;2:173–176.
  • Eom D, Qin S, Chou MY, et al. Persistent superconductivity in ultrathin pb films: a scanning tunneling spectroscopy study. Phys Rev Lett. 2006;96:027005.
  • Qin S, Kim J, Niu Q, et al. Superconductivity at the two-dimensional limit. Science. 2009;324:1314–1317.
  • Uchihashi T, Mishra P, Aono M, et al. Macroscopic superconducting current through a silicon surface reconstruction with indium adatoms: si(111)-(√7 × √3)-in. Phys Rev Lett. 2011;107:207001.
  • Yamada M, Hirahara T, Hasegawa S. Magnetoresistance measurements of a superconducting surface state of in-induced and pb-induced structures on si(111). Phys Rev Lett. 2013;110:237001.
  • Brun C, Cren T, Cherkez V, et al. Remarkable effects of disorder on superconductivity of single atomic layers of lead on silicon. Nat Phys. 2014;10:444–450.
  • Zhang H, Sun Y, Wei L, et al. Detection of a superconducting phase in a two-atom layer of hexagonal ga film grown on semiconducting gan(0001). Phys Rev Lett. 2015;114:107003.
  • Wang Q, Zhi L, Zhang W, et al. Interface-induced high-temperature superconductivity in single unit-cell fese films on srtio3. Chin Phys Lett. 2012;29:037402.
  • Zhang W, Sun Y, Zhang J, et al. Direct observation of high-temperature superconductivity in one-unit-cell fese films. Chin Phys Lett. 2014;31:017401.
  • Akashi R, Bahramy MS, Arita R, et al. Superconducting dome in a gate tuned band insulator. Science. 2012;338:11193.
  • Shimotani H, Taniguchi K, Matsumoto A, et al. Electric-field-induced superconductivity at 9.4 k in a layered transition metal disulphide mos2.. Appl Phys Lett. 2012;101:042603.
  • Yuan NFQ, Zhou BT, He WY, et al. Ising superconductivity in transition metal dichalcogenides. 2016.
  • Liu Y, Yong X, Sun J, et al. Type-ii ising superconductivity and anomalous metallic state in macro-size ambient-stable ultrathin crystalline films. Nano Lett. 2020 June;20:5728–5734.
  • Liu Y, Wang Z, Shan P, et al. Anomalous quantum griffiths singularity in ultrathin crystalline lead films. Nat Commun. 2019;10:1–6.
  • Varlamov AA, Galda A, Glatz A. Fluctuation spectroscopy: from rayleigh-jeans waves to abrikosov vortex clusters. Rev Mod Phys. 2018 Mar;90:015009.
  • Mason N, Kapitulnik A. Dissipation effects on the superconductor-insulator transition in 2d superconductors. Phys Rev Lett. 1999;82:5341–5344.
  • Sachdev S. Quantum Phase Transitions. Cambridge University Press, Cambridge; 2011.
  • Christiansen C, Hernandez LM, Goldman AM. Evidence of collective charge behavior in the insulating state of ultrathin films of superconducting metals. Phys Rev Lett. 2002;88:037004.
  • Del Maestro A, Rosenow B, Sachdev S. Theory of the pairbreaking superconductor-metal transition in nanowires. Ann Phys. 2009;324:523–583.
  • Goldman AM. Superconductor-insulator transitions. Int J Modern Phys B. 2010;24:4081–4101.
  • Eley S, Gopalakrishnan S, Goldbart PM, et al. Approaching zero-temperature metallic states in mesoscopic superconductor-normal-superconductor arrays. Nat Phys. 2012;8:59–62.
  • Biscaras J, Bergeal N, Hurand S, et al. Multiple quantum criticality in a two-dimensional superconductor. Nat Mater. 2013;12:542–548.
  • Shi X, Lin PV, Sasagawa T, et al. Two-stage magnetic-field-tuned superconductor–insulator transition in underdoped la 2−x sr x cuo 4. Nat Phys. 2014;10:437–443.
  • Breznay N, Kapitulnik A. Particle-hole symmetry reveals failed superconductivity in the metallic phase of two-dimensional superconducting films. Sci Adv. 2017;3:9.
  • Bottcher CGL, Nichele F, Kjaergaard M, et al. Superconducting, insulating and anomalous metallic regimes in a gated two-dimensional semiconductor–superconductor array. Nat Phys. 2018;14:1138–1144.
  • Chen Z, Swartz A, Yoon H, et al. Carrier density and disorder tuned superconductor-metal transition in a two-dimensional electron system.. Nat Commun. 2018;9:4008.
  • Sondhi SL, Girvin SM, Carini JP, et al. Continuous quantum phase transitions. Rev Mod Phys. 1997;69:315–333.
  • Ma SK. Modern theory of critical phenomena. Routledge, Oxfordshire; 2018.
  • Herbut I. A Modern Approach to Critical Phenomena. Cambridge University Press; 2007.
  • Vojta T. Rare region effects at classical, quantum and nonequilibrium phase transitions. J Phys A. 2006;39:R143-R205.
  • Belitz D, Kirkpatrick TR, Vojta T. How generic scale invariance influences quantum and classical phase transitions. Rev Mod Phys. 2005;77:579–632.
  • Landau LD. On the theory of phase transitions.. Ukr J Phys. 1937;(11):19–32.
  • Landau LD. Broken symmetry and phase transitions.. Phys Z Sowjetunion. 1937;26:542.
  • Wilson KG, Kogut JB. The renormalization group and the epsilon expansion. Phys Rep. 1973;12:75–200.
  • Widom B. Surface tension and molecular correlations near the critical point. J Chem Phys. 1965;43:3892–3897.
  • Gitterman M. Igor herbut: a modern approach to critical phenomena. J Stat Mech. 2008;131:173.
  • Vojta T. Phases and phase transitions in disordered quantum systems. In AIP Conference Proceedings,1550, 188–247. American Institute of Physics,Salerno; 2013.
  • Vojta M. Quantum phase transitions. Rep Prog Phys. 2003;66:2069–2110.
  • Fisher MPA. Quantum phase transitions in disordered two-dimensional superconductors. Phys Rev Lett. 1990;65:923.
  • Harris AB. Effect of random defects on the critical behaviour of ising models. J Phys C. 1974;7:1671–1692.
  • Chayes J, Chayes L, Fisher DS, et al. Finite-size scaling and correlation lengths for disordered systems. Phys Rev Lett. 1986;57:2999–3002.
  • Vojta T, Hoyos JA. Criticality and quenched disorder: harris criterion versus rare regions. Phys Rev Lett. 2014;112:075702.
  • Vojta T, Farquhar A, Mast J. Infinite-randomness critical point in the two-dimensional disordered contact process. Phys Rev E. 2009;79:011111.
  • Motrunich OI, Mau S, Huse DA, et al. Infinite-randomness quantum ising critical fixed points. Phys Rev B. 2000;61:1160–1172.
  • Kovacs I, Igloi F. Renormalization group study of the two-dimensional random transverse-field ising model. Phys Rev B. 2010;82:054437.
  • Pich C, Young AP, Rieger H, et al. Critical behavior and griffiths-mccoy singularities in the two-dimensional random quantum ising ferromagnet. Phys Rev Lett. 1998;81:5916–5919.
  • Fisher DS. Critical behavior of random transverse-field ising spin chains. Phys Rev B. 1995;51:6411–6461.
  • Griffiths RB. Nonanalytic behavior above the critical point in a random ising ferromagnet. Phys Rev Lett. 1969;23:17–19.
  • Mccoy BM, Wu TT. Theory of a two-dimensional ising model with random impurities. i. thermodynamics.. Phys Rev. 1968;176:631–643.
  • Fisher DS. Random transverse field ising spin chains. Phys Rev Lett. 1992;69:534–537.
  • Fisher DS. Phase transitions and singularities in random quantum systems. Physica A-statistical Mechanics and Its Applications. 1999;263:222–233.
  • Del Maestro A, Rosenow B, Muller M, et al. Infinite randomness fixed point of the superconductor-metal quantum phase transition. Phys Rev Lett. 2008;101:035701.
  • Lewellyn NA, Percher IM, Nelson JJ, et al. Infinite-randomness fixed point of the quantum superconductor-metal transitions in amorphous thin films. Phys Rev B. 2019 Feb;99:054515.
  • Huang C, Zhang E, Zhang Y, et al. The discovery of tunable universality class in superconducting beta-w thin films. arXiv:2010.12775.
  • Liu Y, Shichao Q, Sun CL, et al. The observation of in-plane quantum griffiths singularity in two-dimensional crystalline superconductors. arXiv:2011.00268.
  • Haviland DB, Liu Y, Goldman AM. Onset of superconductivity in the two-dimensional limit. Phys Rev Lett. 1989;62:2180–2183.
  • Hebard AF, Paalanen MA. Magnetic-field-tuned superconductor-insulator transition in two-dimensional films. Phys Rev Lett. 1990;65:927–930.
  • Yazdani A, Kapitulnik A. Superconducting-insulating transition in two-dimensional a-moge thin films. Phys Rev Lett. 1995;74:3037–3040.
  • Markovic N, Christiansen C, Goldman AM. Thickness–magnetic field phase diagram at the superconductor-insulator transition in 2d. Phys Rev Lett. 1998;81:5217–5220.
  • Shi X, Lin PV, Sasagawa T, et al. Two-stage magnetic-field-tuned superconductor–insulator transition in underdoped la 2- x sr x cuo 4. Nat Phys. 2014;10:437–443.
  • Ephron D, Yazdani A, Kapitulnik A, et al. Observation of quantum dissipation in the vortex state of a highly disordered superconducting thin film. Phys Rev Lett. 1996;76:1529–1532.
  • Maki K. Critical fluctuation of the order parameter in a superconductor. i. Prog Theoretical Phys. 1968;40:193–200.
  • Fisher DS, Fisher MPA, Huse DA. Thermal fluctuations, quenched disorder, phase transitions, and transport in type-ii superconductors. Phys Rev B. 1991;43:130.
  • Galitski V, Larkin AI. Disorder and quantum fluctuations in superconducting films in strong magnetic fields. Phys Rev Lett. 2001;87:087001.
  • Shen S, Xing Y, Wang P, et al. Observation of quantum griffiths singularity and ferromagnetism at the superconducting laal o 3/srti o 3 (110) interface.. Phys Rev B. 2016;94:144517.
  • Saito Y, Nojima T, Iwasa Y. Quantum phase transitions in highly crystalline two-dimensional superconductors. Nat Commun. 2018;9:778.
  • Hsu Y, Vaezi A, Fischer MH, et al. Topological superconductivity in monolayer transition metal dichalcogenides. Nat Commun. 2017;8:14985.
  • Wenyu H, Zhou BT, He JJ, et al. Magnetic field driven nodal topological superconductivity in monolayer transition metal dichalcogenides. Commun Phys. 2018;1:40.
  • Zhou BT, Yuan NFQ, Jiang H, et al. Ising superconductivity and majorana fermions in transition metal dichalcogenides. Phys Rev B. 2016;93:180501.
  • Liu Y, Wang Z, Shan P, et al. Anomalous quantum griffiths singularity in ultrathin crystalline lead films. Nat Commun.2019;10:1-6.
  • Aslamazov LG, Larkin AI. Effect of fluctuations on properties of a superconductor above critical temperature.. Fiz. Tverd. Tela (Leningr.). 1968;10.
  • Galitski V, Larkin AI. Superconducting fluctuations at low temperature. Phys Rev B. 2001;63:174506.
  • Slevin K, Ohtsuki T. Corrections to scaling at the anderson transition. Phys Rev Lett. 1999 Jan;82:382–385.
  • Ando Y, Liang F. Topological crystalline insulators and topological superconductors: from concepts to materials. Ann Rev Condens Matter Phys. 2015;6:361–381.
  • Shytov AV, Katsnelson MI, Levitov LS. Atomic collapse and quasi-rydberg states in graphene. Phys Rev Lett. 2007;99:246802.
  • Nishida Y. Vacuum polarization of graphene with a supercritical coulomb impurity: low-energy universality and discrete scale invariance. Phys Rev B. 2014;90:165414.
  • Ovdat O, Mao J, Jiang Y, et al. Observing a scale anomaly and a universal quantum phase transition in graphene. Nat Commun. 2017;8:1–6.
  • Zhang P, Zhai H. Efimov effect in dirac semi-metals. Front Phys. 2018;13:137204.
  • Zhang C, Tong B, Yuan Z, et al. Signature of chiral fermion instability in the weyl semimetal taas above the quantum limit. Phys Rev B. 2016;94:205120.
  • Shoenberg D. Magnetic oscillations in metals. Cambridge university press, Cambridge; 2009.
  • Zhao Y, Liu H, Zhang C, et al. Anisotropic fermi surface and quantum limit transport in high mobility three-dimensional dirac semimetal cd 3 as 2. Phys Rev X. 2015;5:031037.
  • Webb RA, Washburn S, Umbach CP, et al. Observation of h e aharonov-bohm oscillations in normal-metal rings. Phys Rev Lett. 1985;54:2696.
  • Wang Y, Wong D, Shytov AV, et al. Observing atomic collapse resonances in artificial nuclei on graphene. Science. 2013;340:734–737.
  • Braaten E, Hammer HW. Universality in few-body systems with large scattering length. Phys Rep. 2006;428:259–390.
  • Efimov V. Energy levels arising from resonant two-body forces in a three-body system. Phys Lett B. 1970;33:563–564.
  • Efimov V. Energy levels of three resonantly interacting particles.. Nucl Phys. 1973;210:157–188.
  • Wan X, Turner AM, Vishwanath A, et al. Topological semimetal and fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys Rev B. 2011;83:205101.
  • Zeldovich YB, Popov VS. Electronic structure of superheavy atoms. Physics-Uspekhi. 1972;14:673–694.
  • Greiner W Quantum electrodynamics of strong fields. In: Hadrons and heavy ions. Springer, Berlin; 1985. p. 95–226.
  • Shytov AV, Katsnelson MI, Levitov LS. Vacuum polarization and screening of supercritical impurities in graphene. Phys Rev Lett. 2007;99:236801.
  • Pereira VM, Nilsson J, Castro Neto AH. Coulomb impurity problem in graphene. Phys Rev Lett. 2007;99:166802.
  • Chen RY, Chen ZG, Song X, et al. Magnetoinfrared spectroscopy of landau levels and zeeman splitting of three-dimensional massless dirac fermions in zrte(5). Phys Rev Lett. 2015;115:176404.
  • Ruder H, Wunner G, Herold H, et al. Atoms in strong magnetic fields. Springer-Verlag, Berlin; 1994.
  • Zhang N, Zhao G, Lin L, et al. Magnetotransport signatures of weyl physics and discrete scale invariance in the elemental semiconductor tellurium. Proc Nat Acad Sci. 2020 May;117:202002913.