6,170
Views
5
CrossRef citations to date
0
Altmetric
Reviews

Advances toward fieldable atom interferometers

, &
Article: 1946426 | Received 27 Jan 2021, Accepted 15 Jun 2021, Published online: 02 Mar 2022

References

  • Clauser JF. Ultra-high sensitivity accelerometers and gyroscopes using neutral atom matter-wave interferometry. Physica B+C 151, 262 (1988).
  • Kasevich M, Chu S. Atomic interferometry using stimulated Raman transitions. Phys Rev Lett. 1991;67:181.
  • Riehle F, Kisters T, Witte A, et al. Optical Ramsey spectroscopy in a rotating frame: sagnac effect in a matter-wave interferometer. Phys Rev Lett. 1991;67:177.
  • Keith DW, Ekstrom CR, Turchette QA, et al. An interferometer for atoms. Physical Review Letters. 1991;66:2693.
  • Berman PR, Atom Interferometry (Academic Press, 1997) google-Books-ID: D0fDPFAcaMkC.
  • Baudon J, Mathevet R, Robert J. Atomic interferometry. J Phys B-Atomic Mol Optical Phys. 1999;32:R173.
  • Cronin AD, Schmiedmayer J, Pritchard DE. Optics and interferometry with atoms and molecules. Rev Mod Phys. 2009;81:1051.
  • Lepoutre S, Jelassi H, Trenec G, et al. General relativity and gravitation. 2011. 2011;43.
  • Barrett B, Geiger R, Dutta I, et al. The Sagnac effect: 20 years of development in matter-wave interferometry. C R Phys. 2014;15:875.
  • Geiger R, Landragin A, Merlet S, et al. High-accuracy inertial measurements with cold-atom sensors. AVS Quantum Sci. 2020;2:24702.
  • Barrett B, Bertoldi A, Bouyer P. Inertial quantum sensors using light and matter. Phys Scr. 2016;91:53006.
  • Bongs K, Holynski M, Vovrosh J, et al. Taking atom interferometric quantum sensors from the laboratory to real-world applications. Nat Rev Phys. 2019;1:731.
  • Fang J, Qin J. Advances in atomic gyroscopes: a view from inertial navigation applications. Sensors. 2012;12:6331.
  • Robins NP, Altin PA, Debs JE, et al. Atom lasers: production, properties and prospects for precision inertial measurement. Physics Reports. 2013;529:265.
  • Safronova M, Budker D, DeMille D, et al. Search for new physics with atoms and molecules. Rev Mod Phys. 2018;90:25008.
  • Feynman RP. Space-time approach to non-relativistic quantum mechanics. Rev Mod Phys. 1948;20:367.
  • Shankar R, Principles of quantum mechanics (1980), publisher: Plenum.
  • Storey P, Cohen-Tannoudji C. The Feynman path integral approach to atomic interferometry. A tutorial. Journal De Physique II. 1994;4:1999.
  • Schleich WP, Greenberger DM, Rasel EM. A representation-free description of the Kasevich–Chu interferometer: a resolution of the redshift controversy. New J Phys. 2013;15:13007.
  • Lan S-Y, Kuan P-C, Estey B, et al. Influence of the Coriolis force in atom interferometry. Phys Rev Lett. 2012;108:90402.
  • Roura A, Zeller W, Schleich WP. Overcoming loss of contrast in atom interferometry due to gravity gradients. New J Phys. 2014;16:123012.
  • Li J, Huang WC, Fouda M, et al., High sensitivity multi-axes rotation sensing using large momentum transfer point source atom interferometry in Conference on Lasers and Electro-Optics (Optical Society of America, 2020) p. STu3F.3.
  • Martin PJ, Oldaker BG, Miklich AH, et al. Bragg scattering of atoms from a standing light wave. Phys Rev Lett. 1988;60:515.
  • Giltner DM, McGowan RW, Lee SA. Theoretical and experimental study of the Bragg scattering of atoms from a standing light wave. Phys Rev A. 1995;52:3966.
  • Giltner D, McGowan R, Lee S. Atom interferometer based on Bragg scattering from standing light waves. Phys Rev Lett. 1995;75:2638.
  • Ben Dahan M, Peik E, Reichel J, et al. Bloch oscillations of atoms in an optical potential. Phys Rev Lett. 1996;76:4508.
  • Wilkinson SR, Bharucha CF, Madison KW, et al. Observation of atomic Wannier-Stark ladders in an accelerating optical potential. Phys Rev Lett. 1996;76:4512.
  • Peters A, Chung KY, Chu S. High-precision gravity measurements using atom interferometry. Metrologia. 2001;38:25.
  • Stedman GE. Ring-laser tests of fundamental physics and geophysics. Rep Prog Phys. 1997;60:615.
  • Bongs K, Launay R, Kasevich MA. High-order inertial phase shifts for time-domain atom interferometers. Appl Phys B-Lasers Optics. 2006;84:599.
  • Gustavson TL, Bouyer P, Kasevich MA. Dual-atomic-beam matter-wave gyroscope. in Proc. SPIE 3270, Methods for Ultrasensitive Detection (SPIE, 1998) pp. 62–67.
  • Gustavson T, Precision rotation sensing using atom interferometry, Ph.D. thesis, Stanford University (2000).
  • Riehle F, Witte A, Kisters T, et al. Interferometry with Ca atoms. Appl Phys B-Photophys Laser Chem. 1992;54:333.
  • Dubetsky B, Kasevich MA. Atom interferometer as a selective sensor of rotation or gravity. Phys Rev A. 2006;74:23615.
  • Le Gouët J, Mehlstäubler T, Kim J, et al., Limits to the sensitivity of a low noise compact atomic gravimeter. Applied Physics B. 2008;92:133.
  • Joyet A, Di Domenico G, Thomann P. Theoretical analysis of aliasing noises in cold atom Mach-Zehnder interferometers. Eur Phys J D. 2012;66:61.
  • Itano WM, Bergquist JC, Bollinger JJ, et al. Quantum projection noise: population fluctuations in two-level systems. Phys Rev A. 1993;47:3554.
  • Titterton DH, Weston JL. Strapdown inertial navigation technology. 2nd ed. The Institution of Electrical Engineers; 2004.
  • Brouk JDA, Propagation of uncertainty through coning, sculling an scrolling correction for inertial navigation, Master’s thesis, Missouri University of Science and Technology (2019).
  • Shkel A. The Chip-Scale Combinatorial Atomic Navigator. GPS World (2013).
  • Riley W, Howe DA. Handbook of Frequency Stability Analysis. Special Publication (NIST SP) (2008), last Modified: 2020-01-27T16: 28-05:00.
  • Rice H, Kelmenson S, Mendelsohn L. Geophysical navigation technologies and applications in PLANS 2004. Position Location and Navigation Symposium (IEEE Cat. No.04CH37556) (IEEE, Monterey, CA, USA, 2004) pp. 618–624.
  • Biedermann G, McGuinness H, Rakholia A, et al. Atom Interferometry in a Warm Vapor. Phys Rev Lett. 2017;118:163601.
  • Gustavson T, Landragin A, Kasevich M. Rotation sensing with a dual atom-interferometer Sagnac gyroscope. Classical Quantum Gravity. 2000;17:2385.
  • McGuinness HJ, Rakholia AV, Biedermann GW. High data-rate atom interferometer for measuring acceleration. Appl Phys Lett. 2012;100:11106.
  • Avinadav C, Yankelev D, Firstenberg O, et al. Composite-fringe atom interferometry for high-dynamic-range sensing. Phys Rev Appl. 2020;13:54053.
  • Bidel Y, Carraz O, Charrière R, et al. Compact cold atom gravimeter for field applications. Appl Phys Lett. 2013;102:144107.
  • Wu B, Wang Z, Cheng B, et al. The investigation of a μGal-level cold atom gravimeter for field applications. Metrologia. 2014;51:452.
  • Peters A, Chung KY, Chu S. Measurement of gravitational acceleration by dropping atoms. Nature. 1999;400:849.
  • Zhou M-K, Hu Z-K, Duan X-C, et al. Performance of a cold-atom gravimeter with an active vibration isolator. Phys Rev A. 2012;86:43630.
  • Yver-Leduc F, Cheinet P, Fils J, et al. Reaching the quantum noise limit in a high-sensitivity cold-atom inertial sensor. J Opt B: Quantum Semiclassical Opt. 2003;5:S136.
  • Lautier J, Volodimer L, Hardin T, et al. Hybridizing matter-wave and classical accelerometers. Appl Phys Lett. 2014;105:144102.
  • Merlet S, Le Gouët J, Bodart Q, et al. Operating an atom interferometer beyond its linear range. Metrologia. 2009;46:87.
  • Cheiney P, Fouché L, Templier S, et al. Navigation-compatible hybrid quantum accelerometer using a Kalman filter. Phys Rev Appl. 2018;10:34030.
  • Niebauer TM, Sasagawa GS, Faller JE, et al. A new generation of absolute gravimeters. Metrologia. 1995;32:159.
  • Rudolph J, Herr W, Grzeschik C, et al. A high-flux BEC source for mobile atom interferometers. New J Phys. 2015;17:65001.
  • Santarelli G, Audoin C, Makdissi A, et al. Frequency stability degradation of an oscillator slaved to a periodically interrogated atomic resonator. IEEE transactions on ultrasonics, ferroelectrics, and frequency control. 1998;45:887.
  • Jekeli C. Navigation error analysis of atom interferometer inertial sensor. Navigation. 2005;52:1.
  • Cheinet P, Canuel B, Pereira Dos Santos F, et al. Measurement of the Sensitivity Function in a Time-Domain Atomic Interferometer. IEEE transactions on instrumentation and measurement. 2008;57:1141.
  • Gustavson TL, Bouyer P, Kasevich MA. Precision rotation measurements with an atom interferometer gyroscope. Phys Rev Lett. 1997;78:2046.
  • Xue H, Feng Y, Chen S, et al. A continuous cold atomic beam interferometer. J Appl Phys. 2015;117:94901.
  • Black AT, Kwolek J, Fancher C, et al. In: Shahriar SM, Scheuer J, editors. Optical, opto-atomic, and entanglement-enhanced precision metrology II. United States: SPIE, San Francisco; 2020. p. 20.
  • Kasevich MA, Dubetsky B, Kinematic sensors employing atom interferometer phases (2008).
  • Young B, Black A, Boyd M, et al., Cold atom inertial sensors for precision navigation, Joint Navigation Conference, Colorado Springs, Colorado, USA (2011).
  • Biedermann GW, Takase K, Wu X, et al. Zero-dead-time operation of interleaved atomic clocks. Phys Rev Lett. 2013;111:170802.
  • Meunier M, Dutta I, Geiger R, et al. Stability enhancement by joint phase measurements in a single cold atomic fountain. Phys Rev A. 2014;90:63633.
  • Dutta I, Savoie D, Fang B, et al. Continuous cold-atom inertial sensor with 1nrad/sec rotation stability. Phys Rev Lett. 2016;116:183003.
  • Kasevich M, Chu S. Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer. Appl Phys B. 1992;54:321.
  • Kellogg JR, Yu N, Kohel JM, et al. Longitudinal coherence in cold atom interferometry. J Mod Opt. 2007;54:2533.
  • Parazzoli LP, Hankin AM, Biedermann GW. Observation of free-space single-atom matter wave interference. Phys Rev Lett. 2012;109:230401.
  • Hogan JM, Johnson DMS, Kasevich MA. Light-pulse atom interferometry. arXiv:0806.3261 [physics] (2008).
  • Hauth M, Freier C, Schkolnik V, et al. First gravity measurements using the mobile atom interferometer GAIN. Appl Phys B. 2013;113:49.
  • Bidel Y, Zahzam N, Blanchard C, et al. Absolute marine gravimetry with matter-wave interferometry. Nat Commun. 2018;9:627.
  • Bidel Y, Zahzam N, Bresson A, et al. Absolute airborne gravimetry with a cold atom sensor. J Geodesy. 2020;94:20.
  • Kim TH, Yim SH, Shim KM, et al. Spatial-contrast analysis in a cold-atom Sagnac interferometer with a single large Raman beam. Phys Rev A. 2017;95. DOI:10.1103/PhysRevA.95.033632.
  • Sugarbaker A, Dickerson SM, Hogan JM, et al. Enhanced atom interferometer readout through the application of phase shear. Phys Rev Lett. 2013;111:113002.
  • Burke JHT, Deissler B, Hughes KJ, et al. Confinement effects in a guided-wave atom interferometer with millimeter-scale arm separation. Phys Rev A. 2008;78:23619.
  • Dickerson SM, Hogan JM, Sugarbaker A, et al. Multiaxis inertial sensing with long-time point source atom interferometry. Phys Rev Lett. 2013;111:83001.
  • Riedl S, Hoth GW, Pelle B, et al. Compact atom-interferometer gyroscope based on an expanding ball of atoms. J Phys. 2016;723:12058.
  • Hoth GW, Pelle B, Riedl S, et al. Point source atom interferometry with a cloud of finite size. Appl Phys Lett. 2016;109:71113.
  • Avinadav C, Yankelev D, Shuker M, et al. Rotation sensing with improved stability using point-source atom interferometry. Phys Rev A. 2020;102. DOI:10.1103/PhysRevA.102.013326.
  • Döring D, McDonald G, Debs JE, et al. Quantum-projection-noise-limited interferometry with coherent atoms in a Ramsey-type setup. Phys Rev A. 2010;81:43633.
  • Sorrentino F, Bodart Q, Cacciapuoti L, et al. Sensitivity limits of a Raman atom interferometer as a gravity gradiometer. Phys Rev A. 2014;89:23607.
  • Kwolek J, Fancher C, Bashkansky M, et al. Three-dimensional cooling of an atom-beam source for high-contrast atom interferometry. Phys Rev Appl. 2020;13:44057.
  • De Angelis M, Bertoldi A, Cacciapuoti L, et al. Precision gravimetry with atomic sensors. Meas SciTechnol. 2009;20:022001.
  • Romaides AJ, Battis JC, Sands RW, et al. A comparison of gravimetric techniques for measuring subsurface void signals. J Phys D Appl Phys. 2001;34:433.
  • Libby SB, Sonnad V, Kreek SA, et al., Feasibility study of a passive, standoff detector of high density masses with a gravity gradiometer based on atom interferometry, Tech Rep, 2011; LLNL-TR-465878 (Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  • Visser P. Gravity field determination with GOCE and GRACE. AdvSpace Res. 1999;23:771.
  • Jekeli C. Precision free-inertial navigation with gravity compensation by an onboard gradiometer. J Guidance Control Dyn. 2006;29:704.
  • Pavlis NK, Holmes SA, Kenyon SC, et al. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res. 2012;117:10.1029/2011JB008916 eprint: The development and evaluation of the Earth Gravitational Model 2008 (EGM2008)
  • Wu L, Wang H, Chai H, et al. Performance evaluation and analysis for gravity matching aided navigation. Sensors. 2017;17:769.
  • Müller H, Chiow S-W, Herrmann S, et al. Atom-interferometry tests of the isotropy of post-Newtonian gravity. Phys Rev Lett. 2008;100:31101.
  • Kovachy T, Asenbaum P, Overstreet C, et al. Quantum superposition at the half-metre scale. Nature. 2015;528:530.
  • Farah T, Guerlin C, Landragin A, et al. Underground operation at best sensitivity of the mobile LNE-SYRTE cold atom gravimeter. Gyroscopy and navigation. 2014;5:266.
  • Hu Z-K, Sun B-L, Duan X-C, et al. Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter. Phys Rev A. 2013;88:43610.
  • Hu -Q-Q, Freier C, Leykauf B, et al. Mapping the absolute magnetic field and evaluating the quadratic Zeeman-effect-induced systematic error in an atom interferometer gravimeter. Phys Rev A. 2017;96:33414.
  • Fils J, Leduc F, Bouyer P, et al. Influence of optical aberrations in an atomic gyroscope. Eur Phys J D. 2005;36:257.
  • Louchet-Chauvet A, Farah T, Bodart Q, et al. The influence of transverse motion within an atomic gravimeter. New J Phys. 2011;13:65025.
  • Schkolnik V, Leykauf B, Hauth M, et al. The effect of wavefront aberrations in atom interferometry. Appl Phys B. 2015;120:311.
  • Snadden M, McGuirk J, Bouyer P, et al. Measurement of the Earth’s Gravity Gradient with an Atom Interferometer-Based Gravity Gradiometer. Phys Rev Lett. 1998;81:971.
  • McGuirk JM, Foster GT, Fixler JB, et al. Sensitive absolute-gravity gradiometry using atom interferometry. Phys Rev A. 2002;65:33608.
  • Bertoldi A, Lamporesi G, Cacciapuoti L, et al. Atom interferometry gravity-gradiometer for the determination of the Newtonian gravitational constant G. Eur Phys J D. 2006;40:271.
  • Biedermann GW, Wu X, Deslauriers L, et al. Testing gravity with cold-atom interferometers. Phys Rev A. 2015;91:33629.
  • Wu X, Pagel Z, Malek BS, et al. Gravity surveys using a mobile atom interferometer. Sci Adv. 2019;5:eaax0800.
  • Janvier C, Ménoret V, Lautier J, et al., in EGU General Assembly Conference Abstracts, EGU General Assembly Conference Abstracts (2020) p. 9185.
  • Bodart Q, Merlet S, Malossi N, et al. A cold atom pyramidal gravimeter with a single laser beam. Appl Phys Lett. 2010;96:134101.
  • Gillot P, Francis O, Landragin A, et al. Stability comparison of two absolute gravimeters: optical versus atomic interferometers. Metrologia. 2014;51:L15.
  • Freier C, Hauth M, Schkolnik V, et al. Mobile quantum gravity sensor with unprecedented stability. J Phys. 2016;723:12050.
  • Fang B, Dutta I, Gillot P, et al. Metrology with Atom Interferometry: Inertial Sensors from Laboratory to Field Applications. J Phys. 2016;723:12049.
  • Wang S-K, Zhao Y, Zhuang W, et al. Shift evaluation of the atomic gravimeter NIM-AGRb-1 and its comparison with FG5X. Metrologia. 2018;55:360.
  • Ménoret V, Vermeulen P, Le Moigne N, et al. Gravity measurements below 10−9 g with a transportable absolute quantum gravimeter. Sci Rep. 2018;8:12300.
  • Heine N, Matthias J, Sahelgozin M, et al. A transportable quantum gravimeter employing delta-kick collimated Bose–Einstein condensates. Eur Phys J D. 2020;74:174.
  • McGilligan JP, Griffin PF, Elvin R, et al. Grating chips for quantum technologies. Sci Rep. 2017;7:384.
  • AOSense, Inc., Gravimeter, (2020), [cited 2020-12-30]. https://aosense.com/product/gravimeter
  • M-Squared Gravimetry Q, (2020), [cited 2020-12-30]. https://www.m2lasers.com/images/M_Squared_Gravimeter_Handout_Web.pdf
  • Muquans, Absolute quantum gravimeter, (2020), [cited 2020-12-30]. https://www.muquans.com/wp-content/uploads/2019/03/muquans_aqg.pdf
  • Wu X, Gravity gradient survey with a mobile atom interferometer, Ph.D. thesis, Stanford University (2009).
  • Weiner S, Wu X, Pagel Z, et al., A Flight Capable Atomic Gravity Gradiometer With a Single Laser in 2020 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL) (IEEE, Hiroshima, Japan, 2020) pp. 1–3.
  • Abend S, Gebbe M, Gersemann M, et al. Atom-chip fountain gravimeter. Phys Rev Lett. 2016;117:203003.
  • Hughes KJ, Burke JHT, Sackett CA. Suspension of atoms using optical pulses, and application to gravimetry. Phys Rev Lett. 2009;102:150403.
  • Charrière R, Cadoret M, Zahzam N, et al. Local gravity measurement with the combination of atom interferometry and Bloch oscillations. Phys Rev A. 2012;85:13639.
  • Andia M, Jannin R, Nez F, et al. Compact atomic gravimeter based on a pulsed and accelerated optical lattice. Phys Rev A. 2013;88:31605.
  • Xu V, Jaffe M, Panda CD, et al. Probing gravity by holding atoms for 20 seconds. Science. 2019;366:745. arXiv: 1907.03054.
  • Butts DL, Kinast JM, Timmons BP, et al. Light pulse atom interferometry at short interrogation times. J Opt Soc Am B. 2011;28:416.
  • Stoner R, Butts D, Kinast J, et al. Analytical framework for dynamic light pulse atom interferometry at short interrogation times. J Opt Soc Am B. 2011;28:2418.
  • Geiger R, Ménoret V, Stern G, et al. Detecting inertial effects with airborne matter-wave interferometry. Nat Commun. 2011;2:474.
  • Weiss DS, Young BC, Chu S. Precision measurement of the photon recoil of an atom using atomic interferometry. Phys Rev Lett. 1993;70:2706.
  • McGuirk J, Snadden M, Kasevich M. Large Area Light-Pulse Atom Interferometry. Phys Rev Lett. 2000;85:4498.
  • Müller H, Chiow S-W, Herrmann S, et al. Atom Interferometers with Scalable Enclosed Area. Phys Rev Lett. 2009;102:240403.
  • Chiow S-W, Kovachy T, Chien H-C, et al. 102 hˉk Large Area Atom Interferometers. Phys Rev Lett. 2011;107:130403.
  • Debs JE, Altin PA, Barter TH, et al. Cold-atom gravimetry with a Bose-Einstein condensate. Phys Rev A. 2011;84:33610.
  • Altin PA, Johnsson MT, Negnevitsky V, et al. Precision atomic gravimeter based on Bragg diffraction. New J Phys. 2013;15:23009.
  • Hamilton P, Jaffe M, Brown JM, et al. Atom interferometry in an optical cavity. Phys Rev Lett. 2015;114:100405.
  • Hartmann S, Jenewein J, Giese E, et al. Regimes of atomic diffraction: raman versus Bragg diffraction in retroreflective geometries. Phys Rev A. 2020;101:53610.
  • Leveque T, Gauguet A, Michaud F, et al. Enhancing the area of a Raman atom interferometer using a versatile double-diffraction technique. Phys Rev Lett. 2009;103. DOI:10.1103/PhysRevLett.103.080405.
  • Malossi N, Bodart Q, Merlet S, et al. Double diffraction in an atomic gravimeter. Phys Rev A. 2010;81:13617.
  • Ahlers H, Müntinga H, Wenzlawski A, et al. Double Bragg Interferometry. Phys Rev Lett. 2016;116:173601.
  • Gersemann M, Gebbe M, Abend S, et al. Differential interferometry using a Bose-Einstein condensate. The European Physical Journal. 2020;D 74:203.
  • Cladé P, Guellati-Khélifa S, Schwob C, et al. A promising method for the measurement of the local acceleration of gravity using Bloch oscillations of ultracold atoms in a vertical standing wave. Europhys Lett (EPL). 2005;71:730.
  • Ferrari G, Poli N, Sorrentino F, et al. Long-lived Bloch oscillations with bosonic Sr atoms and application to gravity measurement at the micrometer scale. Phys Rev Lett. 2006;97:60402.
  • Poli N, Wang F-Y, Tarallo MG, et al. Precision measurement of gravity with cold atoms in an optical lattice and comparison with a classical gravimeter. Phys Rev Lett. 2011;106:38501.
  • Cladé P, Guellati-Khélifa S, Nez F, et al. Large momentum beam splitter using Bloch oscillations. Phys Rev Lett. 2009;102:240402.
  • Gebbe M, Atom interferometry in a twin lattice, Ph.D. thesis, University of Bremen (2020).
  • Perreault JD, Cronin AD. Measurement of atomic diffraction phases induced by material gratings. Phys Rev A. 2006;73:33610.
  • Büchner M, Delhuille R, Miffre A, et al. Diffraction phases in atom interferometers. Phys Rev A. 2003;68:13607.
  • Parker RH, Yu C, Estey B, et al. Controlling the multiport nature of Bragg diffraction in atom interferometry. Phys Rev A. 2016;94:53618.
  • Estey B, Yu C, Müller H, et al. High-resolution atom interferometers with suppressed diffraction phases. Phys Rev Lett. 2015;115:83002.
  • Gochnauer D, McAlpine KE, Plotkin-Swing B, et al. Bloch-band picture for light-pulse atom diffraction and interferometry. Phys Rev A. 2019;100:43611.
  • Hu L, Poli N, Salvi L, et al. Atom interferometry with the Sr optical clock transition. Phys Rev Lett. 2017;119:263601.
  • Mazzoni T, Zhang X, Del Aguila R, et al. Large-momentum-transfer Bragg interferometer with strontium atoms. Phys Rev A. 2015;92:53619.
  • Hu L, Wang E, Salvi L, et al. Classical and quantum gravity. 2020;37:14001.
  • Rudolph J, Wilkason T, Nantel M, et al. Large Momentum Transfer Clock Atom Interferometry on the 689 nm Intercombination Line of Strontium. Phys Rev Lett. 2020;124:83604.
  • Carnal O, Mlynek J. Young’s double-slit experiment with atoms: a simple atom interferometer. Phys Rev Lett. 1991;66:2689.
  • Lenef A, Hammond TD, Smith ET, et al. Rotation sensing with an atom interferometer. Phys Rev Lett. 1997;78:760.
  • Gauguet A, Canuel B, Leveque T, et al. Characterization and limits of a cold-atom Sagnac interferometer. Phys Rev A. 2009;80. DOI:10.1103/Phys-RevA.80.063604.
  • Li X, Shao C-G, Hu Z-K. Raman pulse duration effect in high-precision atom interferometry gravimeters. J Opt Soc Am B. 2015;32:248.
  • Tan Y-J, Zhao -M-M, Wang -P-P, et al. Improved Raman pulse sequence for rotation measurements with atom interferometers. Metrologia. 2020;57:035006.
  • Durfee DS, Shaham YK, Kasevich MA. Long-term stability of an area-reversible atom-interferometer Sagnac gyroscope. Phys Rev Lett. 2006;97. DOI:10.1103/PhysRevLett.97.240801.
  • Kasevich MA, Atom interferometry in an atomic fountain, Ph.D. thesis, Stanford University (1992).
  • DeSavage SA, Gordon KH, Clifton EM, et al. Raman resonances in arbitrary magnetic fields. J Mod Opt. 2011;58:2028.
  • DeSavage SA, Davis JP, Narducci FA. Controlling Raman resonances with magnetic fields. J Mod Opt. 2013;60:95.
  • Manicchia MP, Lee J, Welch GR, et al. Construction and characterization of a continuous atom beam interferometer. J Mod Opt. 2020;67:69.
  • Stockton JK, Takase K, Kasevich MA. Absolute geodetic rotation measurement using atom interferometry. Phys Rev Lett. 2011;107. DOI:10.1103/PhysRevLett.107.133001.
  • Savoie D, Altorio M, Fang B, et al. Interleaved atom interferometry for high-sensitivity inertial measurements. Sci Adv. 2018;4:eaau7948.
  • Müller T, Gilowski M, Zaiser M, et al. A compact dual atom interferometer gyroscope based on laser-cooled rubidium. Eur Phys J D. 2009;53:273.
  • Tackmann G, Berg P, Abend S, et al. Large-area Sagnac atom interferometer with robust phase read out. C R Phys. 2014;15:884.
  • Tackmann G, Schubert C, Berg P, et al., Large area Sagnac interferometer based on laser-cooled atoms in 2012 Conference on Lasers and Electro-Optics (CLEO), Conference on Lasers and Electro-Optics (2012) : 2160–9020.
  • Tackmann G, Berg P, Schubert C, et al. Self-alignment of a compact large-area atomic Sagnac interferometer. New J Phys. 2012;14:015002.
  • Yao Z-W, Lu S-B, Li R-B, et al. Continuous Dynamic Rotation Measurements Using a Compact Cold Atom Gyroscope. Chin Phys Lett. 2016;33. DOI:10.1088/0256-307X/33/8/083701.
  • Canuel B, Leduc F, Holleville D, et al. Six-Axis Inertial Sensor Using Cold-Atom Interferometry. Phys Rev Lett. 2006;97. DOI:10.1103/PhysRevLett.97.010402.
  • Barrett B, Cheiney P, Battelier B, et al. Phys Rev Lett. 2019;122:043604. DOI:10.1103/PhysRevLett.122.043604.
  • Bochkati M, Schon S, Schlippert D, et al., Could cold atom interferometry sensors be the future inertial sensors? — First simulation results in 2017 DGON Inertial Sensors and Systems (ISS) (IEEE, Karlsruhe, 2017) pp. 1–20.
  • Takase K. Precision rotation rate measurements with a mobile atom interferometer, Ph.D. thesis, Stanford University (2008).
  • Wu X, Zi F, Dudley J, et al. Multiaxis atom interferometry with a single-diode laser and a pyramidal magneto-optical trap. OPTICA. 2017;4:1545.
  • Rice HF, Benischek V, Sczaniecki L. Application of atom interferometric technology for GPS independent navigation and time solutions in 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS) (IEEE, Monterey, CA, 2018) pp. 1097–1106.
  • Zhang L, Gao W, Li Q, et al. A Novel Monitoring Navigation Method for Cold Atom Interference Gyroscope. Sensors. 2019;19:222. DOI:10.3390/s19020222.
  • Sanders S, Taranta A, Mosor S, et al., Fiber optic gyros in a high-performance, high-reliability inertial reference unit for commercial satellites in International Conference on Optical Fiber Sensors (SPIE, 2012).
  • Divakaruni SP, Sanders SJ. Fiber Optic Gyros - A Compelling Choice for High Precision Applications. Optical fiber sensors. 2006.
  • Korkishko YN. Highest bias stability fiber-optic gyroscope SRS-5000. Inertial Sensors and Systems. (Karlsruhe, 2017).
  • De Toldi E. First steps for a Giant FOG: Searching for the limits. Inertial Sensors and Systems. (Karlsruhe, 2017).
  • Gustavson T, Cold Atom Gyros (IEEE, 2013).
  • Sackett CA, Lam TC, Stickney JC, et al. Extreme Adiabatic Expansion in Micro-gravity: modeling for the Cold Atomic Laboratory. Microgravity Sci Technol. 2018;30:155.
  • Aveline DC, Williams JR, Elliott ER, et al. Nature 2020;582:193.
  • Burke J, Broad agency announcement: Atomic Photonic Integration (A-PhI) (2018).
  • Hall DS, Matthews MR, Wieman CE, et al. Measurements of relative phase in two-component Bose-Einstein condensates. Phys Rev Lett. 1998;81:1543.
  • Schumm T, Hofferberth S, Andersson LM, et al. Matter-wave interferometry in a double well on an atom chip. Nat Phys. 2005;1:57.
  • Shin Y, Saba M, Pasquini TA, et al. Atom interferometry with Bose-Einstein condensates in a double-well potential. Phys Rev Lett. 2004;92:50405.
  • Wu S, Su E, Prentiss M. Demonstration of an Area-Enclosing Guided-Atom Interferometer for Rotation Sensing. Phys Rev Lett. 2007;99. DOI:10.1103/PhysRevLett.99.173201.
  • Fortágh J, Zimmermann C. Magnetic microtraps for ultracold atoms. Rev Mod Phys. 2007;79:235.
  • Wang Y-J, Anderson DZ, Bright VM, et al. Atom Michelson interferometer on a chip using a Bose-Einstein condensate. Phys Rev Lett. 2005;94:90405.
  • Qi L, Hu Z, Valenzuela T, et al. Magnetically guided Cesium interferometer for inertial sensing. Appl Phys Lett. 2017;110. DOI:10.1063/1.4980066.
  • Japha Y, Arzouan O, Avishai Y, et al. Using time-reversal symmetry for sensitive incoherent matter-wave Sagnac interferometry. Phys Rev Lett. 2007;99(6):060402.
  • Baker P, Stickney J, Squires M, et al. Adjustable microchip ring trap for cold atoms and molecules. Phys Rev A. 2009;80:063615.
  • Griffin PF, Riis E, Arnold AS. Smooth inductively coupled ring trap for atoms. Phys Rev A. 2008;77:51402.
  • Jo G-B, Shin Y, Will S, et al. Long phase coherence time and number squeezing of two Bose-Einstein condensates on an atom chip. Phys Rev Lett. 2007;98:30407.
  • Henkel C, Kru¨ger P, Folman R, et al. Fundamental limits for coherent manipulation on atom chips. Appl Phys B. 2003;76:173.
  • Squires MB, Olson SE, Kasch B, et al. Ex vacuo atom chip Bose-Einstein condensate. Appl Phys Lett. 2016;109:264101.
  • Dikovsky V, Sokolovsky V, Zhang B, et al. Superconducting atom chips: advantages and challenges. Eur Phys J D. 2009;51:247.
  • Ovchinnikov YB, Ayi-Yovo FE. Towards all-optical atom chips based on optical waveguides. New J Phys. 2020;22:53003.
  • Tabakov B, Benito F, Blain M, et al. Assembling a Ring-Shaped Crystal in a Microfabricated Surface Ion Trap. Phys Rev Appl. 2015;4:31001.
  • Campbell WC, Hamilton P. Rotation sensing with trapped ions. J Phys B. 2017;50:64002.
  • Grond J, Hohenester U, Mazets I, et al. Atom interferometry with trapped Bose–Einstein condensates: impact of atom–atom interactions. New J Phys. 2010;12:65036.
  • Sackett CA. Limits on weak magnetic confinement of neutral atoms. Phys Rev A. 2006;73:13626.
  • McDonald GD, Kuhn CCN, Hardman KS, et al. Bright solitonic matter-wave interferometer. Phys Rev Lett. 2014;113:13002.
  • Zhang X, del Aguila RP, Mazzoni T, et al. Trapped-atom interferometer with ultracold Sr atoms. Phys Rev A. 2016;94:43608.
  • Weidner CA, Yu H, Kosloff R, et al. Atom interferometry using a shaken optical lattice. Phys Rev A. 2017;95:43624.
  • Gaunt AL, Schmidutz TF, Gotlibovych I, et al. Bose-Einstein condensation of atoms in a uniform potential. Phys Rev Lett. 2013;110:200406.
  • Leonard RH, Sackett CA. Effect of trap anharmonicity on a free-oscillation atom interferometer. Phys Rev A. 2012;86:43613.
  • Burke JHT, Sackett CA. Scalable Bose-Einstein-condensate Sagnac interferometer in a linear trap. Phys Rev A. 2009;80:61603.
  • Moan E, Horne R, Arpornthip T, et al. Quantum Rotation Sensing with Dual Sagnac Interferometers in an Atom-Optical Waveguide. Phys Rev Lett. 2020;124:120403.
  • Roy R, Condylis PC, Prakash V, et al. A minimalistic and optimized conveyor belt for neutral atoms. Sci Rep. 2017;7:13660.
  • Johnson J, Foxon B, Atkocius V, et al. Hafele and Keating on a chip: Sagnac interferometry with a single clock in optical, optoatomic, and entanglement-enhanced precision metrology II. 11296: (International Society for Optics and Photonics, 2020).1129631.
  • Ryu C, Samson EC, Boshier MG. Quantum interference of currents in an atomtronic SQUID. Nature Communications 2020;11:3338
  • Krzyanowska K, Ferreras J, Ryu C, et al. Experimental realisation of a BEC waveguide Sagnac atom interferometer. 51st Annual Meeting of the APS Division of Atomic, Molecular and Optical Physics. (Portland, Oregon 2020)