2,630
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Biofunctional conducting polymers: synthetic advances, challenges, and perspectives towards their use in implantable bioelectronic devices

, , , &
Article: 1899850 | Received 21 Dec 2020, Accepted 03 Mar 2021, Published online: 09 Jul 2021

References

  • Fitzpatrick D. Chapter 1 - Retinal Implants. In: Fitzpatrick D, editor. In Implantable Electronic Medical Devices. Academic Press: Oxford; 2015. p. 1–35.
  • McCaig CD, Song B, Rajnicek AM. Electrical dimensions in cell science. J Cell Sci. 2009;122:4267–4276.
  • Mathews J, Levin M. The body electric 2.0: recent advances in developmental bioelectricity for regenerative and synthetic bioengineering. Curr Opin Biotechnol. 2018;52:134–144.
  • Löffler S, Melican K, Nilsson KPR, et al. Organic bioelectronics in medicine. J Intern Med. 2017;282:24–36.
  • Cingolani E, Goldhaber JI, Marbán E. Next-generation pacemakers: from small devices to biological pacemakers. Nat Rev Cardiol. 2018;15:139–150.
  • Stevenson I, Voskoboinik A. Cardiac rhythm management devices. Aust J Gen Pract. 2018;47:264–271.
  • Zeng F, Rebscher S, Harrison W, et al. Integration, and Evaluation. IEEE Rev Biomed Eng. 2008;1:115–142.
  • Kozai TDY, Jaquins-Gerstl AS, Vazquez AL, et al. Brain tissue responses to neural implants impact signal sensitivity and intervention strategies. ACS Chem Neurosci. 2015;6:48–67.
  • Wilks S, Richardson-Burn S, Hendricks J, et al. Poly(3,4-ethylene dioxythiophene) (PEDOT) as a micro-neural interface material for electrostimulation. Front Neuroeng. 2009;2:7.
  • Wood Mark A, Ellenbogen Kenneth A. Cardiac pacemakers from the patient’s perspective. Circulation. 2002;105:2136–2138.
  • Manolis AS, Maounis T, Koulouris S, et al. “Real life” longevity of implantable cardioverter-defibrillator devices. Clin Cardiol. 2017;40:759–764.
  • Kastellorizios M, Tipnis N, Burgess DJ. Foreign body reaction to subcutaneous implants. In: Lambris JD, Ekdahl KN, Ricklin D, et al., editors. Immune Responses to Biosurfaces. Switzerland: Springer International Publishing; 2015. p. 93–108.
  • Someya T, Bao Z, Malliaras GG. The rise of plastic bioelectronics. Nature. 2016;540:379–385.
  • Khalili AA, Ahmad MRA. Review of cell adhesion studies for biomedical and biological applications. Int J Mol Sci. 2015;16:18149–18184.
  • Lotfi M, Nejib M, Naceur M. Cell adhesion to biomaterials: concept of biocompatibility. In: Pignatello R, editor. Advances in biomaterials science and biomedical applications. IntechOpen; 2013. DOI: https://doi.org/10.5772/53542.
  • Ahmed W, Elhissi A, Jackson MJ, et al. 2 - Precision machining of medical devices. In: Davim JP, editor. The design and manufacture of medical devices. Woodhead Publishing; 2012. p. 59–113.
  • Chandorkar YK,R, Basu B. The foreign body response demystified. ACS Biomater Sci Eng. 2018;5:19–44.
  • Fang Y, Meng L, Prominski A, et al. Recent advances in bioelectronics chemistry. Chem Soc Rev. 2020;49:7978–8035.
  • Khodagholy D, Doublet T, Quilichini P, et al. In vivo recordings of brain activity using organic transistors. Nat Commun. 2013;4:1575.
  • Majid A. Electroceuticals: advances in electrostimulation therapies. 2017. p. 1–346.
  • Spedden E, White JD, Naumova EN, et al. Elasticity maps of living neurons measured by combined fluorescence and atomic force microscopy. Biophys J. 2012;103:868–877.
  • Koessler L, Colnat-Coulbois S, Cecchin T, et al. In-vivo measurements of human brain tissue conductivity using focal electrical current injection through intracerebral multicontact electrodes. Hum Brain Mapp. 2017;38:974–986.
  • Budday S, Nay R, De Rooij R, et al. Mechanical properties of gray and white matter brain tissue by indentation. J Mech Behav Biomed Mater. 2015;46:318–330.
  • Tyler WJ. The mechanobiology of brain function. Nat Rev Neurosci. 2012;13:867–878.
  • Ozawa H, Matsumoto T, Ohashi T, et al. Mechanical properties and function of the spinal pia mater. J Neurosurg Spine. 2004;1:122–127.
  • Howell B, Lad S, Grill W. Evaluation of intradural stimulation efficiency and selectivity in a computational model of spinal cord stimulation. PLoS One. 2014;9:e114938.
  • Zuberi M, Liu-Snyder P, Ul Haque A, et al. Large naturally-produced electric currents and voltage traverse damaged mammalian spinal cord. J Biol Eng. 2008;2:17.
  • Sovilj S, Magjarevic R, Lovell N, et al. 3D model of whole heart electrical activity and 12-lead ECG generation. Comput Math Methods Med. 2013;2013:134208.
  • Jacot JG, Martin JC, Hunt DL. Mechanobiology of cardiomyocyte development. J Biomech. 2010;43:93–98.
  • Hasan A, Ragaert K, Swieszkowski W, et al. Biomechanical properties of native and tissue engineered heart valve constructs. J Biomech. 2014;47:1949–1963.
  • Balmer TW, Vesztergom S, Broekmann P, et al. Characterization of the electrical conductivity of bone and its correlation to osseous structure. Sci Rep. 2018;8:8601.
  • Rho JY, Ashman RB, Turner CH. Young’s modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. J Biomech. 1993;26:111–119.
  • Homma K, Du Y, Shimizu Y, et al. Ossicular resonance modes of the human middle ear for bone and air conduction. J Acoust Soc Am. 2009;125:968–979.
  • Simsek FG, Ϝlgen Y In Electrical impedance of human blood with and without anticoagulants in the β-dispersion region, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012 Aug.-1 Sept 28, San Diego, CA, USA; 2012; 3262–3264.
  • Kamat DK, Bagul D, Patil PM. Blood glucose measurement using bioimpedance technique. Adv Electron. 2014;2014:406257.
  • Chen Y, Kim Y-S, Tillman BW, et al. Advances in materials for recent low-profile implantable bioelectronics. Materials (Basel). 2018;11:522.
  • Ludwig KA, Uram JD, Yang J, et al. Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film. J Neural Eng. 2006;3:59–70.
  • Ludwig KA, Langhals NB, Joseph MD, et al. Poly(3,4-ethylenedioxythiophene) (PEDOT) polymer coatings facilitate smaller neural recording electrodes. J Neural Eng. 2011;8:014001.
  • Nezakati T, Seifalian A, Tan A, et al. Conductive polymers: opportunities and challenges in biomedical applications. Chem Rev. 2018;118:6766–6843.
  • Inal S, Rivnay J, Suiu A-O, et al. Conjugated Polymers in Bioelectronics. Acc Chem Res. 2018;51:1368–1376.
  • Zeglio E, Rutz AL, Winkler TE, et al. Conjugated polymers for assessing and controlling biological functions. Adv Mater. 2019;31:1806712.
  • Fidanovski K, Mawad D. Conjugated polymers in bioelectronics: addressing the interface challenge. Adv Healthc Mater. 2019;8:1900053.
  • Simon D, Gabrielsson E, Tybrandt K, et al. Bridging the signaling gap between biology and technology. Chem Rev. 2016;116:116.
  • Lee S, Ozlu B, Eom T, et al. Electrically conducting polymers for bio-interfacing electronics: from neural and cardiac interfaces to bone and artificial tissue biomaterials. Biosens Bioelectron. 2020;170:112620.
  • Runsewe D, Betancourt T, Irvin JA. Biomedical Application of Electroactive Polymers in Electrochemical Sensors: a Review. Materials (Basel). 2019;12:2629.
  • Guimard NK, Gomez N, Schmidt CE. Conducting polymers in biomedical engineering. Prog Polym Sci. 2007;32:876–921.
  • Da Silva AC, Córdoba De Torresi SI. Advances in conducting, biodegradable and biocompatible copolymers for biomedical applications. Front Mater. 2019;6:98.
  • Kenry LB. Recent advances in biodegradable conducting polymers and their biomedical applications. Biomacromolecules. 2018;19:1783–1803.
  • Mantione D, Del Agua I, Sanchez-Sanchez A, et al. 3,4-Ethylenedioxythiophene (PEDOT) derivatives: innovative conductive polymers for bioelectronics. Polymers. 2017;9:354.
  • Hui Y, Bian C, Xia S, et al. Synthesis and electrochemical sensing application of poly(3,4-ethylenedioxythiophene)-based materials: a review. Anal Chim Acta. 2018;1022:1–19.
  • Strakosas X, Wei B, Martin DC, et al. Biofunctionalization of polydioxythiophene derivatives for biomedical applications. J Mater Chem B. 2016;4:4952–4968.
  • Zare EN, Makvandi P, Ashtari B, et al. Progress in conductive polyaniline-based nanocomposites for biomedical applications: a review. J Med Chem. 2020;63:1–22.
  • Baek P, Voorhaar L, Barker D, et al. Approach to conjugated polymers with biomimetic properties. Acc Chem Res. 2018;51:1581–1589.
  • Morin P-O, Bura T, Leclerc M. Realizing the full potential of conjugated polymers: innovation in polymer synthesis. Mater Horiz. 2016;3:11–20.
  • Pankow RM, Thompson BC. The development of conjugated polymers as the cornerstone of organic electronics. Polymer. 2020;207:122874.
  • Cui X, Wiler J, Dzaman M, et al. In vivo studies of polypyrrole/peptide coated neural probes. Biomaterials. 2003;24:777–787.
  • Kim S, Jeong J-O, Lee S, et al. Effective gamma-ray sterilization and characterization of conductive polypyrrole biomaterials. Sci Rep. 2018;8:3721.
  • George PM, Lyckman AW, LaVan DA, et al. Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics. Biomaterials. 2005;26:3511–3519.
  • Jiang X, Marois Y, Traoré A, et al. Tissue reaction to polypyrrole-coated polyester fabrics: an in vivo study in rats. Tissue Eng. 2002;8:635–647.
  • Wang X, Gu X, Yuan C, et al. Evaluation of biocompatibility of polypyrrole in vitro and in vivo. J Biomed Mater Res A. 2004;68:411–422.
  • Egeland BM, Urbanchek MG, Peramo A, et al. In vivo electrical conductivity across critical nerve gaps using poly(3,4-ethylenedioxythiophene)-coated neural interfaces. Plast Reconstr Surg. 2010 Dec;126:1865–1873.
  • Mawad D, Mansfield C, Lauto A, et al. Conducting polymer with enhanced electronic stability applied in cardiac models. Sci Adv. 2016;2:e1601007.
  • Cea C, Spyropoulos GD, Jastrzebska-Perfect P, et al. Enhancement-mode ion-based transistor as a comprehensive interface and real-time processing unit for in vivo electrophysiology. Nat Mater. 2020;19:679–686.
  • Khodagholy D, Gelinas JN, Zhao Z, et al. Organic electronics for high-resolution electrocorticography of the human brain. Sci Adv. 2016;2:e1601027.
  • Valentová H, Stejskal J. Mechanical properties of polyaniline. Synth Met. 2010;160:832–834.
  • Ziadan KM, Saadon WT. Study of the Electrical Characteristics of Polyaniline Prepared by Electrochemical Polymerization. Energy Procedia. 2012;19:71–79.
  • Shen J, Fujita K, Matsumoto T, et al. Thermal, and electrical properties of flexible polythiophene with disiloxane side chains. Macromol Chem Phys. 2017;218:1700197.
  • Hynynen J, Kiefer D, Yu L, et al. Conductivity of molecularly p-doped poly(3-hexylthiophene) through understanding the correlation with solid-state order. Macromolecules. 2017;50:8140–8148.
  • Zare M, Sharif M, Kashkooli A. Study on the effect of polypyrrole and polypyrrole/graphene oxide nanoparticles on the microstructure, electrical and tensile properties of polypropylene nanocomposites. Polym Plast Technol Eng. 2014;53:1392–1401.
  • Hua G, Li D. Generic relation between the electron work function and Young’s modulus of metals. Appl Phys Lett. 2011;99:041907.
  • Yano H, Kudo K, Marumo K, et al. Fully soluble self-doped poly(3,4-ethylenedioxythiophene) with an electrical conductivity greater than 1000 S cm−1. Sci Adv. 2019;5:eaav9492.
  • Wallace G, Teasdale P, Spinks, G, et al. Conductive electroactive polymers: intelligent polymer systems. Boca Raton, Florida: CRC Press LLC; 2009.
  • Reynolds JR, Thompson BC, Skotheim TA. Handbook of conducting polymers: conjugated polymers, perspective, theory, and new materials. Boca Raton, Florida: CRC Press LLC; 2019.
  • Blueocean R, Kim Y, Electrical YH. Electrochemical properties of conducting polymers. Polymers. 2017;9:150.
  • Fan X, Nie W, Tsai H, et al. PEDOT:PSS for flexible and stretchable electronics: modifications, strategies, and applications. Adv Sci. 2019;6:1900813.
  • Sultana N, Chang HC, Jefferson S, et al. Application of conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) polymers in potential biomedical engineering. J Pharm Investig. 2020;50:437–444.
  • Ahonen HJ, Lukkari J, Kankare J. n- and p-doped poly(3,4-ethylenedioxythiophene):  two electronically conducting states of the polymer. Macromolecules. 2000;33:6787–6793.
  • De Leeuw DM, Simenon MMJ, Brown AR, et al. Stability of n-type doped conducting polymers and consequences for polymeric microelectronic devices. Synth Met. 1997;87:53–59.
  • MacDiarmid A, Mammone R, Kaner R, et al. The concept of `doping’ of conducting polymers: the role of reduction potentials philos. Trans R Soc A. 1985;314:3–15.
  • Giovannitti A, Nielsen C, Sbircea D-T, et al. N-type organic electrochemical transistors with stability in water. Nat Commun. 2016;7:13066.
  • Paterson A, Savva A, Wustoni S, et al. Water stable molecular n-doping produces organic electrochemical transistors with high transconductance and record stability. Nat Commun. 2020;11:3004.
  • Ohayon D, Nikiforidis G, Savva A, et al. Biofuel powered glucose detection in bodily fluids with an n-type conjugated polymer. Nat Mater. 2020;19:456–463.
  • Harman DG, Gorkin R, Stevens L, et al. Poly (3, 4-ethylenedioxythiophene): dextran sulfate (PEDOT: DS)–A highly processable conductive organic biopolymer. Acta Biomater. 2015;14:33–42.
  • Huchet L, Akoudad S, Roncali J. Electrosynthesis of highly electroactive tetrathiafulvalene-derivatized polythiophenes. Adv Mater. 1998;10:541–545.
  • Qu J, Garabedian N, Burris DL, et al. Durability of Poly(3,4-ethylenedioxythiophene) (PEDOT) films on metallic substrates for bioelectronics and the dominant role of relative shear strength. J Mech Behav Biomed Mater. 2019;100:103376.
  • Stefan, M. C.; Javier, A. E.; Osaka, I.; McCullough, R. D. Grignard Metathesis Method (GRIM). Toward a universal method for the synthesis of conjugated polymers. Macromolecules. 2009;42:30–32.
  • Sheina E, Stefan M, McCullough R. Grignard metathesis (GRIM) method for the synthesis of regioregular poly(3-alkylthiophene)s with well-defined molecular weights. Polym Prepr. 2005;46:660–661.
  • Amna B, Siddiqi HM, Hassan A, et al. Recent developments in the synthesis of regioregular thiophene-based conjugated polymers for electronic and optoelectronic applications using nickel and palladium-based catalytic systems. RSC Adv. 2020;10:4322–4396.
  • Petsagkourakis I, Kim N, Tybrandt K, et al. Poly(3,4‐ethylenedioxythiophene): chemical synthesis, transport properties, and thermoelectric devices. Adv Electron Mater. 2019;5:1800918.
  • Gueye MN, Carella A, Faure-Vincent J, et al. Progress in understanding structure and transport properties of PEDOT-based materials: a critical review. Pro Mater Sci. 2020;108:100616.
  • Poater J, Casanovas J, Solà M, et al. Examining the Planarity of Poly(3,4-ethylenedioxythiophene): consideration of Self-Rigidification, Electronic, and Geometric Effects. J Phys Chem A. 2010;114:1023–1028.
  • Modarresi M, Mehandzhiyski A, Fahlman M, et al. Microscopic understanding of the granular structure and the swelling of PEDOT:PSS. Macromolecules. 2020;53:6267–6278.
  • Dijk G, Rutz AL, Malliaras GG. Stability of PEDOT:PSS-coated gold electrodes in cell culture conditions. Adv Mater Technol. 2020;5:1900662.
  • Wen Y, Xu J. Scientific importance of water‐processable PEDOT–PSS and preparation, challenge and new application in sensors of its film electrode: a review. J Polym Sci A Polym Chem. 2017;55:1121–1150.
  • Shi H, Liu C, Jiang Q, et al. Effective approaches to improve the electrical conductivity of PEDOT:PSS: a review. Adv Electron Mater. 2015;1:1500017.
  • Sun K, Zhang S, Li P, et al. Review on application of PEDOTs and PEDOT:PSS in energy conversion and storage devices. J Mater Sci Mater Electron. 2015;26:4438–4462.
  • Luo X, Weaver CL, Zhou DD, et al. Highly stable carbon nanotube doped poly(3,4-ethylenedioxythiophene) for chronic neural stimulation. Biomaterials. 2011;32:5551–5557.
  • Qu J, Ouyang L, Kuo -C-C, et al. Stiffness, strength and adhesion characterization of electrochemically deposited conjugated polymer films. Acta Biomater. 2016;31:114–121.
  • Chen C-H, Torrents A, Kulinsky L, et al. Mechanical characterizations of cast Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate)/Polyvinyl Alcohol thin films. Synth Met. 2011;161:2259–2267.
  • Rohtlaid K, Nguyen G, Soyer C, et al. Poly(3,4‐ethylenedioxythiophene):Poly(styrene sulfonate)/polyethylene oxide electrodes with improved electrical and electrochemical properties for soft microactuators and microsensors. Adv Electron Mater. 2019;5:1800948.
  • Wu B, Cao B, Taylor IM, et al. Facile synthesis of a 3,4-ethylene-dioxythiophene (EDOT) derivative for ease of bio-functionalization of the conducting polymer PEDOT. Front Chem. 2019;7: 178–178.
  • Pospisil P, Tomsik E, Nešpůrek S, et al. Chemical oxidation of EDOT-MeOH monomer. Influence of the polymerization process on the electrical properties of PEDOT-MeOH. J Nanostructured Polym Nanocomposites. 2013;9:21–25.
  • Cui X, Martin DC. Electrochemical deposition and characterization of poly(3,4-ethylenedioxythiophene) on neural microelectrode arrays. Sens Actuators B Chem. 2003;89:92–102.
  • Inal S, Hama A, Ferro M, et al. Conducting polymer scaffolds for hosting and monitoring 3D cell culture. Adv Biosyst. 2017;1:1700052.
  • Aufan MR, Sumi Y, Kim S, et al. Facile synthesis of conductive polypyrrole wrinkle topographies on polydimethylsiloxane via a swelling–deswelling process and their potential uses in tissue engineering. ACS Appl Mater Interfaces. 2015;7:23454–23463.
  • Liu Y, Yin P, Chen J, et al. Composite materials for therapeutic implantations: from advanced drug delivery system to minimally invasive electronics. Int J Polym Sci. 2020;2020:5659682.
  • Lee JH, Jung HW, Kang I-K, et al. Cell behaviour on polymer surfaces with different functional groups. Biomaterials. 1994;15:705–711.
  • Hasan A, Pattanayek SK, Pandey LM. Effect of functional groups of self-assembled monolayers on protein adsorption and initial cell adhesion. ACS Biomater Sci Eng. 2018;4:3224–3233.
  • Lee JY, Schmidt CE. Amine-functionalized polypyrrole: inherently cell adhesive conducting polymer. J Biomed Mater Res A. 2015;103:2126–2132.
  • Quaternary Ammonium BF. Compounds: simple in structure, complex in application. Top Curr Chem. 2019;377:14.
  • Wu J-G, Wei S-C, Luo S-C. In situ probing unusual protein adsorption behavior on electrified zwitterionic conducting polymers. Adv Mater Interfaces. 2020;7:2000470.
  • Cao B, Lee C-J, Zeng Z, et al. Electroactive poly(sulfobetaine-3,4-ethylenedioxythiophene) (PSBEDOT) with controllable antifouling and antimicrobial properties. Chem Sci. 2016;7:1976–1981.
  • Lee C-J, Wang H, Young M, et al. Structure-function study of poly(sulfobetaine 3,4-ethylenedioxythiophene) (PSBEDOT) and its derivatives. Acta Biomater. 2018;75:161–170.
  • Singha P, Locklin J, Handa H. A review of the recent advances in antimicrobial coatings for urinary catheters. Acta Biomater. 2017;50:20–40.
  • Patil AO, Ikenoue Y, Basescu N, et al. Self-doped conducting polymers. Synth Met. 1987;20:151–159.
  • Freund MS, Deore BA. Self-doped conducting polymers. US: John Wiley & Sons (UK); 2007. p. 338.
  • Deore BA, Hachey S, Freund MS. Electroactivity of electrochemically synthesized poly(aniline boronic acid) as a function of pH: role of self-doping. Chem Mater. 2004;16:1427–1432.
  • Deore BA, Freund MS. Self-doped polyaniline nanoparticle dispersions based on boronic acid−phosphate complexation. Macromolecules. 2009;42:164–168.
  • Hai W, Goda T, Takeuchi H, et al. Specific recognition of human influenza virus with PEDOT bearing sialic acid-terminated trisaccharides. ACS Appl Mater Interfaces. 2017;9:14162–14170.
  • Hai W, Pu S, Wang X, et al. 3,4-Ethylenedioxythiophene bearing pyridylboronic acid group for specific recognition of sialic acid. Langmuir. 2020;36:546–553.
  • Zamani Keteklahijani Y, Shayesteh Zeraati A, Sharif F, et al. In situ chemical polymerization of conducting polymer nanocomposites: effect of DNA-functionalized carbon nanotubes and nitrogen-doped graphene as catalytic molecular templates. Chem Eng J. 2020;389:124500.
  • Cambre JN, Sumerlin BS. Biomedical applications of boronic acid polymers. Polymer. 2011;52:4631–4643.
  • Saito A, Konno T, Ikake H, et al. Control of cell function on a phospholipid polymer having phenylboronic acid moiety. Biomed Mater. 2010;5:054101.
  • Huang X, Shi W, Li J, et al. Determination of salivary uric acid by using poly(3,4-ethylenedioxythipohene) and graphene oxide in a disposable paper-based analytical device. Anal Chim Acta. 2020;1103:75–83.
  • Nikitina VN, Zaryanov NV, Karyakina EE, et al. Electropolymerization of 2-aminophenylboronic acid and the use of the resulting polymer for determination of sugars and oxyacids. Russ J Electrochem. 2017;53:312–317.
  • Shinde S, Gavvalapalli N. Impact of amine additives on the mechanical properties of hydrogen bonding π-conjugated polymers. Polymer. 2020;204:122856.
  • Shinde S, Sartucci JL, Jones DK, et al. π-conjugated polymer ionic networks. Macromolecules. 2017;50:7577–7583.
  • Liu M, Zeng X, Ma C, et al. Injectable hydrogels for cartilage and bone tissue engineering. Bone Res. 2017;5: 17014–17014.
  • Mawad D, Stewart E, Officer DL, et al. Conducting polymer hydrogel as a scaffold for tissue engineering. Adv Funct Mater. 2012;22:2692–2699.
  • Mawad D, Artzy-Schnirman A, Tonkin J, et al. Electroconductive hydrogel based on functional poly(ethylenedioxy thiophene). Chem Mater. 2016;28:6080–6088.
  • Jiang L, Gentile C, Lauto A, et al. Versatile fabrication approach of conductive hydrogels via copolymerization with vinyl monomers. ACS Appl Mater Interfaces. 2017;9:44124–44133.
  • Goding J, Vallejo-Giraldo C, Syed O, et al. Considerations for hydrogel applications to neural bioelectronics. J Mater Chem B. 2019;7:1625–1636.
  • Lu B, Yuk H, Lin S, et al. PEDOT:PSS hydrogels. Nat Commun. 2019;10:1043.
  • Wu T, Cui C, Huang Y, et al. Coadministration of an adhesive conductive hydrogel patch and an injectable hydrogel to treat myocardial infarction. ACS Appl Mater Interfaces. 2020;12:2039–2048.
  • Liang S, Zhang Y, Wang H, et al. Rapidly bondable conductive hydrogels as therapeutic cardiac patches. Adv Mater. 2018;30:e1704235.
  • Molina BG, Bendrea AD, Cianga L, et al. The biocompatible polythiophene-g-polycaprolactone copolymer as an efficient dopamine sensor platform. Polym Chem. 2017;8:6112–6122.
  • Aydın EB, Aydın M, Sezgintürk MK. Fabrication of electrochemical immunosensor based on acid-substituted poly(pyrrole) polymer modified disposable ITO electrode for sensitive detection of CCR4 cancer biomarker in human serum. Talanta. 2020;222:121487.
  • Lee JY, Schmidt CE. Pyrrole–hyaluronic acid conjugates for decreasing cell binding to metals and conducting polymers. Acta Biomater. 2010;6:4396–4404.
  • Rajesh; Bisht, V.; Takashima, W.; Kaneto, K. An amperometric urea biosensor based on covalent immobilization of urease onto an electrochemically prepared copolymer poly (N-3-aminopropyl pyrrole-co-pyrrole) film. Biomaterials. 2005;26:3683–3690.
  • Lee JY, Bashur CA, Milroy CA, et al. Nerve growth factor-immobilized electrically conducting fibrous scaffolds for potential use in neural engineering applications. IEEE Trans NanoBiosci. 2012;11:15–21.
  • Meng L, Turner APF, Mak WC. Tunable 3D nanofibrous and bio-functionalised PEDOT network explored as a conducting polymer-based biosensor. Biosens Bioelectron. 2006;159:112181.
  • Lee JY, Jeong E-D, Ahn CW, et al. Bioactive conducting scaffolds: active ester-functionalized polyterthiophene. Synth Met. 2013;185-186:66–70.
  • Bhagwat N, Murray RE, Shah SI, et al. Biofunctionalization of PEDOT films with laminin-derived peptides. Acta Biomater. 2016;41:235–246.
  • Lee J-W, Serna F, Nickels J, et al. Carboxylic acid-functionalized conductive polypyrrole as a bioactive platform for cell adhesion. Biomacromolecules. 2006;7:1692–1695.
  • Lo Verso F, Likos CN. End-functionalized polymers: versatile building blocks for soft materials. Polymer. 2008;49:1425–1434.
  • Lee J-W, Serna F, Schmidt CE. Carboxy-endcapped conductive polypyrrole:  biomimetic conducting polymer for cell scaffolds and electrodes. Langmuir. 2006;22:9816–9819.
  • Jeffries-El M, Sauvé G, McCullough RD. Facile synthesis of end-functionalized regioregular poly(3-alkylthiophene)s via modified Grignard metathesis reaction. Macromolecules. 2005;38:10346–10352.
  • Yu Z-P, Ma C-H, Wang Q, et al. Polyallene-block-polythiophene-block-polyallene copolymers: one-pot synthesis, helical assembly, and multiresponsiveness. Macromolecules. 2016;49:1180–1190.
  • Wu Z-Q, Chen Y, Wang Y, et al. One pot synthesis of poly(3-hexylthiophene)-block-poly(hexadecyloxylallene) by sequential monomer addition. Chem Commun. 2013;49:8069–8071.
  • Bagheri M, Pourmoazzen Z, Entezami AA. Synthesis, characterization and liquid crystalline behavior of poly(monomethyl itaconate)s with new pendant cholesterol moieties. Iran Polym J. 2013;22:303–311.
  • Chen SH, Mastrangelo JC, Conger BM, et al. Synthesis and characterization of thermotropic chiral-nematic polythiophenes. Macromolecules. 1998;31:3391–3393.
  • Cirpan A, Alkan S, Toppare L, et al. Synthesis and characterization of conducting copolymers of thiophene-3-yl acetic acid cholesteryl ester with pyrrole. J Mater Sci. 2002;37:1767–1775.
  • Doganci E, Davarci D. Synthesized and mesomorphic properties of cholesterol end-capped poly(ε-caprolactone) polymers. J Polym Res. 2019;26:165.
  • Hu J-S, Zhang B-Y, Jia Y-G, et al. Properties of side-chain cholesteric liquid crystalline polyacrylates. Polym J. 2003;35:160–166.
  • Huang H, Cong Y, Lin Z, et al.Synthesis and properties of side-chain liquid crystalline polymers grafted with chiral dimers containing cholesteryl groups. Liq Cryst. 2019;47:1–14.
  • Majumdar K, Mondal S, Synthesis GT. Mesomorphic behavior of novel liquid-crystalline thiophene derivatives. Mol Cryst Liq Cryst. 2010;524:17–25.
  • Lowe AM, Abbott NL. Liquid crystalline materials for biological applications. Chem Mater. 2012;24:746–758.
  • Hoque S, Dass NN, Bhattacharyya KG, et al. Synthesis of sulfonated cholesterol derivatives—electrical, thermal, and optical properties. Mol Cryst Liq Cryst. 2014;592:149–162.
  • Song Y, Kenworthy AK, Sanders CR. Cholesterol as a co-solvent and a ligand for membrane proteins. Protein Sci. 2014;23:1–22.
  • Jiao H-F, Wang X, Yao K, et al. Self-assembly of all-conjugated block copolymer nanoparticles with tailoring size and fluorescence for live cell imaging. J Mater Chem B. 2016;4:7882–7887.
  • Mantione D, Del Agua I, Sanchez-Sanchez A, et al. Poly(3,4-ethylenedioxythiophene) (PEDOT) derivatives: innovative conductive polymers for bioelectronics. Polymers. 2017;9:354.
  • Björninen M, Siljander A, Pelto J, et al. Comparison of chondroitin sulfate and hyaluronic acid doped conductive polypyrrole films for adipose stem cells. Ann Biomed Eng. 2014;42:1889–1900.
  • Wang S, Guan S, Zhu Z, et al. Hyaluronic acid doped-poly(3,4-ethylenedioxythiophene)/chitosan/gelatin (PEDOT-HA/Cs/Gel) porous conductive scaffold for nerve regeneration. Mater Sci Eng C. 2017;71:308–316.
  • Kim S, Jang Y, Jang M, et al. Versatile biomimetic conductive polypyrrole films doped with hyaluronic acid of different molecular weights. Acta Biomater. 2018;80:258–268.
  • Asplund M, Thaning E, Lundberg J, et al. Toxicity evaluation of PEDOT/biomolecular composites intended for neural communication electrodes. Biomed Mater. 2009;4:045009.
  • Carli S, Di Lauro M, Bianchi M, et al. PEDOT:Nafion dispersion for organic bioelectronics. ACS Appl Mater Interfaces. 2020;12:29807–29817.
  • Kozai TD, Catt K, Du Z, et al. Chronic in vivo evaluation of PEDOT/CNT for stable neural recordings. IEEE Trans Biomed Eng. 2016;63:111–119.
  • Liu X, Yue Z, Higgins MJ, et al. Conducting polymers with immobilised fibrillar collagen for enhanced neural interfacing. Biomaterials. 2011;32:7309–7317.
  • Alves-Sampaio A, García-Rama C, Collazos-Castro JE, et al. T-coated microfibers for the treatment of spinal cord injury. Biomaterials. 2016;89:98–113.
  • Collazos-Castro JE, Hernández-Labrado GR, Polo JL, et al. L1-functionalised conducting polymers for synergistic stimulation and guidance of neural cell growth. Biomaterials. 2013;34:3603–3617.
  • Xiao Y, Cui X, Hancock J, et al. Electrochemical polymerization of poly(hydroxymethylated-3,4-ethylenedioxythiophene) (PEDOT-MeOH) on multichannel neural probes. Sens Actuators B Chem. 2004;99:437–443.
  • Thaning EM, Asplund ML, Nyberg TA, et al. Stability of poly(3,4-ethylene dioxythiophene) materials intended for implants. J Biomed Mater Res B Appl Biomater. 2010;93:407–415.
  • Boehler C, Aqrawe Z, Asplund M. Applications of PEDOT in bioelectronic medicine. Bioelectron Med. 2019;2:89–99.
  • Foulds NC, Lowe CR. Enzyme entrapment in electrically conducting polymers. Immobilisation of glucose oxidase in polypyrrole and its application in amperometric glucose sensors. J Chem Soc Faraday Trans 1. 1986;82:1259–1264.
  • Umana M, Waller J. Protein-modified electrodes. The Glucose Oxidase/polypyrrole System Anal Chem. 1986;58:2979–2983.
  • Asirvatham S, Londoner K, Aravamudan M, et al. Alliance for Advancing Bioelectronic Medicine. Building a bioelectronic medicine movement 2019: insights from leaders in industry, academia, and research. Bioelectron Med. 2020;6:1.
  • Khodagholy D, Gelinas JN, Thesen T, et al. NeuroGrid: recording action potentials from the surface of the brain. Nat Neurosci. 2015;18:310–315.
  • Fratini S, Nikolka M, Salleo A, et al. Charge transport in high-mobility conjugated polymers and molecular semiconductors. Nat Mater. 2020;19:491–502.
  • Jastrzebska-Perfect P, Spyropoulos GD, Cea C, et al. Mixed-conducting particulate composites for soft electronics. Sci Adv. 2020;6:eaaz6767.
  • Sun H, Vagin M, Wang S, et al. Complementary logic circuits based on high-performance n-type organic electrochemical transistors. Adv Mater. 2018;30:1704916.
  • Travaglini L, Micolich AP, Cazorla C, et al.OECT-based flexible complementary circuits featuring polyaniline in both conducting channels. Adv Funct Mater. 2020;31:2007205.
  • Spyropoulos GD, Gelinas JN, Khodagholy D. Internal ion-gated organic electrochemical transistor: a building block for integrated bioelectronics. Sci Adv. 2019;5:eaau7378.