4,555
Views
5
CrossRef citations to date
0
Altmetric
Reviews

Modeling of plasmonic properties of nanostructures for next generation solar cells and beyond

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 1908848 | Received 30 Jan 2021, Accepted 22 Mar 2021, Published online: 06 Aug 2021

References

  • Mie G. Beiträge zur optik trüber medien, speziell kolloidaler Metallösungen. Ann Phys. 1908;330:377–50.
  • Govorov AO, Richardson HH. Generating heat with metal nanoparticles. Nano Today. 2007;2:30–38.
  • Ihara M, Tanaka K, Sakaki K, et al. Enhancement of the absorption coefficient of cis-(NCS)2 Bis(2,2‘-bipyridyl-4,4‘-dicarboxylate)ruthenium(II) dye in dye-sensitized solar cells by a silver Island film. J Phys Chem B. 1997;101:5153–5157.
  • Enomoto M, Taniguchi K, Ihara M. Dye-sensitized solar cells using localized surface plasmon of gold and silver nanoparticles with comb-shaped block copolymer. ECS Trans. 2010;25:37–48.
  • Ihara M, Kanno M, Inoue S. Photoabsorption-enhanced dye-sensitized solar cell by using localized surface plasmon of silver nanoparticles modified with polymer. Physica E. 2010;42:2867–2871.
  • Ito R, Oryu K, Shibuya H, et al. In Dye-Sensitized Solar Cell using localized surface plasmon of Ag nanoparticles with different modulators, 17th International Photovoltaic Science and Engineering Conference (PVSEC17), Fukuoka, Fukuoka, 2007; pp 6P-P5-05.
  • Loew N, Ikenouchi S, Ihara M. Immobilization of silver nanoparticles by peptide nucleic acids in surface plasmon enhanced dye-sensitized solar cells. ECS J Solid State Sci Technol. 2014;3:Q1–Q10.
  • Qi J, Dang X, Hammond T, et al. Highly efficient plasmon-enhanced dye-sensitized solar cells through metal@oxide core–shell nanostructure. ACS Nano. 2011;5:7108–7116.
  • Kim H, Song D, Yoon H, et al. Surface plasmon-enhanced dye-sensitized solar cells based on double-layered composite films consisting of TiO2/Ag and TiO2/Au nanoparticles. RSC Adv. 2015;5:27464–27469.
  • Choi H, Chen WT, Kamat PV. Know thy nano neighbor. plasmonic versus electron charging effects of metal nanoparticles in dye-sensitized solar cells. ACS Nano. 2012;6:4418–4427.
  • Al-Azawi MA, Bidin N, Ali AK, et al. The effects of gold colloid concentration on photoanode electrodes to enhance plasmonic dye-sensitized solar cells performance. J Mater Sci. 2015;26:6276–6284.
  • Nahm C, Choi H, Kim J, et al. The effects of 100 nm-diameter Au nanoparticles on dye-sensitized solar cells. Appl Phys Lett. 2011;99:253107.
  • Bai L, Li M, Guo K, et al. Plasmonic enhancement of the performance of dye-sensitized solar cell by core–shell AuNRs@SiO2 in composite photoanode. J Power Sources. 2014;272:1100–1105.
  • Standridge SD, Schatz GC, Hupp JT. Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells. J Am Chem Soc. 2009;131:8407–8409.
  • Brown MD, Suteewong T, Kumar RSS, et al. Plasmonic dye-sensitized solar cells using core−shell metal−insulator nanoparticles. Nano Lett. 2011;11:438–445.
  • Jeong NC, Prasittichai C, Hupp JT. Photocurrent enhancement by surface plasmon resonance of silver nanoparticles in highly porous dye-sensitized solar cells. Langmuir. 2011;27:14609–14614.
  • Dang X, Qi J, Klug MT, et al. Tunable localized surface plasmon-enabled broadband light-harvesting enhancement for high-efficiency panchromatic dye-sensitized solar cells. Nano Lett. 2013;13:637–642.
  • Li Y, Wang H, Feng Q, et al. Gold nanoparticles inlaid TiO2 photoanodes: a superior candidate for high-efficiency dye-sensitized solar cells. Energy Environ Sci.. 2013;6:2156–2165.
  • Schaadt DM, Feng B, Yu ET. Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl Phys Lett. 2005;86:063106.
  • Pillai S, Catchpole KR, Trupke T, et al. Surface plasmon enhanced silicon solar cells. J Appl Phys. 2007;101:093105.
  • Beck FJ, Mokkapati S, Polman A, et al. Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells. Appl Phys Lett. 2010;96:033113.
  • Ouyang Z, Pillai S, Beck F, et al. Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons. Appl Phys Lett. 2010;96:261109.
  • Basch A, Beck FJ, Söderström T, et al. Combined plasmonic and dielectric rear reflectors for enhanced photocurrent in solar cells. Appl Phys Lett. 2012;100:243903.
  • Fahim NF, Ouyang Z, Jia B, et al. Enhanced photocurrent in crystalline silicon solar cells by hybrid plasmonic antireflection coatings. Appl Phys Lett. 2012;101:261102.
  • Tan H, Sivec L, Yan B, et al. Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption. Appl Phys Lett. 2013;102:153902.
  • Park J, Park N, Varlamov S. Optimum surface condition for plasmonic Ag nanoparticles in polycrystalline silicon thin film solar cells. Appl Phys Lett. 2014;104:033903.
  • Zhang Y, Jia B, Ouyang Z, et al. Influence of rear located silver nanoparticle induced light losses on the light trapping of silicon wafer-based solar cells. J Appl Phys. 2014;116:124303.
  • Temple TL, Mahanama GDK, Reehal HS, et al. Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells. Solar Energy Mater Solar Cells. 2009;93:1978–1985.
  • Pala RA, White J, Barnard E, et al. Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv Mater. 2009;21:3504–3509.
  • Tanaka Y, Hachimura H, Mishima T, et al. Plasmon effect in Si solar cells coated with a thin Polymer film containing silver or gold nanoparticles. ECS Trans. 2011;33:81–91.
  • Nakayama K, Tanabe K, Atwater HA. Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl Phys Lett. 2008;93:121904.
  • Losurdo M, Giangregorio MM, Bianco GV, et al. Enhanced absorption in Au nanoparticles/a- Si: h/c-Siheterojunction solar cells exploiting Au surface plasmon resonance. Solar Energy Mater Solar Cells. 2009;93:1749–1754.
  • Nam K, Hachimura H, Ihara M, et al. Optical management by localized surface plasmon of metal nanoparticles and application to a solar cell. ECS Trans. 2013;50:77–90.
  • Wu J, Mangham SC, Reddy VR, et al. Surface plasmon enhanced intermediate band based quantum dots solar cell. Solar Energy Mater Solar Cells. 2012;102:44–49.
  • Ferry VE, Sweatlock LA, Pacifici D, et al. Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett. 2008;8:4391–4397.
  • Akimov YA, Koh WS. Tolerance study of nanoparticle enhancement for thin-film silicon solar cells. Appl Phys Lett. 2011;99:063102.
  • Ueno K, Oshikiri T, Sun Q, et al. Solid-state plasmonic solar cells. Chem Rev. 2018;118:2955–2993.
  • Kim S, Suh J, Kim T, et al. Plasmon-enhanced performance of CdS/CdTe solar cells using Au nanoparticles. Opt Express. 2019;27:22017–22024.
  • Duche D, Torchio P, Escoubas L, et al. Improving light absorption in organic solar cellsby plasmonic contribution. Solar Energy Mater Solar Cells. 2009;93:1377–1382.
  • Vedraine S, Torchio P, Duche D, et al. Intrinsic absorption of plasmonic structures for organic solar cells. Solar Energy Mater Solar Cells. 2011;95:S57–S64.
  • Kim -S-S, Na S-I, Jo J, et al. Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles. Appl Phys Lett. 2008;93:073307.
  • Yoon W-J, Jung K-Y, Liu J, et al. Plasmon-enhanced optical absorption and photocurrent in organic bulk heterojunction photovoltaic devices using self-assembled layer of silver nanoparticles. Solar Energy Mater Solar Cells. 2010;94:128–132.
  • Yang J, You J, Chen -C-C, et al. Plasmonic polymer tandem solar cell. ACS Nano. 2011;5:6210–6217.
  • Feng L, Niu M, Wen Z, et al. Recent advances of plasmonic organic solar cells: photophysical investigations. Polymers. 2018;10:123.
  • Liu S, Jiang R, You P, et al. Au/Ag core–shell nanocuboids for high-efficiency organic solar cells with broadband plasmonic enhancement. Energy Environ Sci. 2016;9:898–905.
  • Deng W, Yuan Z, Liu S, et al. Plasmonic enhancement for high-efficiency planar heterojunction perovskite solar cells. J Power Sources. 2019;432:112–118.
  • Shen T, Siontas S, Pacifici D. Plasmon-enhanced thin-film perovskite solar cells. J Phys Chem C. 2018;122:23691–23697.
  • Lee DS, Kim W, Cha BG, et al. Self-position of Au NPs in perovskite solar cells: optical and electrical contribution. ACS Appl Mater Interfaces. 2016;8:449–454.
  • Yuan Z, Wu Z, Bai S, et al. Hot-electron injection in a sandwiched TiOx -Au-TiOx structure for high-performance planar perovskite solar cells. Adv Energy Mater. 2015;5:1500038.
  • Carretero-Palacios S, Calvo ME, Miguez H. Absorption enhancement in organic–inorganic halide perovskite films with embedded plasmonic gold nanoparticles. J Phys Chem. 2015;119:18635–18640.
  • Mali SS, Shim CS, Kim H, et al. In situ processed gold nanoparticle-embedded TiO2 nanofibers enabling plasmonic perovskite solar cells to exceed 14% conversion efficiency. Nanoscale. 2016;8:2664–2677.
  • Zhang WSM, Saliba M, Stranks SD, et al. Enhancement of perovskite-based solar cells employing core–shell metal nanoparticles. Nano Lett. 2013;13:4505–4510.
  • Moakhar RS, Gholipour S, Masudy‐Panah S, et al. Recent advances in plasmonic perovskite solar cells. Adv Sci. 2020;7:1902448.
  • Yoshioka S, Mishima T, Ihara M. The effect of TiO2 microstructure and introduction of silver nanoparticles on conversion efficiency of Sb2S3 sensitized semiconductor solar cells. ECS Trans. 2013;50:33–44.
  • Zhang X, Yoshioka S, Loew N, et al. Microstructure control of absorber Sb2S3 and p-type semiconductor CuSCN for semiconductor-sensitized solar cells (TiO2/Sb2S3/CuSCN). ECS Trans. 2014;64:1–13.
  • Burschka J, Pellet N, Moon S-J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature. 2013;499:316–319.
  • Zhou H, Chen Q, Li G, et al. Photovoltaics. Interface engineering of highly efficient perovskite solar cells. Science. 2014;345:542–546.
  • Murakami K, Yamada K, Fave A, et al. Concept and nanostructure control of plasmonic porous silicon solar cell. ECS Meeting Abstracts. 2015;MA2015-02:802.
  • Hachimura H, Nam K, Tanaka Y, et al. Fabrication of composite nanoporous Si films with gold nanoparticles to enhance the efficiency of silicon solar cells. ECS Trans. 2012;41:1–11.
  • Jang YH, Jang YJ, Kim S, et al. Plasmonic solar cells: from rational design to mechanism overview. Chem Rev. 2016;116:14982–15034.
  • Fukui M, Ohtsu M. Fundamentals of optical nanotechnology. Tokyo, Japan: Ohmsha; 2003.
  • Hayashi S. What are surface plasmons? Oyo Buturi. 2011;80:66–70.
  • Modern plasmonics. Amsterdam: Elsevier;Editors: Alexei Maradudin J. Roy Sambles William L. Barnes 2014.
  • Tian Y, Tatsuma T. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J Am Chem Soc. 2005;127:7632–7637.
  • Nishijima Y, Ueno K, Yokota Y, et al. Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using A Au-nanorods/TiO2 electrode. J Phys Chem Lett. 2010;1:2031–2036.
  • Evanoff DD, Chumanov G. Size-controlled synthesis of nanoparticles. 1. “Silver-only” aqueous suspensions via hydrogen reduction. J Phys Chem B. 2004;108:13948–13956.
  • Atwater HA, Polman A. Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption. App Phys Lett. 2013;102:153902.
  • Ferry VE, Polman A, Atwater HA. Modeling light trapping in nanostructured solar cells. ACS Nano. 2011;5:10055–10064.
  • Spinelli P, Polman A. Prospects of near-field plasmonic absorption enhancement in semiconductor materials using embedded Ag nanoparticles. Opt Express. 2012;20:A641–A654.
  • Faraone G, Modi R, Marom S, et al. Increasing the optical absorption in a-Si thin films by embedding gold nanoparticles. Opt Mater. 2018;75:204–210.
  • Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev. 1965;140:A1133–A1138.
  • Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev. 1964;136:B864–B871.
  • Adamo C, Jacquemin D. The calculations of excited-state properties with time-dependent density functional theory. Chem. Soc. Rev 2013;42:845–856.
  • Casida ME. Time-dependent density-functional theory for molecules and molecular solids. J Mol Struct Theory Chem. 2009;914:3–18.
  • Manzhos S, Pal A, Chen Y, et al. Effect of organic cation states on electronic properties of mixed organic–inorganic halide perovskite clusters. Phys Chem Chem Phys. 2019;21:8161–8169.
  • Liu Q, Chavhan S, Zhang H, et al. Short alkyl chain engineering modulation on naphthalene flanked diketopyrrolopyrrole towards high-performance single crystal transistors and organic thin film displays. Adv Electron Mater. 2021; 7:2000804.
  • Yabana K, Bertsch GF. Time-dependent local-density approximation in real time. Phys Rev B. 1996;54:4484.
  • Matsko NL. Formation of normal surface plasmon modes in small sodium nanoparticles. Phys Chem Chem Phys. 2020;22:13285–13291.
  • Matsko NL. Study of volume and surface plasmons in small silicon–hydrogen nanoclusters using the GW method. Phys Chem Chem Phys. 2018;20:24933–24939.
  • Pavlyukh Y, Hübner W. Life-time of quasiparticle states in metallic clusters from GW theory. Phys Lett A. 2004;327:241–246.
  • Mowbray DJ, Despoja V. Tailoring a molecule’s optical absorbance using surface plasmonics. J Phys Chem. 2019;123:26498–26508.
  • Morton SM, Silverstein DW, Jensen L. Theoretical studies of plasmonics using electronic structure methods. Chem Rev. 2011;111:3962–3994.
  • Guidez EB, Aikens CM. Quantum mechanical origin of the plasmon: from molecular systems to nanoparticles. Nanoscale. 2014;6:11512–11527.
  • Varas A, García-González P, Feist J, et al. Quantum plasmonics: from jellium models to ab initio calculations. Nanophotonics. 2016;5:409–426.
  • Shao X, Jiang K, Mi W, et al. DFTpy: an efficient and object-oriented platform for orbital-free DFT simulations. WIREs Comput Mol Sci. 2021;11:e1482.
  • Witt WC, Del Rio BG, Dieterich JM, et al. Orbital-free density functional theory for materials research. J Mater Res. 2018;33:777–795.
  • Bonafé FP, Aradi B, Guan M, et al. Plasmon-driven sub-picosecond breathing of metal nanoparticles. Nanoscale. 2017;9:12391–12397.
  • Douglas-Gallardo OA, Berdakin M, Frauenheimc T, et al. Plasmon-induced hot-carrier generation differences in gold and silver nanoclusters. Nanoscale. 2019;11:8604–8615.
  • Niehaus TAS,S, Suhai S, Della Sala F, et al. Tight-binding approach to time-dependent density-functional response theory. Phys Rev B. 2001;63:085108.
  • Niehaus TA, Heringer D, Torralva B, et al. Importance of electronic self-consistency in the TDDFT based treatment of nonadiabatic molecular dynamics. Eur Phys J D. 2005;35:467.
  • Quinten M. Optical propertis of nanoparticle systems. Wiley-VCH; 2011.
  • Drude P. Zur Elektronentheorie der Metalle. Ann Phys. 1900;306:566–613.
  • Huang Q, Hu X, Fu Z, et al. Plasmonic thin film solar cells. In: Nanostructured Solar Cells. Das N, editor. Nanostructured solar cells. London, UK: IntechOpen; 2017.DOI:https://doi.org/10.5772/65388
  • Noguez C. Optical properties of isolated and supported metal nanoparticles. Opt Mater. 2005;27:1204–1211.
  • Zheng BY, Zhao H, Manjavacas A, et al. Distinguishing between plasmon-induced and photoexcited carriers in a device geometry. Nat Commun. 2015;6. DOI:https://doi.org/10.1038/ncomms8797
  • Reddy H, Wang K, Kudyshev Z, et al. Determining plasmonic hot-carrier energy distributions via single-molecule transport measurements. Science. 2020;369:423–426.
  • Ma C, Liu C, Huang J, et al. Plasmonic-enhanced light harvesting and perovskite solar cell performance using Au biometric dimers with broadband structural darkness. Solar RRL. 2019; 3: 1900138.
  • Amendola VP,R, Pilot R, Frasconi OM, et al.; Journal of Physics: Condensed Matter 2017, 29. Surface plasmon resonance in gold nanoparticles: a review. J Phys Condens Matter. 2017;29:203002.
  • Pitarke JM, Silkin VM, Chulkov EV, et al. Theory of surface plasmons and surface-plasmon polaritons. Rep Prog Phys. 2007;70:1–87.
  • Shen G, Guyot-Sionnest P. HgS and HgS/CdS colloidal quantum dots with infrared intraband transitions and emergence of a surface plasmon. J Phys Chem C. 2016;120:11744–11753.
  • Lee H, Lee H, Park JY. Direct imaging of surface plasmon-driven hot electron flux on the Au Nanoprism/TiO2. Nano Lett. 2019;19:891–896.
  • David C, García De Abajo FJ. Spatial nonlocality in the optical response of metal nanoparticles. J Phys Chem C. 2011;115:19470–19475.
  • Wigner-seitz T, Dependent, T. F., D. Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer. Nano Lett. 2012;1:1–10.
  • Luo Y, Fernandez-Dominguez AI, Wiener A, et al. Surface plasmons and nonlocality: a simple model. Phys Rev Lett. 2013;111:093901.
  • Teperik TV, Nordlander P, Aizpurua J, et al. Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers. Opt Express. 2013;21:27306–27325.
  • Novelli PT,I, Torre I, Koppens F, et al. Optical and plasmonic properties of twisted bilayer graphene: impact of interlayer tunneling asymmetry and ground-state charge inhomogeneity. Phys Rev B. 2020;102:125403.
  • Raza S, Toscano G, Jauho A, et al. Unusual resonances in nanoplasmonic structures due to nonlocal response. Phys Rev B. 2011;84:121412.
  • McMahon JM, Gray SK, Schatz GC. Nonlocal optical response of metal nanostructures with arbitrary shape. Phys Rev Lett. 2009;103:097403.
  • McMahon JM, Gray SK, Schatz GC. Nonlocal dielectric effects in core−shell nanowires. J Phys Chem. 2010;114:15903–15908.
  • Ruppin R. Extinction properties of thin metallic nanowires. Opt Commun. 2001;190:205–209.
  • Toscano G, Raza S, Jauho A-P, et al. Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response. Opt Express. 2012;20:4176–4188.
  • COMSOL. Multiphysics® 5.4; COMSOL AB:. Sweden: Stockholm., 2018
  • Fernández-Domínguez AI, Wiener A, García-Vidal FJ, et al. Transformation-optics description of nonlocal effects in plasmonic nanostructures. Phys Rev Lett. 2012;108:106802.
  • Fernández-Domínguez AI, Zhang P, Luo Y, et al. Transformation-optics insight into nonlocal effects in separated nanowires. Phys Rev B. 2012;86:241110.
  • Esteban R, Borisov AG, Nordlander P, et al. Bridging quantum and classical plasmonics with a quantum-corrected model. Nat Commun. 2012;3:825.
  • Teperik TV, Nordlander P, Aizpurua J, et al. Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response. Phys Rev Lett. 2013;110:1–5.
  • Dong T, Ma X, Mittra R. Optical response in subnanometer gaps due to nonlocal response and quantum tunneling. Appl Phys Lett. 2012;101:233111.
  • Yang WZ, Huang JP. Effective mass density of liquid composites: experiment and theory. J Appl Phys. 2007;101:064903.
  • Maxwell-Garnett JC. XII. Colours in metal glasses and in metallic films. Philos Trans Royal Soc A. 1904;203:385–420.
  • Hinsen K, Felderhof BU. Dielectric constant of a suspension of uniform spheres. Phys Rev B. 1992;46:12955–12963.
  • Arefinia Z. Analytical modeling based on modified effective medium theories for optical properties of photovoltaic material-incorporated plasmonic nanoparticles. Plasmonics. 2020;15:1661–1673.
  • Sinha-Roy R, Garcia-Gonzalez P, Weissker H-C, et al. Classical and ab initio plasmonics meet at sub-nanometric noble metal rods. ACS Photonics. 2017;4:1484–1493.
  • Della Sala F, Pezzolla M, D’Agostino S, et al. Ab Initio plasmonics of externally doped silicon nanocrystals. ACS Photonics. 2019;6:1474–1484.
  • Pi X, Delerue C. Tight-binding calculations of the optical response of optimally p-doped Si nanocrystals: a model for localized surface plasmon resonance. Phys Rev Lett. 2013;111:177402.
  • Marinica DC, Kazansky AK, Nordlander P, et al. Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer. Nano Lett. 2012;12:1333–1339.
  • Scholl JA, Koh AL, Dionne JA. Quantum plasmon resonances of individual metallic nanoparticles. Nature. 2012;483:421.
  • Monreal RC, Antosiewicz TJ, Apell SP. Competition between surface screening and size quantization for surface plasmons in nanoparticles. New J Phys. 2013;15:083044.
  • Schimpf AM, Thakkar N, Gunthardt CE, et al. Charge-tunable quantum plasmons in colloidal semiconductor nanocrystals. ACS Nano. 2014;8:1065–1072.
  • Jain PK. Plasmon-in-a-box: on the physical nature of few-carrier plasmon resonances. J Phys Chem Lett. 2014;5:3112–3119.
  • Zhang H, Kulkarni V, Prodan E, et al. Theory of quantum plasmon resonances in doped semiconductor nanocrystals. J Phys Chem C. 2014;118:16035–16042.
  • Greenberg BL, Ganguly S, Held JT, et al. Nonequilibrium-plasma-synthesized ZnO nanocrystals with plasmon resonance tunable via Al doping and quantum confinement. Nano Lett. 2015;15:8162–8169.
  • Ni Z, Pi X, Zhou S, et al. Size-dependent structures and optical absorption of boron-hyperdoped silicon nanocrystals. Adv Optical Mater. 2016;4:700–707.
  • Liu H, Brozek CK, Sun S, et al. A hybrid quantum-classical model of electrostatics in multiply charged quantum dots. Advances in Chemical Physics. 2000;114:263–310.
  • Light JC, Carrington T. Discrete-variable representations and their utilization. Adv Chem Phys 2000; 114: 263–310
  • Zhang P, Feist J, Rubio A, et al. Ab initio nanoplasmonics: the impact of atomic structure. Phys Rev B. 2014;90:161407.
  • Ullrich C. Time-Dependent Density Functional Theory. Oxford: Oxford Univeristy Press; 2012.
  • Runge E, Gross EKU. Density-Functional Theory for time-dependent systems. Phys Rev Lett. 1984;52:997.
  • Frisch MJT,GW, Schlegel HB, Scuseria GE, et al. Gaussian 09, Revision D.01. Wallingford, CT: Gaussian, Inc; 2009.
  • Clark SJ, Segall MD, Pickard CJ, et al. First principles methods using CASTEP. Zeitschrift Fuer Kristallographie. 2005;220:567–570.
  • Blum V, Gehrke R, Hanke F, et al. Ab initio molecular simulations with numeric atom-centered orbitals. Comput Phys Commun. 2009;180:2175–2196.
  • Yan J, Mortensen JJ, Jacobsen KW, et al. Linear density response function in the projector augmented wave method: applications to solids, surfaces, and interfaces. Phys Rev B. 2011;83:245122.
  • Koval P, Marchesin F, Foerster D, et al. Optical response of silver clusters and their hollow shells from linear-response TDDFT. J Phys. 2016;28:214001.
  • Yan J, Jacobsen KW, Thygesen KS. First-principles study of surface plasmons on Ag(111) and H/Ag(111). Phys Rev B. 2011;84:235430.
  • D’Agostino S, Rinaldi R, Cuniberti G, et al. Density functional tight binding for quantum plasmonics. J Phys Chem C. 2018;122:19756–19766.
  • Asadi-Aghbolaghi N, Rüger R, Jamshidi Z, et al. TD-DFT+TB: an efficient and fast approach for quantum plasmonic excitations. J Phys Chem C. 2020;124:7946–7955.
  • Van Leeuwen RB,E, Baerends EJ. Exchange-correlation potential with correct asymptotic behavior. Phys Rev A. 1994;49:2421–2431.
  • Malola S, Lehtovaara L, Enkovaara J, et al. Birth of the localized surface plasmon resonance in monolayer-protected gold nanoclusters. ACS Nano. 2013;7:10263–10270.
  • Aradi B, Hourahine B, Frauenheim T. DFTB+, a Sparse matrix-based implementation of the DFTB method. J Phys Chem A. 2007;111:5678–5684.
  • Elstner M, Porezag D, Jungnickel G, et al. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys Rev B. 1998;58:7260–7268.
  • Elstner M, Seifert G. Density functional tight binding. Philosophical abbreviate of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2014;372:20120483.
  • Gaus M, Cui Q, Elstner M. DFTB3: extension of the self-consistent-charge Density-Functional Tight-Binding method (SCC-DFTB). J Chem Theory Comput. 2011;7:931–948.
  • Liu Z, Alkan F, Aikens CM. TD-DFTB study of optical properties of silver nanoparticle homodimers and heterodimers. J Chem Phys. 2020;153:144711.
  • Alkan F, Aikens CM. TD-DFT and TD-DFTB investigation of the optical properties and electronic structure of silver nanorods and nanorod dimers. J Phys Chem C. 2018;122:23639–23650.
  • Douglas-Gallardo OA, Soldano GJ, Mariscal MM, et al. Effects of oxidation on the plasmonic properties of aluminum nanoclusters. Nanoscale. 2017;9:17471–17480.
  • Giannone G, Della Sala F, D’Agostino S. Atomistic investigation of hybrid plasmonic systems. Nanomater Nanotechnol. 2019;9:1–8.
  • Baseggio O, Fronzoni G, Stener M. A new time dependent density functional algorithm for large systems and plasmons in metal clusters. J Chem Phys. 2015;143:024106.
  • Baseggio O, de Vetta M, Fronzoni G, et al. Photoabsorption of icosahedral noble metal clusters: an efficient TDDFT approach to large-scale systems. J Phys Chem C. 2016;120:12773–12782.
  • Ang ST, Pal A, Manzhos S. Comparison of optical absorption spectra of organic molecules and aggregates computed from real frequency dependent polarizability to TD-DFT and the dipole approximation. J Chem Phys. 2018;149:044114.
  • Pal A, Arabnejad S, Yamashita K, et al. Influence of the aggregate state on band structure and optical properties of C60 computed with different methods. J Chem Phys. 2018;148:204301.
  • Gunnarsson O, Lundqvist BI. Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism. Phys Rev B. 1976;13:4274.
  • Onida G, Reining L, Rubio A. Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev Mod Phys. 2002;74:601–659.
  • Kuisma M, Sakko A, Rossi TP, et al. Localized surface plasmon resonance in silver nanoparticles: atomistic first-principles time-dependent density-functional theory calculations. Phys Rev B. 2015;91:115431.
  • Kuisma M, Ojanen J, Enkovaara J, et al. Kohn-Sham potential with discontinuity for band gap materials. Phys Rev B. 2010;82:115106.
  • Gritsenko O, Van Leeuwen R, Van Lenthe E, et al. Self-consistent approximation to the Kohn-Sham exchange potential. Phys Rev A. 1995;51:1944–1954.
  • Zhang P, Jin W, Liang W. Size-dependent optical properties of aluminum nanoparticles: from classical to quantum description. J Phys Chem C. 2018;122:10545–10551.
  • López-Lozano X, Barron H, Mottet C, et al. Aspect-ratio- and size-dependent emergence of the surface-plasmon resonance in gold nanorods – an ab initio TDDFT study. Phys Chem Chem Phys. 2014;16:1820–1823.
  • Li J-H, Hayashi M, Guo G-Y. Plasmonic excitations in quantum-sized sodium nanoparticles studied by time-dependent density functional calculations. Phys Rev B. 2013;88:155437.
  • Iida K, Noda M, Ishimura K, et al. First-principles computational visualization of localized surface plasmon resonance in gold nanoclusters. J Phys Chem A. 2014;118:11317–11322.
  • Savage KJ, Hawkeye MM, Esteban R, et al. Revealing the quantum regime in tunnelling plasmonics. Nature. 2012;491:574–577.
  • Scholl JA, Garcia-Etxarri A, Koh AL, et al. Observation of quantum tunneling between two plasmonic nanoparticles. Nano Lett. 2013;13:564–569.
  • Zuloaga J, Prodan E, Nordlander P. Quantum description of the plasmon resonances of a nanoparticle dimer. Nano Lett. 2009;9:887–891.
  • Teperik TV, Nordlander P, Aizpurua J, et al. Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response. Phys Rev Lett. 2013;110:263901.
  • Andersen K, Jensen KL, Mortensen NA, et al. Visualizing hybridized quantum plasmons in coupled nanowires: from classical to tunneling regime. Phys Rev B. 2013;87:235433.
  • Sönnichsen C, Franzl T, Wilk T, et al. Drastic reduction of plasmon damping in gold nanorods. Phys Rev Lett. 2002;88:077402.
  • Liebsch A. Surface-plasmon dispersion and size dependence of Mie resonance: silver versus simple metals. Phys Rev B. 1993;48:11317–11328.
  • Lu JE, Yang C-H, Wang H, et al. Plasmonic circular dichroism of vesicle-like nanostructures by the template-less self-assembly of achiral Janus nanoparticles. Nanoscale. 2018;10:14586–14593.
  • Ilawe NV, Wong BM. Real-time density functional tight binding: a new computational tool for probing electronic properties of plasmonic systems. Tech Connect Briefs. 2018;4:220–223.
  • Mohr S, Ratcliff LE, Genovese L, et al. Accurate and efficient linear scaling DFT calculations with universal applicability. Phys Chem Chem Phys. 2015;17:31360–31370.
  • Bowler DR, Miyazaki T. Calculations for millions of atoms with density functional theory: linear scaling shows its potential. J Phys. 2010;22:074207.
  • Skylaris C-K, Haynes PD, Mostofi AA, et al. Introducing ONETEP: linear-scaling density functional simulations on parallel computers. J Chem Phys. 2005;122:084119.
  • Wang YA, Carter EA. Orbital-free kinetic energy density functional theory. In: Schwartz SD, editor. Theoretical methods in condensed phase chemistry. Norwell MA: Kluwer; 2000. p. 117–184.
  • Constantin LA, Fabiano E, Della Sala F. Semilocal Pauli–Gaussian kinetic functionals for orbital-free density functional theory calculations of solids. J Phys Chem Lett. 2018;9:4385–4390.
  • Luo K, Karasiev VV, Trickey SB. A simple generalized gradient approximation for the noninteracting kinetic energy density functional. Phys Rev B. 2018;98:041111.
  • García-González P, Alvarellos JE, Chacón E. Nonlocal kinetic-energy-density functionals. Phys Rev B. 1996;53:9509.
  • García-González P, Alvarellos JE, Chacón E. Nonlocal symmetrized kinetic-energy density functional: application to simple surfaces. Phys Rev B. 1998;57:4857.
  • Wang L-W, Teter MP. Kinetic-energy functional of the electron density. Phys Rev B. 1992;45:13196.
  • Wang YA, Govind N, Carter EA. Orbital-free kinetic-energy functionals for the nearly free electron gas. Phys Rev B. 1998;58:13465.
  • Chacón E, Alvarellos JE, Tarazona P. Nonlocal kinetic energy functional for nonhomogeneous electron systems. Phys Rev B. 1985;32:7868.
  • González DJ, González LE. Structure and motion at the liquid-vapor interface of some interalkali binary alloys: an orbital-free ab initio study. J Chem Phys. 2009;130:114703.
  • Huang C, Carter EA. Transferable local pseudopotentials for magnesium, aluminum and silicon. Phys Chem Chem Phys. 2008;10:7109–7120.
  • Chen M, Jiang X-W, Zhuang H, et al. Petascale orbital-free density functional theory enabled by small-box algorithms. J Chem Theory Comput. 2016;12:2950–2963.
  • Zhuang H, Chen M, Carter EA. Elastic and thermodynamic properties of complex Mg-Al intermetallic compounds via orbital-free density functional theory. Phys Rev Appl. 2016;5:064021.
  • Zhuang H, Chen M, Carter EA. Prediction and characterization of an Mg-Al intermetallic compound with potentially improved ductility via orbital-free and Kohn-Sham density functional theory. Model Simul Mat Sci Eng. 2017;25:075002.
  • Manzhos S. Machine learning for the solution of the Schrödinger equation. Mach Learn Sci Technol. 2020;1:013002.
  • Golub P, Manzhos S. Kinetic energy densities based on the fourth order gradient expansion: performance in different classes of materials and improvement via machine learning. Phys Chem Chem Phys. 2019;21:378–395.
  • Fujinami M, Kageyama R, Seino J, et al. Orbital-free density functional theory calculation applying semi-local machine-learned kinetic energy density functional and kinetic potential. Chem Phys Lett. 2020;748:137358.
  • Seino J, Kageyama R, Fujinami M, et al. Semi-local machine-learned kinetic energy density functional demonstrating smooth potential energy curves. Chem Phys Lett. 2019;734:136732.
  • Li L, Snyder JC, Pelaschier IM, et al. Understanding machine-learned density functionals. Int J Quantum Chem. 2016;116:819–833.
  • Snyder JC, Rupp M, Hansen K, et al. Orbital-free bond breaking via machine learning. J Chem Phys. 2013;139:224104.
  • Manzhos S, Golub P. Data-driven kinetic energy density fitting for orbital-free DFT: linear vs Gaussian process regression. J Chem Phys. 2020;153:074104.
  • Zhou B, Carter EA. First principles local pseudopotential for silver: towards orbital-free density-functional theory for transition metals. J Chem Phys. 2005;122:184108.
  • Lüder J, Manzhos S. Nonparametric local pseudopotentials with machine learning: a tin pseudopotential built using gaussian process regression. J Phys Chem A. 2020;124:11111–11124.
  • Mori-Sanchez P, Cohen AJ. The derivative discontinuity of the exchange–correlation functional. Phys Chem Chem Phys. 2014;16:14378–14387.
  • Perdew JP, Parr RG, Levy M, et al. Density-Functional Theory for fractional particle number: derivative discontinuities of the energy. Phys Rev Lett. 1982;49:1691–1694.
  • Fetter AL, Walecka JD. Quantum theory of many-particle systems. New York, NY: Courier Dover Publications; 1971.
  • Landau LD, Lifshitz EM, Pitaevskij LP. Statistical physics: part 2: theory of Condensed State. Butterworth-Heinemann. Vol. 9. UK: Oxford; 1980.
  • Van Schilfgaarde M, Kotani T, Faleev S. Quasiparticle self-consistent G W theory. Phys Rev Lett. 2006;96:226402.
  • Jin Y, Su NQ, Yang W. Renormalized singles green’s function for quasi-particle calculations beyond the G0W0 Approximation. J Phys Chem Lett. 2019;10:447–452.
  • Golze D, Dvorak M, Rinke P. The GW compendium: a practical guide to theoretical photoemission spectroscopy. Front Chem. 2019;7:377.
  • Hafner J. Ab-initio simulations of materials using VASP: density-functional theory and beyond. J Comput Chem. 2008;29:2044–2078.
  • Fuchs F, Furthmüller J, Bechstedt F, et al. Quasiparticle band structure based on a generalized Kohn-Sham scheme. Phys Rev B. 2007;76:115109.
  • Deslippe J, Samsonidze G, Strubbe DA, et al.; BerkeleyGW:. A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures. Comput Phys Commun. 2012;183:1269–1289.
  • Guerrini M, Calzolari A, Varsano D, et al. Quantifying the plasmonic character of optical excitations in a molecular J-aggregate. J Chem Theory Comput. 2019;15:3197–3203.
  • Despoja V, Mowbray DJ. Using surface plasmonics to turn on fullerene’s dark excitons. Phys Rev B. 2014;89:195433.
  • Despoja V, Lončarić I, Mowbray DJ, et al. Quasiparticle spectra and excitons of organic molecules deposited on substrates: g0W0 -BSE approach applied to benzene on graphene and metallic substrates. Phys Rev B. 2013;88:235437.
  • Yin J, Krishnamoorthy HN, Adamo G, et al. Plasmonics of topological insulators at optical frequencies. Npg Asia Mater. 2017;9:e425.
  • Nechaev IA, Aguilera I, De Renzi V, et al. Quasiparticle spectrum and plasmonic excitations in the topological insulator Sb2Te3. Phys Rev B. 2015;91:245123.
  • Krasovskii EE, Schattke W. Local field effects in optical excitations of semicore electrons. Phys Rev B. 1999;60:R16251.
  • Liou SC, Chu M-W, Sankar R, et al. Plasmons dispersion and nonvertical interband transitions in single crystal Bi2 Se3 investigated by electron energy-loss spectroscopy. Phys Rev B. 2013;87:085126.
  • Ehrenfest P. Remark about the approached validity of the classic mechanics within the quantum mechanics. Zeitschrift Fuer Physik. 1927;45:455–457.
  • Kuda-Singappulige GU, Wildman A, Lingerfelt DB, et al. Ultrafast nonradiative decay of a dipolar plasmon-like state in naphthalene. J Phys Chem A. 2020;124:9729–9737.
  • Born MO, Oppenheimer R. Zur Quantentheorie der Molekeln. Ann Phys. 1927;389:457–484.
  • Li X, Tully JC, Schlegel HB, et al. Ab initio Ehrenfest dynamics. J Chem Phys. 2005;123:084106.
  • Ojanperä A, Havu V, Lehtovaara L, et al. Nonadiabatic Ehrenfest molecular dynamics within the projector augmented-wave method. J Chem Phys. 2012;136:1–12.
  • Rupp M. Machine learning for quantum mechanics in a nutshell. Int J Quantum Chem. 2015;115:1058–1073.
  • Liu Y, Zhao T, Ju W, et al. Materials discovery and design using machine learning. J Materiom. 2017;3:159–177.
  • McAtee PD, Bukkapatnam STS, Lakhtakia A, Artificial neural network to estimate the refractive index of a liquid infiltrating a chiral sculptured thin film in a sensor chip. Proc SPIE 2019, 11371: 1137103.
  • Moon G, Son T, Lee H, et al. Deep learning approach for enhanced detection of surface plasmon scattering. Anal Chem. 2019;91:9538–9545.
  • Yen S-C, Chen Y-L, Su Y-H. Materials genome evolution of surface plasmon resonance characteristics of Au nanoparticles decorated ZnO nanorods. APL Mater. 2020;8:091109.
  • Neural networks: tricks of the trade. Springer: Berlin Grégoire Montavon, Geneviéve B. Orr, Klaus-Robert Müller, Editors; 1998.
  • Nelson MD, Di Vece M. Using a neural network to improve the optical absorption in halide perovskite layers containing core-shells silver nanoparticles. Nanomaterials. 2019;9:437.
  • James G, Witten D, Hastie T, et al. An Introduction to statistical learning with applications in R. New York NY: Springer Science; 2013.
  • Kramer O. Dimensionality Reduction with Unsupervised Nearest Neighbors. Berlin: Springer; 2013.
  • Malkiel I, Mrejen M, Nagler A, et al. Plasmonic nanostructure design and characterization via deep learning. Light Sci Appl. 2018;7:60.
  • He J, He C, Zheng C, et al. Plasmonic nanoparticle simulations and inverse design using machine learning. Nanoscale. 2019;11:17444.
  • Arzola-Flores JA, González AL. Machine learning for predicting the surface plasmon resonance of perfect and concave gold nanocubes. J Phys Chem C. 2020;124:25447–25454.
  • Purcell EM, Pennypacker CR. Scattering and absorption of light by nonspherical dielectric grains. Astrophys J. 1973;186:705–714.
  • Li X, Shu J, Gu W, et al. Deep neural network for plasmonic sensor modeling. Opt Mater Express. 2019;9:3857–3862.
  • Rasmussen CE, Williams CKI. Gaussian processes for machine learning. Cambridge MA: MIT Press; 2006.
  • Kamath A, Vargas-Hernández RA, Krems RV, et al. Neural networks vs Gaussian process regression for representing potential energy surfaces: a comparative study of fit quality and vibrational spectrum accuracy. J Chem Phys. 2018;148:241702.
  • Boussaidi MA, Ren O, Voytsekhovsky D, et al. Random Sampling High Dimensional Model Representation Gaussian Process Regression (RS-HDMR-GPR) for multivariate function representation: application to molecular potential energy surfaces, J. Phys. Chem A, submitted, invited article. J Phys Chem A. 2020;124:7598–7607.
  • Manzhos S, Yamashita K, Carrington T. Fitting sparse multidimensional data with low-dimensional terms. Comput Phys Commun. 2009;180:2002–2012.