2,484
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Optical manipulation of nanoscale materials by linear and nonlinear resonant optical responses

Article: 1885991 | Received 29 Oct 2020, Accepted 01 Feb 2021, Published online: 22 Mar 2021

References

  • Nichols EF, Hull GF. The pressure due to radiation. (Second paper.). Physical Review (Series I). 1903;17: 26.
  • Maxwell JC. A treatise on electricity and magnetism. Vol. 1. Oxford: Clarendon Press; 1873.
  • Bartoli A. Il calorico raggiante e il secondo principio di termodinamica. Il Nuovo Cimento (1877-1894). 1884;15: 193–35.
  • Lebedew P. Untersuchungen über die druckkräfte des lichtes. Ann Phys. 1901;311:433–458.
  • Ashkin A. Acceleration and trapping of particles by radiation pressure. Phys Rev Lett. 1970;24:156.
  • Ashkin A. Atomic-beam deflection by resonance-radiation pressure. Phys Rev Lett. 1970;25:1321.
  • Ashkin A. Trapping of atoms by resonance radiation pressure. Phys Rev Lett. 1978;40:729.
  • Phillips WD, Metcalf H. Laser deceleration of an atomic beam. Phys Rev Lett. 1982;48:596.
  • Chu S, Hollberg L, Bjorkholm JE, et al. Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure. Phys Rev Lett. 1985;55:48.
  • Chu S, Bjorkholm J, Ashkin A, et al. Experimental observation of optically trapped atoms. Phys Rev Lett. 1986;57:314.
  • Leggett AJ. Bose-einstein condensation in the alkali gases: some fundamental concepts. Rev Mod Phys. 2001;73:307.
  • Bloch I. Ultracold quantum gases in optical lattices. Nat Phys. 2005;1:23–30.
  • Takamoto M, Hong FL, Higashi R, et al. An optical lattice clock. Nature. 2005;435:321–324.
  • Ashkin A, Dziedzic JM, Bjorkholm JE, et al. Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett. 1986;11:288–290.
  • Ashkin A, Dziedzic JM, Yamane T. Optical trapping and manipulation of single cells using infrared laser beams. Nature. 1987;330:769–771.
  • Ashkin A, Dziedzic JM. Optical trapping and manipulation of viruses and bacteria. Science. 1987;235:1517–1520.
  • Perkins TT, Smith D, Chu S, et al. Relaxation of a single dna molecule observed by optical microscopy. Science. 1994;264:822–826.
  • Finer JT, Simmons RM, Spudich JA. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature. 1994;368:113–119.
  • Funatsu T, Harada Y, Tokunaga M, et al. Imaging of single fluorescent molecules and individual atp turnovers by single myosin molecules in aqueous solution. Nature. 1995;374:555–559.
  • Ishijima A, Kojima H, Funatsu T, et al. Simultaneous observation of individual atpase and mechanical events by a single myosin molecule during interaction with actin. Cell. 1998;92:161–171.
  • Osborne M, Balasubramanian S, Furey W, et al. Optically biased diffusion of single molecules studied by confocal fluorescence microscopy. J Phys Chem A. 1998;102:3160–3167.
  • Chirico G, Fumagalli C, Baldini G. Trapped brownian motion in single-and two-photon excitation fluorescence correlation experiments. J Phys Chem A. 2002;106:2508–2519.
  • Ito S, Yoshikawa H, Masuhara H. Optical patterning and photochemical fixation of polymer nanoparticles on glass substrates. Appl Phys Lett. 2001;78:2566–2568.
  • Sugiura T, Kawata S. Photon-pressure exertion on thin film and small particles in the evanescent field. Bioimaging. 1993;1:1–5.
  • Okamoto K, Kawata S. Radiation force exerted on subwavelength particles near a nanoaperture. Phys Rev Lett. 1999;83:4534.
  • Novotny L, Bian RX, Xie XS. Theory of nanometric optical tweezers. Phys Rev Lett. 1997;79:645.
  • Grigorenko A, Roberts N, Dickinson M, et al. Nanometric optical tweezers based on nanostructured substrates. Nat Photonics. 2008;2:365–370.
  • Righini M, Zelenina AS, Girard C, et al. Parallel and selective trapping in a patterned plasmonic landscape. Nat Phys. 2007;3:477–480.
  • Juan ML, Righini M, Quidant R. Plasmon nano-optical tweezers. Nat Photonics. 2011;5:349.
  • Iida T, Ishihara H. Study of the mechanical interaction between an electromagnetic field and a nanoscopic thin film near electronic resonance. Opt Lett. 2002;27:754–756.
  • Agayan RR, Gittes F, Kopelman R, et al. Optical trapping near resonance absorption. Appl Opt. 2002;41:2318–2327.
  • Iida T, Ishihara H. Theoretical study of the optical manipulation of semiconductor nanoparticles under an excitonic resonance condition. Phys Rev Lett See also, Physical Review Focus 11, Story 6. 2003;90:057403. 2003 Feb 11.
  • Inaba K, Imaizumi K, Katayama K, et al. Optical manipulation of cucl nanoparticles under an excitonic resonance condition in superfluid helium. Phys Status Solidi B. 2006;243:3829–3833.
  • Li H, Zhou D, Browne H, et al. Evidence for resonance optical trapping of individual fluorophore-labeled antibodies using single molecule fluorescence spectroscopy. J Am Chem Soc. 2006;128:5711–5717.
  • Hosokawa C, Yoshikawa H, Masuhara H. Enhancement of biased diffusion of dye-doped nanoparticles by simultaneous irradiation with resonance and nonresonance laser beams. Jpn J Appl Phys. 2006;45:L453.
  • Rodgers T, Shoji S, Sekkat Z, et al. Selective aggregation of single-walled carbon nanotubes using the large optical field gradient of a focused laser beam. Phys Rev Lett. 2008;101:127402.
  • Tsuboi Y, Shoji T, Nishino M, et al. Optical manipulation of proteins in aqueous solution. Appl Surf Sci. 2009;255:9906–9908.
  • Shoji T, Kitamura N, Tsuboi Y. Resonant excitation effect on optical trapping of myoglobin: the important role of a heme cofactor. J Phys Chem C. 2013;117:10691–10697.
  • Shoji T, Tsuboi Y. Plasmonic optical tweezers toward molecular manipulation: tailoring plasmonic nanostructure, light source, and resonant trapping. J Phys Chem Lett. 2014;5:2957–2967.
  • Spesyvtseva SES, Shoji S, Kawata S. Chirality-selective optical scattering force on single-walled carbon nanotubes. Physical Review Applied. 2015;3: 044003.
  • Kudo T, Ishihara H, Masuhara H. Resonance optical trapping of individual dye-doped polystyrene particles with blue-and red-detuned lasers. Opt Express. 2017;25:4655–4664.
  • Fujiwara H, Yamauchi K, Wada T, et al. Optical selection and sorting of nanoparticles according to quantum mechanical properties. Sci Adv. 2021;7:eabd9551.
  • Jackson JD. Classical electrodynamics. John Wiley & Sons, New York; 2007.
  • Iida T, Ishihara H. Theory of resonant radiation force exerted on nanostructures by optical excitation of their quantum states: from microscopic to macroscopic descriptions. Phys Rev B. 2008;77:245319.
  • Cohen-Tanoudji C. Fundamental systems in quantum optics. 1992;1992;:473–480. Proc Les Houches Summer School.
  • Cohen-Tannoudji C, Dupont-Roc J, Grynberg G. Atom-photon interactions. John Wiley & Sons, New York; 1992.
  • Chen J, Ng J, Lin Z, et al. Optical pulling force. Nat Photonics. 2011;5:531–534.
  • Brzobohatỳ O, Karásek V, Šiler M, et al. Experimental demonstration of optical transport, sorting and self-arrangement using a ‘tractor beam’. Nat Photonics. 2013;7:123–127.
  • Ding W, Zhu T, LM Z, et al. Photonic tractor beams: a review. Advanced Photonics. 2019;1:024001.
  • Li H, Cao Y, Zhou LM, et al. Optical pulling forces and their applications. Adv Opt Photonics. 2020;12:288–366.
  • Svoboda K, Block SM. Optical trapping of metallic rayleigh particles. Opt Lett. 1994;19:930–932.
  • Shoji T, Saitoh J, Kitamura N, et al. Permanent fixing or reversible trapping and release of dna micropatterns on a gold nanostructure using continuous-wave or femtosecond-pulsed near-infrared laser light. J Am Chem Soc. 2013;135:6643–6648.
  • Sugiura T, Okada T, Inouye Y, et al. Gold-bead scanning near-field optical microscope with laser-force position control. Opt Lett. 1997;22:1663–1665.
  • Hosokawa C, Yoshikawa H, Masuhara H. Optical assembling dynamics of individual polymer nanospheres investigated by single-particle fluorescence detection. Phys Rev E. 2004;70:061410.
  • Hosokawa C, Yoshikawa H, Masuhara H. Cluster formation of nanoparticles in an optical trap studied by fluorescence correlation spectroscopy. Phys Rev E. 2005;72:021408.
  • Tsuboi Y, Shoji T, Kitamura N, et al. Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon. J Phys Chem Lett. 2010;1:2327–2333.
  • Tanaka Y, Kaneda S, Sasaki K. Nanostructured potential of optical trapping using a plasmonic nanoblock pair. Nano Lett. 2013;13:2146–2150.
  • Shoji T, Mototsuji A, Balčytis A, et al. Optical tweezing and binding at high irradiation powers on black-si. Sci Rep. 2017;7:1–9.
  • Gao D, Ding W, Nieto-Vesperinas M, et al. Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects. Light Sci Appl. 2017;6:e17039–e17039.
  • Bradac C. Nanoscale optical trapping: a review. Adv Opt Mater. 2018;6:1800005.
  • Xin H, Li Y, Liu YC, et al. Optical forces: from fundamental to biological applications. Adv Mater. 2020;32:2001994.
  • Yuan Y, Gu C, Huang S, et al. Advances on studying optical forces: optical manipulation, optical cooling and light induced dynamics. J Phys D Appl Phys. 2020;53:283001.
  • Iida T, Ishihara H. Optical manipulation of nano materials under quantum mechanical resonance conditions. IEICE transactions on electronics. 2005;88: 1809–1816.
  • Iida T, Ishihara H. Force control between quantum dots by light in polaritonic molecule states. Phys Rev Lett. 2006;97:117402.
  • Ajiki H, Iida T, Ishikawa T, et al. Size-and orientation-selective optical manipulation of single-walled carbon nanotubes: a theoretical study. Phys Rev B. 2009;80:115437.
  • Ishihara H, Iida T, Eguchi H Method and apparatus for separating isomers of chiral substance; 2011. US Patent 8,084,266.
  • Wada T, Fujiwara H, Sasaki K, et al. Proposed method for highly selective resonant optical manipulation using counter-propagating light waves. Nanophotonics. 2020;9:3335–3345.
  • Kudo T, Ishihara H. Theory of radiation force exerted on dye-doped molecules irradiated by resonant laser. physica status solidi c. 2011;8: 66–69.
  • Ashkin A, Dziedzic J, Smith P. Continuous-wave self-focusing and self-trapping of light in artificial kerr media. Opt Lett. 1982;7:276–278.
  • Fardad S, Salandrino A, Heinrich M, et al. Plasmonic resonant solitons in metallic nanosuspensions. Nano Lett. 2014;14:2498–2504.
  • Gautam R, Xiang Y, Lamstein J, et al. Optical force-induced nonlinearity and self-guiding of light in human red blood cell suspensions. Light Sci Appl. 2019;8:1–9.
  • Jiang Y, Narushima T, Okamoto H. Nonlinear optical effects in trapping nanoparticles with femtosecond pulses. Nat Phys. 2010;6:1005–1009.
  • Kudo T, Ishihara H. Proposed nonlinear resonance laser technique for manipulating nanoparticles. Phys Rev Lett. 2012;109:87402. [ See also, Physics 5, 95 (2012) of American Physical Society].
  • Kudo T, Ishihara H. Resonance optical manipulation of nano-objects based on nonlinear optical response. Phys Chem Chem Phys. 2013;15:14595–14610.
  • Bavli R, Heller D, Band Y. Nonlinear optical response of three-level systems. J Chem Phys. 1989;91:6714–6727.
  • Chaumet PC, Nieto-Vesperinas M. Time-averaged total force on a dipolar sphere in an electromagnetic field. Opt Lett. 2000;25:1065–1067.
  • Novotny L, Hecht B. Principles of nano-optics. Cambridge University Press, Cambridge; 2012.
  • Kudo T, Ishihara H. Two-color laser manipulation of single organic molecules based on nonlinear optical response. The European Physical Journal B. 2013;86: 98.
  • Hoshina M, Yokoshi N, Okamoto H, et al. Super-resolution trapping: a nanoparticle manipulation using nonlinear optical response. ACS Photonics. 2018;5:318–323.
  • Hell SW, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett. 1994;19:780–782.
  • Hoshina M, Yokoshi N, Ishihara H. Nanoscale rotational optical manipulation. Opt Express. 2020;28:14980–14994.
  • Setoura K, Memon AM, Ito S, et al. Switching of radiation force on optically trapped microparticles through photochromic reactions of pyranoquinazoline derivatives. J Phys Chem C. 2018;122:22033–22040.
  • Kudo T, Yang SJ, Masuhara H. A single large assembly with dynamically fluctuating swarms of gold nanoparticles formed by trapping laser. Nano Lett. 2018;18:5846–5853.