5,097
Views
13
CrossRef citations to date
0
Altmetric
Reviews

Physics and technology of Terahertz quantum cascade lasers

&
Article: 1893809 | Received 23 Oct 2020, Accepted 17 Feb 2021, Published online: 09 Apr 2021

References

  • Tonouchi M. Cutting-edge terahertz technology. Nature Photonics. 2007;1: 97–31.
  • Dhillon SS, Vitiello MS, Linfield EH, et al. The 2017 terahertz science and technology roadmap. Journal of Physics D: Applied Physics. 2017;50:043001.
  • Brown JM, Evenson KM, Zink L. Laser magnetic-resonance measurement of the 3P1−3P2 fine-structure splittings in 17O and 18O. Physical Review A. 1993;48: 3761–3763.
  • Farhoomand J, Blake GA, Frerking MA, et al. Generation of tunable laser sidebands in the far-infrared region. Journal of Applied Physics. 1985;57: 1763–1766.
  • Evenson KM, Jennings DA, Petersen FR. Tunable far-infrared spectroscopy. Applied Physics Letters. 1984;44: 576–578.
  • Odashima H, Zink LR, Evenson KM. Tunable far-infrared spectroscopy extended to 91??THz. Optics Letters. 1999;24: 406–407.
  • Testi L, Zwaan M, Vlahakis C, et al. Science verification datasets on the ALMA science portal. The Messenger. 2012;150:59–61.
  • Leisawitz DT, Danchi WC, DiPirro MJ, et al. Scientific motivation and technology requirements for the SPIRIT and SPECS far-infrared/submillimeter space interferometers. In: Breckinridge JB, Jakobsen P, editors. Astronomical telescopes and instrumentation. Vol. 4013. Proc. SPIE (USA); 2000. p. 36–46.
  • Luhmann NC, Peebles WA. Instrumentation for magnetically confined fusion plasma diagnostics. Rev Sci Instrum. 1984;55:279–331.
  • Jiang Z, Zhang X-C. Terahertz imaging via electro-optic effect. IEEE Trans. Microwave Theory Techn. 1999;47:2644–2650.
  • Köhler R, Tredicucci A, Beltram F, et al. Terahertz semiconductor-heterostructure laser. Nature. 2002;417:156–159.
  • Scalari G, Ajili L, Faist J, et al. Far-infrared (λ≃87 μm) bound-to-continuum quantum-cascade lasers operating up to 90 K. Appl Phys Lett. 2003;82:3165–3167.
  • Williams BS, Callebaut H, Kumar S, et al. 3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation. Appl Phys Lett. 2003;82:1015–1017.
  • Fathololoumi S, Dupont E, Wasilewski ZR, et al. A phonon scattering assisted injection and extraction based terahertz quantum cascade laser. J.Appl. Phys. 2012;111:073111.
  • Kumar S, Chan CWI, Hu Q, et al. Two-well terahertz quantum-cascade laser with direct intrawell-phonon depopulation. Appl Phys Lett. 2009;95:141110.
  • Scalari G, Amanti MI, Walther C, et al. Broadband THz lasing from a photon-phonon quantum cascade structure. Opt Express. 2010;18:8043–8052.
  • Franckié M, Bosco L, Beck M, et al. Two-well quantum cascade laser optimization by non-equilibrium Green’s function modelling. Appl Phys Lett. 2018;112:021104.
  • Ohtani K, Beck M, Scalari G, et al. Terahertz quantum cascade lasers based on quaternary AlInGaAs barriers. Appl Phys Lett. 2013;103:041103.
  • Deutsch C, Krall M, Brandstetter M, et al. High performance InGaAs/GaAsSb terahertz quantum cascade lasers operating up to 142 K. Appl Phys Lett. 2012;101:211117.
  • Brandstetter M, Kainz MA, Zederbauer T, et al. “InAs based terahertz quantum cascade lasers”, Appl. Phys Lett. 2016;108:011109.
  • Deutsch C, Kainz MA, Krall M, et al. High-power growth-robust InGaAs/InAlAs Terahertz Quantum Cascade Lasers. ACS Photonics. 2017;4:957–962.
  • Williams BS. Terahertz quantum-cascade lasers. Nat Photonics. 2007;1:517–525.
  • Williams BS, Kumar S, Callebaut H, et al. Terahertz quantum-cascade laser at λ ≈ 100 μm using metal waveguide for mode confinement. Appl Phys Lett. 2003;83:2124–2126.
  • Vitiello MS, Scamarcio G, Spagnolo V, et al. Thermal properties of THz quantum cascade lasers based on different optical waveguide configurations. Appl Phys Lett. 2006;89:021111.
  • Vitiello MS, Scamarcio G, Spagnolo V. Temperature dependence of thermal conductivity and boundary resistance in THz quantum cascade lasers. IEEE J Sel Top Quantum Electron. 2008;14:431–435.
  • Amanti MI, Fischer M, Walther C, et al. Horn antennas for terahertz quantum cascade lasers. IEEE Electron. Lett. 2007;43:573–574.
  • Maineult W, Gellie P, Andronico A, et al. Metal-metal terahertz quantum cascade laser with micro-transverse-electromagnetic-horn antenna. Appl Phys Lett. 2008;93:183508.
  • Wang F, Kundu I, Chen L, et al. Engineered far-fields of metal-metal terahertz quantum cascade lasers with integrated planar horn structures. Opt Express. 2016;24:2174–2182.
  • Wei Min Lee A, Qin Q, Kumar S, et al. High-power and high-temperature THz quantum-cascade lasers based on lens-coupled metal–metal waveguides. Opt Lett. 2007;32:2840–2842.
  • Castellano F, Li L, Linfield EH, et al. THz waveguide adapters for efficient radiation out-coupling from double metal THz QCLs. Opt Express. 2015;23:5190–5200.
  • Yu N, Wang QJ, Kats MA, et al. Designer spoof surface plasmon structures collimate terahertz laser beams. Nat Mater. 2010;9:730–735.
  • Fan JA, Belkin MA, Capasso F, et al. Surface emitting terahertz quantum cascade laser with a double-metal waveguide. Opt Express. 2006;14:11672–11680.
  • Kumar S, Williams BS, Qin Q, et al. Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides. Opt Express. 2007;15:113–128.
  • Mahler L, Tredicucci A, Beltram F, et al. High-power surface emission from terahertz distributed feedback lasers with a dual-slit unit cell. Appl Phys Lett. 2010;96:191109.
  • Amanti MI, Fischer M, Scalari G, et al. Low-divergence single-mode terahertz quantum cascade laser. Nat Photonics. 2009;3:586–590.
  • Mahler L, Tredicucci A, Beltram F, et al. Vertically emitting microdisk lasers. Nat Photonics. 2009;3:46–49.
  • Mahler L, Amanti MI, Walther C, et al. Distributed feedback ring resonators for vertically emitting terahertz quantum cascade lasers. Opt Express. 2009;17:13031–13039.
  • Mujagić E, Deutsch C, Detz H, et al. Vertically emitting terahertz quantum cascade ring lasers. Appl Phys Lett. 2009;95:011120.
  • Chassagneux Y, Colombelli R, Maineult W, et al. Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions. Nature. 2009;457:174–178.
  • Vitiello MS, Nobile M, Ronzani A, et al. Photonic quasi-crystal terahertz lasers. Nat Commun. 2014;5:5844.
  • Biasco S, Li L, Linfield EH, et al. Multimode, aperiodic terahertz surface-emitting laser resonators. Photonics. 2016;3:32.
  • Masini L, Pitanti A, Baldacci L, et al. Continuous-wave laser operation of a dipole antenna terahertz microresonator. Light Sci. Appl. 2017;6:e17054.
  • Luryi S. Hot electrons in semiconductor devices. In: Balkan N, editor. Hot electrons in semiconductors: physics and devices. Oxford: Clarendon Press; 1998. p. 385–427.
  • Vitiello MS, Scamarcio G, Spagnolo V, et al. Measurement of subband electronic temperatures and population inversion in THz quantum-cascade lasers. Appl Phys Lett. 2005;86:111115.
  • Ferreira R, Bastard G. Evaluation of some scattering times for electrons in unbiased and biased single- and multiple-quantum-well structures. Phys Rev B. 1989;40:1074–1086.
  • Hartig M, Haacke S, Deveaud B, et al. Femtosecond luminescence measurements of the intersubband scattering rate in AlxGa1-xAs/GaAs quantum wells under selective excitation. Phys Rev B. 1996;54:14269–14272.
  • Smet JH, Fonstad CG, Hu Q. Intrawell and interwell intersubband transitions in multiple quantum wells for far‐infrared sources. J. Appl. Phys. 7 1996;9:9305–9320.
  • Gorfinkel VB, Luryi S, Gelmont B. Theory of gain spectra for quantum cascade lasers and temperature dependence of their characteristics at low and moderate carrier concentrations. IEEE J. Quant. Electron. 1996;32:1995–2003.
  • Vitiello MS, Scamarcio G, Spagnolo V. High-performance terahertz quantum cascade lasers operating at 106 μm: analysis of the thermal and electronic properties. J. Nanophotonics. 2007;1:013514.
  • Scamarcio G, Vitiello MS, Spagnolo V, et al. Nanoscale heat transfer in quantum cascade lasers. Physica E. 2008;40:1780–1784.
  • Vitiello MS, Scamarcio G, Spagnolo V, et al. Electron-lattice coupling in bound-to-continuum THz quantum-cascade lasers. Appl Phys Lett. 2006;88:2411091.
  • Vitiello MS, Scamarcio G, Spagnolo V, et al. Subband electronic temperatures and electron-lattice energy relaxation in terahertz quantum cascade lasers with different conduction band offsets. Appl Phys Lett. 2006;89:131114.
  • Gurioli M, Vinattieri A, Colocci M, et al. Temperature dependence of the radiative and nonradiative recombination time in GaAs/AlxGa1−xAs quantum-well structures. Phys Rev B. 1991;44:3115–3124.
  • Callebaut H, Kumar S, Williams BS, et al. Analysis of transport properties of tetrahertz quantum cascade lasers. Appl Phys Lett. 2003;83:207–209.
  • Vitiello MS, Scamarcio G, Faist J, et al. Probing quantum efficiency by laser-induced hot-electron cooling. Appl Phys Lett. 2009;94:021115.
  • Sirtori C, Capasso F, Faist J, et al. Resonant tunneling in quantum cascade lasers. IEEE J Quantum Electron. 1998;34:1722–1729.
  • Patimisco P, Scamarcio G, Santacroce MV, et al. Electronic temperatures of terahertz quantum cascade active regions with phonon scattering assisted injection and extraction scheme. Opt Express. 2013;21:10172–10181.
  • Indjin D, Harrison P, Kelsall RW, et al. Mechanisms of temperature performance degradation in terahertz quantum-cascade lasers. Appl Phys Lett. 2003;82:1347–1349.
  • Terrazi R, Faist J. A density matrix model of transport and radiation in quantum cascade lasers. New J Phys. 2010;12:033045.
  • Kumar S, Hu Q. Coherence of resonant-tunneling transport in terahertz quantum-cascade lasers. Phys Rev B. 2009;80:245316.
  • Dupont E, Fathololoumi S, Liu HC. Simplified density matrix model applied to three-well terahertz quantum cascade lsers. Phys Rev B. 2010;81:205311.
  • Lee SC, Wacker A. Nonequilibrium Greens function theory for transport and gain properties of quantum cascade structures. Phys Rev B. 2002;66:245314.
  • Kubis T, Yeh C, Vogl P, et al. Theory of nonequilibrium quantum transport and energy dissipation in terahertz quantum cascade lasers. Phys Rev B. 2009;79:195323.
  • Callebaut H, Kumar S, Williams BS, et al. Analysis of transport properties of terahertz quantum cascade lasers. Appl Phys Lett. 2003;83:207–209.
  • Callebaut H, Hu Q. Importance of coherence for electron transport in terahertz quantum cascade lasers. J Appl Phys. 2005;98:104505.
  • Jirauschek C, Lugli P. Monte-Carlo-based spectral gain analysis for terahertz quantum cascade lasers. J.Appl. Phys. 2009;105:123102.
  • Jirauschek C, Lugli P. Limiting factors for high temperature operation of THz quantum cascade lasers. Phys. Status Solidi (C). 2008;5:221.
  • Fathololoumi S, Dupont E, Chan CWI, et al. Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling. Opt Express. 2012;20:3866.
  • Wienold M, Röben B, Schrottke L, et al. High-temperature, continuous-wave operation of terahertz quantum-cascade lasers with metal-metal waveguides and third-order distributed feedback. Opt Express. 2014;22:3334–3348.
  • Kainz MA, Semtsiv MP, Tsianos G, et al. Thermoelectric-cooled terahertz quantum cascade lasers. Opt Express. 2019;27:20688.
  • Lindskog M, Winge DO, Wacker A. Injection schemes in THz quantum cascade lasers under operation. In Proc. SPIE. 2013;8846:884603–884603–10.
  • Chassagneux Y, Wang QJ, Khanna SP, et al. Limiting factors to the temperature performance of THz quantum cascade lasers based on the resonant-phonon depopulation scheme. IEEE Trans. Terahertz Sci. Technol. 2012;2:83.
  • Li H, Cao JC, Tan ZY, et al. Temperature performance of terahertz quantum-cascade lasers: experiment versus simulation. J Phys D: Appl Phys. 2009;42:025101.
  • Albo A, Hu Q. Investigating temperature degradation in THz quantum cascade lasers by examination of temperature dependence of output power. Appl Phys Lett. 2015;106:131108.
  • Vitiello MS, Scalari G, Williams B, et al. Quantum cascade lasers: 20 years of challenges. Opt Express. 2015;23:5167.
  • Nelander R, Wacker A. Temperature dependence and screening models in quantum cascade structures. Appl Phys Lett. 2008;92:081102.
  • Khurgin JB. Inhomogeneous origin of the interface roughness broadening of intersubband transitions. Appl Phys Lett. 2008;93:091104.
  • Matyas A, Lugli P, Jirauschek C. Role of collisional broadening in Monte Carlo simulations of terahertz quantum cascade lasers. Appl Phys Lett. 2013;102:011101.
  • Albo A, Hu Q. Carrier leakage into the continuum in diagonal GaAs/Al0.15GaAs terahertz quantum cascade lasers. Appl Phys Lett. 2015;107:241101.
  • Wacker A, Lindskog M, Winge D. Nonequilibrium Green’s function model for simulation of quantum cascade laser devices under operating conditions. IEEE J Sel Top Quantum Electron. 2013;19:1200611.
  • Winge DO, Franckie M, Wacker A. Simulating terahertz quantum cascade lasers: trends from samples from different labs. J Appl Phys. 2016;120:114302.
  • Albo A, Flores YV, Hu Q, et al. Two-well terahertz quantum cascade lasers with suppressed carrier leakage. Appl Phys Lett. 2017;111:111107.
  • Bosco L, Franckié M, Scalari G, et al. Thermoelectrically cooled THz quantum cascade laser operating up to 210 K. Appl Phys Lett. 2019;115:010601.
  • Hu Q, IQCLSW 2020 – September 7, 2020. Added in proof: Khalatpour A, Paulsen AK, Deimert C, et al. High-power portable THz laser systems. Nat. Photonics 2021;15:16-20.
  • Lu Q, Wu D, Sengupta S, et al. Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers. Sci Rep. 2016;6:23595.
  • Kogelnik H, Shank CV. Coupled‐wave theory of distributed feedback lasers. J Appl Phys. 1972;43:2327.
  • Mahler L, Kohler R, Tredicucci A, et al. Single-mode operation of terahertz quantum cascade lasers with distributed feedback resonators. Appl Phys Lett. 2004;84:5446.
  • Ajili L, Faist J, Beere H, et al. Loss-coupled distributed feedback far-infrared quantum cascade lasers. Electron Lett. 2005;41:419–421.
  • Mahler L, Tredicucci A, Köhler R, et al. High-performance operation of single-mode terahertz quantum cascade lasers with metallic gratings. Appl Phys Lett. 2005;87:181101.
  • Marshall O, Alton J, Worrall C, et al. Distributed Feedback THz quantum-cascade lasers using thin double-metallic gratings. IEEE Phot. Tech. Lett. 2008;20:857–859.
  • Demichel O, Mahler L, Losco T, et al. Surface plasmon photonic structures in terahertz quantum cascade lasers. Opt Express. 2006;14:5335–5345.
  • Williams B, Kumar S, Hu Q, et al. Distributed-feedback terahertz quantum-cascade lasers with laterally corrugated metal waveguides. Opt Lett. 2005;30:2909–2911.
  • Mahler L, Tredicucci A. Photonic engineering of surface‐emitting terahertz quantum cascade lasers.Laser Photonics Rev. 2011;5:647-658.
  • Amanti MI, Scalari G, Castellano F, et al. Low divergence Terahertz photonic-wire laser. Opt Express. 2010;18:6390.
  • Yu T, Kao QH, Reno JL. Perfectly phase-matched third-order distributed feedback terahertz quantum-cascade lasers. Opt Lett. 2010;37:2070–2072.
  • Kao T-Y, Cai X, Lee AWM, et al. Antenna coupled photonic wire lasers. Opt Express. 2015;23:17091.
  • Khalatpour A, Reno JL, Kherani NP, et al. Unidirectional photonic wire laser. Nature Photon. 2017;11:555.
  • Castellano F, Zanotto S, Li LH, et al. Distributed feedback terahertz frequency quantum cascade lasers with dual periodicity gratings. Appl Phys Lett. 2015;106:011103.
  • Biasco S, Garrasi K, Castellano F, et al. Continuous-wave highly-efficient low-divergence terahertz wire lasers. Nat Commun. 2018;9:1122.
  • Xu G, Colombelli R, Khanna SP, et al. Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures. Nat Commun. 2012;3:952.
  • Kao T-Y, Hu Q, Reno JL. Phase-locked arrays of surface-emitting terahertz quantum-cascade lasers. Appl Phys Lett. 2010;96:101106.
  • Kao T-Y, Reno JL, Hu Q. Phase-locked laser arrays through global antenna mutual coupling. Nature Photon. 2016;10:541.
  • Xu L, Curwen CA, Hon PWC, et al. Metasurface external cavity laser. Appl Phys Lett. 2015;107:221105.
  • Curwen CA, Reno,and JL, Williams BS. Terahertz quantum cascade VECSEL with watt-level output power. Appl Phys Lett. 2018;113:011104.
  • Biasco S, Ciavatti A, Li L, et al. Highly efficient surface-emitting semiconductor lasers exploiting quasi-crystalline distributed feedback photonic patterns. Light Science and Applications. 2020;9:1–11.
  • Schoenhuber S, Brandstetter M, Hisch T, et al. Random lasers for broadband directional emission. Optica. 2016;3:1035–1038.
  • Zeng Y, Liang G, Liang HK, et al. Designer multimode localized random lasing in amorphous lattices at terahertz frequencies. ACS Photonics. 2016;3:2453–2460.
  • Zeng Y, Liang G, Qiang B, et al. Two-dimensional multimode terahertz random lasing with metal pillars. ACS Photonics. 2018;5:2928–2935.
  • Salemi L, Garrasi K, Biasco S, et al. One-dimensional, surface emitting, disordered Terahertz lasers. APL Photonics. 2020;5:036102.
  • Biasco S, Beere HE, Ritchie DA, et al. Frequency-tunable continuous-wave random lasers at terahertz frequencies. Light Science and Applications. 2019;8:1–13.
  • Wiersma DS. The physics and applications of random lasers. Nat Phys. 2008;4:359–367.
  • Cao H. Review on latest developments in random lasers with coherent feedback. J. Phys. A: Math. Gen. 2005;38:10497–10535.
  • Andreasen J, Sebbah P, Vanneste C. Nonlinear effects in random lasers. J Opt Soc Am B. 2011;28:2947–2955.
  • Vitiello MS, Tredicucci A. Tunable emission in THz quantum cascade lasers. IEEE Transaction of Terahertz Science and Technology. 2011;1:76.
  • Qin Q, Williams BS, Kumar S, et al. Tuning a terahertz wire laser. Nature Photon. 2009;3:732–736.
  • Curwen C, Reno JL, Williams BS. Broadband continuous single-mode tuning of a short-cavity quantum-cascade VECSEL. Nat Photonics. 2019;13:855–859.
  • Qin Q, Reno JL, Hu Q. MEMS-based tunable terahertz wire-laser over 330 GHz. Opt Lett. 2011;36:692–694.
  • Mahler L, Tredicucci A, Beltram F, et al. Tuning a distributed feedback laser with a coupled microcavity. Opt Express. 2010;18:19185–19191.
  • Castellano F, Bianchi V, Li L, et al. Tuning a microcavity-coupled terahertz laser. Appl Phys Lett. 2015;107:261108.
  • Kundu I, Freeman JR, Dean P, et al. Wideband electrically controlled vernier frequency tunable terahertz quantum cascade laser. ACS Photonics. 2020;7:765.
  • Rosch M, Scalari G, Beck M, et al. Octave-spanning semiconductor laser. Nat Photonics. 2015;9:42–47.
  • Garrasi K, Mezzapesa FP, Salemi L, et al. High dynamic range, heterogeneous, terahertz quantum cascade lasers featuring thermally- tunable frequency comb operation over a broad current range. ACS Photonics. 2019;6:73–78.
  • Consolino L, Nafa M, Cappelli F, et al. Fully phase-stabilized quantum cascade laser frequency comb. Nat Commun. 2019;10:2938.
  • Burghoff D, Kao T-Y, Han N, et al. Terahertz laser frequency combs. Nat Photonics. 2014;8:462–467.
  • Forrer A, Franckié M, Stark D, et al. Photon-driven broadband emission and frequency comb RF injection locking in THz quantum cascade lasers. ACS Photon. 2020;7:784–791.
  • Di Gaspare A, Viti L, Beere HE, et al. Homogeneous quantum cascade lasers operating as terahertz frequency combs over their entire operational regime. Nanophotonics. 2020;1. DOI:https://doi.org/10.1515/nanoph-2020-0378
  • Rösch M, Beck M, Süess MJ, et al. Heterogeneous terahertz quantum cascade lasers exceeding 1.9 THz spectral bandwidth and featuring dual comb operation. Nanophotonics. 2018;7:237–242.
  • Mezzapesa FP, Pistore V, Garrasi K, et al. Tunable and compact dispersion compensation of broadband THz quantum cascade laser frequency combs. Opt Express. 2019;27:20231–20240.
  • Yang Y, Burghoff D, Reno J, et al. Achieving comb formation over the entire lasing range of quantum cascade lasers. Opt Lett. 2017;42:3888–3891.
  • Wang F, Nong H, Fobbe T, et al. Short Terahertz pulse generation from a dispersion compensated modelocked semiconductor laser. Laser Photon Rev. 2017;11:1–9.
  • Burghoff D, Yang Y, Hayton DJ, et al. Evaluating the coherence and time-domain profile of quantum cascade laser frequency combs. Opt Express. 2015;23:1190.
  • Han Z, Ren J, Burghoff D. Sensitivity of SWIFT spectroscopy. Opt Express. 2020;28:6002.
  • Cappelli F, Consolino L, Campo G, et al. Retrieval of phase relation and emission profile of quantum cascade laser frequency combs. Nat Photonics. 2019;13:562–568.
  • Consolino L, Nafa M, De Regis M, et al. Quantum cascade laser based hybrid dual comb spectrometer. Communication Physics. 2020;3:1–9.
  • Vitiello MS, Consolino L, Inguscio M, et al. Toward new frontiers for quantum cascade laser frequency combs. Nanophotonics. 2020;1. DOI:https://doi.org/10.1515/nanoph-2020-0429.
  • Schawlow A, Townes CH. Infrared and optical masers. Phys Rev. 1958;112:1940–1949.
  • Henry C. Line broadening of semiconductor lasers. In: Yamamoto Y, editor. Coherence, amplification, and quantum effects in semiconductor lasers. New York: John-Wiley & Sons; 1991. p. 5–76.
  • Yamanishi M, Edamura T, Fujita K, et al. Theory of the intrinsic linewidth of quantum-cascade lasers: hidden reason for the narrow linewidth and line-broadening by thermal photons. IEEE J Quantum Electron. 2008;44:12–29.
  • Vitiello MS, Consolino L, Bartalini S, et al. Quantum-limited frequency fluctuations in a terahertz laser. Nat Photonics. 2012;6:525–528.
  • Bartalini S, Consolino L, Cancio P, et al. Frequency-comb-assisted Terahertz quantum cascade laser spectroscopy. Phys Rev X. 2014;4:021006.