3,548
Views
10
CrossRef citations to date
0
Altmetric
Reviews

Nonlinear optics in ultra-silicon-rich nitride devices: recent developments and future outlook

, , , , , , , & show all
Article: 1905544 | Received 23 Oct 2020, Accepted 15 Mar 2021, Published online: 01 Apr 2021

References

  • Moss DJ, Morandotti R, Gaeta AL, et al. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat Photonics. 2013;7:597–34.
  • Pfeiffer MHP, Kordts A, Brasch V, et al. Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics. Optica. 2016;3:20.
  • Pasquazi A, Peccianti M, Razzari L, et al. Micro-combs: a novel generation of optical sources. Phys Rep. 2018;729:1–81.
  • Gaeta AL, Lipson M, Kippenberg TJ. Photonic chip-based frequency combs. Nat Photonics. 2019;13:158.
  • Corcoran B, Tan M, Xu X, et al. Ultra-dense optical data transmission over standard fiber with a single chip source. Nat Commun. 2020;11:2568.
  • Hu H, Da Ros F, Pu M, et al. Single-source chip-based frequency comb enabling extreme parallel data transmission. Nat Photonics. 2018;12:469–473.
  • Marin-Palomo P, Kemal JN, Karpov M, et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature. 2017;546:274–279.
  • Kues M, Reimer C, Roztocki P, et al. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature. 2017;546:622–626.
  • Kues M, Reimer C, Lukens JM, et al. Quantum optical microcombs. Nat Photonics. 2019;13:170–179.
  • Ng DKT, Wang Q, Wang T, et al. Exploring high refractive index silicon-rich nitride films by low temperature inductively coupled plasma chemical vapor deposition and applications for integrated waveguides. ACS Appl Mater Interfaces. 2015;7:21884–21889.
  • Wang T, Ng DKT, Ng SK, et al. Supercontinuum generation in bandgap engineered, back-end CMOS compatible silicon rich nitride waveguides. Laser Photon. Rev. 2015;9:498–506.
  • Wu CL, Lin YH, Su SP, et al. Enhancing optical nonlinearity in a nonstoichiometric SiN waveguide for cross-wavelength all-optical data processing. ACS Photonics. 2015;2:1141–1154.
  • Lin GR, Su SP, Wu CL, et al. Si-rich SiNx based Kerr switch enables optical data conversion up to 12 Gbit/s. Sci Rep. 2015;5:9611.
  • Krückel CJ, Fülöp A, Klintberg T, et al. Linear and nonlinear characterization of low-stress high-confinement silicon-rich nitride waveguides. Opt Express. 2015;23:25827–25837.
  • Mitrovic M, Guan X, Ji H, et al. Four wave mixing in silicon-rich nitride waveguides in Frontiers in Optics, OSA Technical Digest Series (Optical Society of America), paper FM1D.6, 2015.
  • Choi JW, Chen GFR, Ng DKT, et al. Wideband nonlinear spectral broadening in ultra-short ultra-silicon rich nitride waveguides. Sci Rep. 2016;6:27120.
  • Puckett MW, Sharma R, Lin HH, et al. Observation of second-harmonic generation in silicon nitride waveguides through bulk nonlinearities. Opt Express. 2016;24:16923–16933.
  • Liu X, Pu M, Zhou B, et al. Octave-spanning supercontinuum generation in a silicon-rich nitride waveguide. Opt Lett. 2016;41:2719–2722.
  • Ooi KJA, Ng DKT, Wang T, et al. Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge. Nat Commun. 2017;8:13878.
  • Xing P, Chen GFR, Zhao X, et al. Silicon rich nitride ring resonators for rare-earth doped C-band amplifiers pumped at the O-band. Sci Rep. 2017;7:9101.
  • Sahin E, Ooi KJA, Chen GFR, et al. Enhanced optical nonlinearities in CMOS-compatible ultra-silicon-rich nitride photonic crystal waveguides. Appl Phys Lett. 2017;110:161113.
  • Lacava C, Stankovic S, Khokhar AZ, et al. Si-rich silicon nitride for nonlinear signal processing applications. Sci Rep. 2017;7:22.
  • Ye Z, Fülöp A, Helgason ÓB, et al. Low-loss high-Q silicon-rich silicon nitride microresonators for Kerr nonlinear optics. Opt Lett. 2019;44:3326–3329.
  • Debnath K, Bucio TD, Al-Attili A, et al. Photonic crystal waveguides on silicon rich nitride platform. Opt Express. 2017;25:3214–3221.
  • Lacava C, Dominguez Bucio T, Khokhar AZ, et al. Intermodal frequency generation in silicon-rich silicon nitride waveguides. Photon Res. 2019;7:615–621.
  • Miller RC. Optical second harmonic generation in piezoelectric crystals. Appl Phys Lett. 1964;5:17–19.
  • Lafforgue C, Guerber S, Ramirez JM, et al. Broadband supercontinuum generation in nitrogen-rich silicon nitride waveguides using a 300 mm industrial platform. Photon Res. 2020;8:352–358.
  • Ay F, Aydinli A. Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides. Opt Mater. 2004;26:33–46.
  • Philipp HT, Andersen KN, Svendsen W, et al. Amorphous silicon rich silicon nitride optical waveguides for high density integrated optics. Electron Lett. 2004;40:419–421.
  • Mao SC, Tao SH, Xu YL, et al. Low propagation loss SiN optical waveguide prepared by optimal low-hydrogen module. Opt Express. 2008;16:20809–20816.
  • Pfeiffer MHP, Herkommer C, Liu J, et al. Photonic damascene process for low-loss, high-confinement silicon nitride waveguides. IEEE J Sel Top Quantum Electron. 2018;24:1–11.
  • Shoji Y, Ogasawara T, Kamei T, et al. Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide. Opt Express. 2010;18:5668–5673.
  • Sohn B-U, Choi JW, Ng DKT, et al. Optical nonlinearities in ultra-silicon-rich nitride characterized using z-scan measurements. Sci Rep. 2019;9:10364.
  • Wang T, Venkatram N, Gosciniak J, et al. Multi-photon absorption and third-order nonlinearity in silicon at mid-infrared wavelengths. Opt Express. 2013;21:32192–32198.
  • Dinu M, Quochi F, Garcia H. Third-order nonlinearities in silicon at telecom wavelengths. Appl Phys Lett. 2003;82:2954–2956.
  • Ikeda K, Saperstein RE, Alic N, et al. Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides. Opt Express. 2008;16:12987–12994.
  • Tan DTH, Ikeda K, Sun PC, et al. Group velocity dispersion and self phase modulation in silicon nitride waveguides. Appl Phys Lett. 2010;96:061101.
  • Urbach F. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys Rev. 1953;92:1324.
  • Agrawal GP. Nonlinear fiber optics. Academic Press, New York; 1995.
  • Monat C, Corcoran B, Ebnali-Heidari M, et al. Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides. Opt Express. 2009;17:2944–2953.
  • Biberman A, Lee BG, Turner-Foster AC, et al. Wavelength multicasting in silicon photonic nanowires. Opt Express. 2010;18:18047–18055.
  • Salem R, Foster MA, Turner AC, et al. All-optical regeneration on a silicon chip. Opt Express. 2007;15:7802–7809.
  • Liu X, Osgood RM, Vlasov YA, et al. Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides. Nat Photonics. 2010;4:557–560.
  • Foster MA, Turner AC, Salem R, et al. Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides. Opt Express. 2007;15:12949–12958.
  • Kuyken B, Clemmen S, Selvaraja SK, et al. On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides. Opt Lett. 2011;36:552–554.
  • Wang KY, Foster AC. GHz-rate optical parametric amplifier in hydrogenated amorphous silicon. J Opt. 2015;17:094012.
  • Foster MA, Turner AC, Sharping JE, et al. Broad-band optical parametric gain on a silicon photonic chip. Nature. 2006;441:960–963.
  • Pasquazi A, Park Y, Azaña J, et al. Efficient wavelength conversion and net parametric gain via four wave mixing in a high index doped silica waveguide. Opt Express. 2010;18:7634–7641.
  • Joannopoulos JD, Meade RD, Winn JN. Photonic crystals. Princeton Univ. Press, New York; 1995.
  • Povinelli ML, Johnson SG, Joannopoulos JD. Slow-light, band-edge waveguides for tunable time delays. Opt Express. 2005;13:7145–7159.
  • Monat C, Ebnali-Heidari M, Grillet C, et al. Four-wave mixing in slow light engineered silicon photonic crystal waveguides. Opt Express. 2010;18:22915–22927.
  • Hinakura Y, Arai H, Baba T. 64 Gbps Si photonic crystal slow light modulator by electro-optic phase matching. Opt Express. 2019;27:14321–14327.
  • Blanco-Redondo A, Husko C, Eades D, et al. Observation of soliton compression in silicon photonic crystals. Nat Commun. 2014;5:3160.
  • Colman P, Husko C, Combrié S, et al. Temporal solitons and pulse compression in photonic crystal waveguides. Nat Photonics. 2010;4:862–868.
  • Sahin E, Ng DKT, Tan DTH. Optical parametric gain in CMOS-compatible sub-100 um photonic crystal waveguides. APL Photonics. 2020;5:066108.
  • Cestier I, Willinger A, Colman P, et al. Efficient parametric interactions in a low loss GaInP photonic crystal waveguide. Opt Lett. 2011;36:3936.
  • Husko C, Combrié S, Tran QV, et al. Non-trivial scaling of self-phase modulation and three-photon absorption in III–V photonic crystal waveguides. Opt Express. 2009;17:22442–22451.
  • Peccianti M, Ferrera M, Razzari L, et al. Subpicosecond optical pulse compression via an integrated nonlinear chirper. Opt Express. 2010;18:7625–7633.
  • Mollenauer LF, Stolen RH, Gorden JP, et al. Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers. Opt Lett. 1983;8:289.
  • Choi JW, Sohn B-U, Chen GFR, et al. Soliton-effect optical pulse compression in CMOS-compatible ultra-silicon-rich nitride waveguides. APL Photonics. 2019;4:110804.
  • Winful HG. Pulse compression in optical fiber filters. Appl Phys Lett. 1985;46:527.
  • Eggleton BJ, Slusher RE, de Sterke CM, et al. Bragg grating solitons. Phys Rev Lett. 1996;76:1627.
  • Tan DTH, Ikeda K, Fainman Y. Cladding-modulated Bragg gratings in silicon waveguides. Opt Lett. 2009;34:1357.
  • Sahin E, Ooi KJA, Png CE, et al. Large, scalable dispersion engineering using cladding-modulated Bragg gratings on a silicon chip. Appl Phys Lett. 2017;110:161113.
  • Sahin E, Ooi KJA, Png CE, et al. On-chip large dispersion using cladding-modulated Bragg gratings. Frontier Optics 2017, Washington, D. C. United States, 18-21 September. 2017; OSA Technical Digest, FM3A.4. Part F66-F. Optical Society of America; 2020.
  • Sahin E, Blanco-Redondo A, Xing P, et al. Bragg soliton compression and fission on CMOS-compatible ultra-silicon-rich nitride. Laser Photon Rev. 2019;13:1900114.
  • Cao YM, Sahin E, Choi JW, et al. Thermo-optic tuning of spectral broadening in a nonlinear ultra-silicon-rich nitride grating. 14th Pacific Rim Conference on Lasers and Electro-Optics (CLEO PR 2020), Sydney, Australia, 03-05 August 2020; OSA Technical Digest, paper C3C_2. Optical Society of America; 2020.
  • Nejadriahi H, Friedman A, Sharma R, et al. Thermo-optic properties of silicon-rich silicon nitride for on-chip applications. Opt Express. 2020;28:24951–24960.
  • Ng DKT, Xing P, Chen GFR, et al. Improved CMOS-compatible ultra-silicon-rich nitride for non-linear optics. SPIE Photonics West; Accepted
  • Pfeiffer MHP, Kordts A, Brasch V, et al. Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics. Optica. 2016;3:20–25.
  • Eggleton BJ, Luther-Davies B, Richardson K. Chalcogenide photonics. Nat Photonics. 2011;5:141–148.
  • Lamont MRE, Luther-Davies B, Choi DY, et al. Net-gain from a parametric amplifier on a chalcogenide optical chip. Opt Express. 2008;16:20374–20381.
  • Hudson DD, Dekker SA, Mgi EC, et al. Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy. Opt Lett. 2011;36:1122–1124.
  • Choi JW, Sohn BY, Chen GFR, et al. Nonlinear characterization of GeSbS chalcogenide glass waveguides. Sci Rep. 2016;6:27120.
  • Al-kadry A, El Amraoui M, Messaddeq Y, et al. Two octaves mid-infrared supercontinuum generation in As2Se3 microwires. Opt Express. 2014;22:31131–31137.
  • Hu J, Menyuk CR, Shaw LB, et al. Maximizing the bandwidth of supercontinuum generation in as2se3 chalcogenide fibers. Opt Express. 2010;18:6722–6739.
  • Xiong C, Helt LG, Judge AC, et al. Quantum-correlated photon pair generation in chalcogenide As2S3 waveguides. Opt Express. 2010;18:16206–16216.
  • Galili M, Xu J, Mulvad HCH, et al. Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing. Opt Express. 2009;17:2182.
  • Eggleton BJ, Poulton CG, Pant R. Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits. Adv Opt Photon. 2013;5:536–587.
  • Monat C, Grillet C, Collins M, et al. Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide. Nat Commun. 2014;5:3246.
  • Kondo K, Baba T. On-chip autocorrelator using counter-propagating slow light in a photonic crystal with two-photon absorption photodiodes. Optica. 2017;4:1109–1112.
  • Stern B, Ji X, Okawachi Y, et al. Battery-operated integrated frequency comb generator. Nature. 2018;562:401–405.
  • Shen B, Chang L, Liu J, et al. Integrated turnkey soliton microcombs. Nature. 2020;582:365–369.
  • Zhou Z, Yin B, Michel J. On-chip light sources for silicon photonics. Light Sci Appl. 2015;4:e358.
  • Norman JC, Jung D, Wan Y, et al. Perspective: the future of quantum dot photonic integrated circuits. APL Photon. 2018;3:030901.