2,594
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Manipulation of matter with shaped-pulse light field and its applications

, , , &
Article: 1949390 | Received 31 Mar 2021, Accepted 15 Jun 2021, Published online: 02 Aug 2021

References

  • Sinha A, Hsiao MC, Crim FF. Bond-selected bimolecular chemistry: h+HOD(4νOH)→OD+H2. J Chem Phys. 1990;92(10):6333.
  • Shapiro M, Brumer P. Laser control of product quantum state populations in unimolecular reactions. J Chem Phys. 1986;84(7):4103.
  • Park SM, Lu S-P, Robert JG. Coherent laser control of the resonance-enhanced multiphoton ionization of HCl. J Chem Phys. 1991;94(12):8622.
  • Zhu L, Kleiman V, Li X, et al. Coherent Laser Control of the Product Distribution Obtained in the Photoexcitation of HI. Science. 1995;270(5233):77.
  • Nagai H, Ohmura H, Ito F, et al. Coherent phase control of the product branching ratio in the photodissociation of dimethylsulfide. J Chem Phys. 2006;124(3):034304.
  • Potter ED, Herek JL, Pedersen S, et al. Femtosecond laser control of a chemical reaction. Nature. 1992;355(6355):66.
  • Herek JL, Materny A, Zewail AH. Femtosecond control of an elementary unimolecular reaction from the transition-state region. Chem Phys Lett. 1994;228:15.
  • Scherer NF, Ruggiero AJ, Du M, et al. Time resolved dynamics of isolated molecular systems studied with phase‐locked femtosecond pulse pairs. J Chem Phys. 1990;93:856.
  • Scherer NF, Carlson RJ, Matro A, et al. Fluorescence-detected wave packet interferometry: time resolved molecular spectroscopy with sequences of femtosecond phase-locked pulses. J Chem Phys. 1991;95(3):1487.
  • Brixner T, Gerber G. Quantum Control of Gas-Phase and Liquid-Phase Femtochemistry. Chemphyschem. 2003;4(5):418.
  • Tannor DJ, Rice SA. Control of selectivity of chemical reaction via control of wave packet evolution. J Chem Phys. 1985;83(10):5013.
  • David RKSAR, Kosloff R, Rice SA. J. Tannor. Coherent pulse sequence induced control of selectivity of reactions: Exact quantum mechanical calculations. J. Chem. Phys. 1986;85:5805.
  • Judson RS, Rabitz H. Teaching lasers to control molecules. Phys Rev Lett. 1992;68(10):1500.
  • Assion A, Baumert T, Bergt M, et al. Control of Chemical Reactions by Feedback-Optimized Phase-Shaped Femtosecond Laser Pulses. Science. 1998;282:919.
  • Levis RJ, Menkir GM, Rabitz H. Selective Bond Dissociation and Rearrangement with Optimally Tailored, Strong-Field Laser Pulses. Science. 2001;292(5517):709.
  • Vajdaa S, Rosendo-Francisco P, Kaposta C, et al. Analysis and control of ultrafast photodissociation processes in organometallic molecules. Eur.Phys. J. D. 2001;16(1):161.
  • Graham P, Menkir G, Levis RJ. An investigation of the effects of experimental parameters on the closed-loop control of photoionization/dissociation processes in acetophenone. Spectrochimica Acta Part B. 2003;58(6):1097.
  • Baumert T, Brixner T, Seyfried V, et al. Femtosecond pulse shaping by an evolutionary algorithm with feedback. Appl. Phys. B-Lasers O. 1997;65:779.
  • Bardeen CJ, Yakovlev VV, Wilson KR, et al. Feedback quantum control of molecular electronic population transfer. Chem Phys Lett. 1997;280(1–2):151.
  • Bartels R, Backus S, Zeek E, et al. Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays. Nature. 2000;406(6792):164.
  • Papastathopoulos E, Strehle M, Gerber G. Optimal control of femtosecond multiphoton double ionization of atomic calcium. Chem Phys Lett. 2005;408(1–3):65.
  • Bartelt A, Lindinger A, Lupulescu C, et al. Optimal control of multi-photon dissociation and ionization processes in small NamKnclusters. PhysChem Chem Phys. 2004;6(8):1679.
  • Lindinger A, Lupulescu C, Bartelt A, et al. Coherent control of alkali cluster fragmentation dynamics. Spectrochimica Acta Part B. 2003;58(6):1109.
  • Yokoyama K, Teranishi Y, Toya Y, et al. Optimal control of ultrafast selection. J Chem Phys. 2004;120(20):9446.
  • Rabitz H. The role of theory in the laboratory control of quantum dynamics phenomena. Theory Chem Acc. 2003;109(2):64.
  • Ho T-S, Rabitz H. Why do effective quantum controls appear easy to find? J. Photoch. Photobio. A. 2006;180(3):226.
  • Geremia JM, Zhu WS, Rabitz H. Incorporating physical implementation concerns into closed loop quantum control experiments. J Chem Phys. 2000;113(24):10841.
  • Mitraa A, Rabitz H. Quantum control mechanism analysis through field based Hamiltonian encoding. J Chem Phys. 125(19):194107.
  • Vogt G, Nuernberger P, Selle R, et al. Analysis of femtosecond quantum control mechanisms with colored double pulses. Phys Rev A. 2006;74(3):033413.
  • Nuernberger P, Vogt G, Brixner T, et al. Femtosecond quantum control of molecular dynamics in the condensed phase. Phys Chem Chem Phys. 2007;9:2470.
  • Engel GS, Calhoun TR, Read EL, et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature. 2007;446(7137):782.
  • Herek JL, Wohlleben W, Cogdell RJ, et al. Quantum control of energy flow in light harvesting. Nature. 2002;417(6888):533.
  • Prokhorenko VI, Nagy AM, Waschuk SA, et al. Coherent Control of Retinal Isomerization in Bacteriorhodopsin. Science. 2006;313(5791):1257.
  • Kuroda DG, Singh CP, Peng ZH, et al. Mapping Excited-State Dynamics by Coherent Control of a Dendrimer’s Photoemission Efficiency. Science. 2009;326:263.
  • Wattellier B, Sauteret C, Chanteloup JC, et al. Beam-focus shaping by use of programmable phase-only filters: application to an ultralong focal line. Opt Lett. 27:213.
  • Mosk AP, Lagendijk A, Lerosey G, et al. Controlling waves in space and time for imaging and focusing in complex media. Nat Photonics. 2012;6:283.
  • Haner M, Warren WS. Synthesis of crafted optical pulses by time domain modulation in a fiber-grating compressor. Appl Phys Lett. 1988;52(18):1458.
  • Weiner AM. Femtosecond pulse shaping using spatial light modulators. Rev Sci Instrum. 2000;71(5):1929.
  • Weiner AM, Heritage JP, Kirschner EM. High-resolution femtosecond pulse shaping. J Opt Soc Am B. 1988;5:1563.
  • Weiner AM, Leaird DE, Patel JS, et al. Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator. Opt Lett. 1990;15(6):326.
  • Weiner AM, Leaird DE, Patel JS, et al. Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator. IEEE J. Quantum Elect. 1992;28(4):908.
  • Wefers MM, Nelson KA. Ultrafast Optical Waveforms. Science. 1993;262(5138):1381.
  • Marc MW, Keith AN. Programmable phase and amplitude femtosecond pulse shaping. Opt Lett. 1993;18(23):2032.
  • Marc MW, Keith AN. Generation of high-fidelity programmable ultrafast optical waveforms. Opt Lett. 1995;20(9):1047.
  • Hillegas CW, Tull JX, Goswami D, et al. Femtosecond laser pulse shaping by use of microsecond radio-frequency pulses. Opt Lett. 1994;19(10):737.
  • Ren Y-X, Lu R-D, Gong L. Tailoring light with a digital micromirror device. Ann. Phys.-Berlin. 2015;527(7–8):447.
  • Daniel JK, Rick T. Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating. IEEE J. Quantum Elect. 1993;29(2):571.
  • Iaconis C, Walmsley IA. Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses. Opt Lett. 1998;23(10):792.
  • Lozovoy VV, Pastirk I, Dantus M. Multiphoton intrapulse interference IV Ultrashort laser pulse spectral phase characterization and compensation. Opt Lett. 2004;29:775.
  • Pastirk I, Resan B, Fry A, et al. No loss spectral phase correction and arbitrary phase shaping of regeneratively amplified femtosecond pulses using MIIPS. Opt Express. 2006;14(20):9537.
  • Fetterman MR, Goswami D, Keusters D, et al. Ultrafast pulse shaping: amplification and characterization. Opt Express. 1998;3(10):366.
  • Roth M, Mehendale M, Bartelt A, et al. Acousto-optical shaping of ultraviolet femtosecond pulses. Appl. Phys. B-Lasers O. 2005;80(4–5):441.
  • Parker DSN, Nunn ADG, Minns RS, et al. Frequency doubling and Fourier domain shaping the output of a femtosecond optical parametric amplifier: easy access to tuneable femtosecond pulse shapes in the deep ultraviolet. Appl. Phys. B-Lasers O. 2009;94(2):181.
  • Nuernberger P, Selle R, Langhojer F, et al. Polarization-shaped femtosecond laser pulses in the ultraviolet. Journal of Optics a-Pure and Applied Optics. 2009;11(8):085202.
  • Hertz E, Billard F, Karras G, et al. Shaping of ultraviolet femtosecond laser pulses by Fourier domain harmonic generation. Opt Express. 24(24):27702.
  • Shimizu S, Nabekawa Y, Obara M, et al. Spectral phase transfer for indirect phase control of sub-20-fs deep UV pulses. Opt Express. 2005;13(17):6345.
  • Lazzarino LL, Kazemi MM, Haunhorst C, et al. Shaping femtosecond laser pulses at short wavelength with grazing-incidence optics. Opt Express. 2019;27:13479.
  • Krogen P, Suchowski H, Liang HK, et al. Generation and multi-octave shaping of mid-infrared intense single-cycle pulses. Nat Photonics. 2017;11(4):222.
  • Maksimenka R, Nuernberger P, Lee KF, et al. Direct mid-infrared femtosecond pulse shaping with a calomel acousto-optic programmable dispersive filter. Opt Lett. 2010;35(21):3565.
  • Shim SH, Strasfeld DB, Fulmer EC, et al. Femtosecond pulse shaping directly in the mid-IR using acousto-optic modulation. Opt Lett. 2006;31(6):838.
  • Ma J, Li Q, Zhou W, et al. Progress of Terahertz Pulse Shaping Techniques. Laser Optoelectron Prog. 2012;49:090004.
  • Hoffmann MC, Grguras I, Behrens C, et al. Femtosecond profiling of shaped x-ray pulses. New J Phys. 2018;20(3):033008.
  • Misawa K. Applications of polarization-shaped femtosecond laser pulses. Adv. Phys.-X. 2016;1:544.
  • Kakehata M, Ueda R, Takada H, et al. Combination of high-intensity femtosecond laser pulses for generation of time-dependent polarization pulses and ionization of atomic gas. Appl. Phys. B-Lasers O. 2000;70:s207.
  • Villeneuve DM, Aseyev SA, Dietrich P, et al. Forced Molecular Rotation in an Optical Centrifuge. Phys Rev Lett. 2000;85:542.
  • Kitzler M, Lezius M. Spatial Control of Recollision Wave Packets with Attosecond Precision. Phys Rev Lett. 2005;95(25):253001.
  • Shafir D, Mairesse Y, Villeneuve DM, et al. Atomic wavefunctions probed through strong-field light–matter interaction. Nat Phys. 2009;5:412.
  • Brixner T, Gerber G. Femtosecond polarization pulse shaping. Opt Lett. 2001;26(8):557.
  • Brixner T, Krampert G, Niklaus P, et al. Generation and characterization of polarization-shaped femtosecond laser pulses. Appl. Phys. B-Lasers O. 2002;74:s133.
  • Plewicki M, Weise F, Weber SM, et al. Phase, amplitude, and polarization shaping with a pulse shaper in a Mach-Zehnder interferometer. Appl. Optics. 2006;45(32):8354.
  • Plewicki M, Weber SM, Weise F, et al. Independent control over the amplitude, phase, and polarization of femtosecond pulses. Appl. Phys. B-Lasers O. 2007;86:259.
  • Weise F, Lindinger A. Full parametric pulse shaping in phase, amplitude, and polarization using an effective four-array modulator. Appl. Phys. B-Lasers O. 2010;101(1–2):79.
  • Esumi Y, Kabir MD, Kannari F. Spatiotemporal vector pulse shaping
of femtosecond laser pulses with a multi-pass
two-dimensional spatial light modulator. Opt Express. 2009;17:19153.
  • Zhao Z, Wang J, Li S, et al. Metamaterials-based broadband generation of orbital angular momentum carrying vector beams. Opt Lett. 2013;38(6):932.
  • Harris H, Hill CA, Tapster PR. Tapster, and Vaughan, Physical review. A, Atomic, molecular, and optical physics. 1994;49(4):3119.
  • Strain MJ, Cai X, Wang J, et al. Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters. Nat Commun. 2014;5:4856.
  • Cai X, Wang J, Strain MJ, et al. Integrated Compact Optical Vortex Beam Emitters. Science. 2012;338(6105):363.
  • Du LP, Man ZS, Zhang YQ, et al. Manipulating orbital angular momentum of light with tailored in-plane polarization states. Sci Rep. 2017;7:41001.
  • Chen SQ, Liu WW, Li ZC, et al. Metasurface-Empowered Optical Multiplexing and Multifunction. Adv Mater. 2020;32(3):1805912.
  • Li ZC, Liu WW, Cheng H, et al. Spin-Selective Full-Dimensional Manipulation of Optical Waves with Chiral Mirror. Adv Mater. 2020;32(26):1907983.
  • Liu WW, Ma DN, Li ZC, et al. Aberration-corrected three-dimensional positioning with a single-shot metalens array. Optica. 2020;7(12):1706.
  • Bruhl E, Buckup T, Motzkus M. Minimization of 1/f^n phase noise in liquid crystal masks for reliable femtosecond pulse shaping. Opt Express. 2017;25(19):23376.
  • Dinda S, Bandyopadhyay SN, Goswami D. Rapid programmable pulse shaping of femtosecond pulses at the MHz repetition rate. OSA Contin. 2019;2(4):1386.
  • Yushkov KB, Molchanov VY. Randomly Spaced Phase-Only Transmission Combs for Femtosecond Pulse Shaping. IEEE J. Sel. Top. Quant. 2020;26(5):8700108.
  • Kohler J, Wollenhaupt M, Bayer T, et al. Zeptosecond precision pulse shaping. Opt Express. 2011;19(12):11638.
  • Yakovlev VV, Bardeen CJ, Che J, et al. Chirped pulse enhancement of multiphoton absorption in molecular iodine. J Chem Phys. 1998;108(6):2309.
  • Song Y-D, Chen Z, Yang X, et al. Control of the photoionization/photodissociation processes of cyclopentanone with trains of femtosecond laser pulses. Chinese Phys B. 2013;22:103301.
  • Mildner J, Sarpe C, Gotte N, et al. Emission signal enhancement of laser ablation of metals (aluminum and titanium) by time delayed femtosecond double pulses from femtoseconds to nanoseconds. Appl Surf Sci. 2014;302:291.
  • Hu Z, Singha S, Liu Y, et al. Mechanism for the ablation of Si⟨111⟩ with pairs of ultrashort laser pulses. Appl Phys Lett. 2007;90(13):131910.
  • Hu Z, Singha S, Zhao YB, et al. Coherent Control of the Photoionization of Pyrazine. J Phys Chem Lett. 2012;3:2744.
  • Gordon RJ, Hu Z, Seideman T, et al. Coherent phase control of internal conversion in pyrazine. J Chem Phys. 2015;142(14):144311.
  • Avalos MN, Babiano R, Cintas P, et al. Absolute Asymmetric Synthesis under Physical Fields:  facts and Fictions. Chem Rev. 1998;98:2391.
  • Yachmenev A, Yurchenko SN. Detecting Chirality in Molecules by Linearly Polarized Laser Fields. Phys Rev Lett. 2016;117(3):033001.
  • Gershnabel E, Averbukh IS. Orienting Asymmetric Molecules by Laser Fields with Twisted Polarization. Phys Rev Lett. 2018;120(8):083204.
  • Tutunnikov I, Gershnabel E, Gold S, et al. Selective Orientation of Chiral Molecules by Laser Fields with Twisted Polarization. J Phys Chem Lett. 2018;9(5):1105.
  • Milner AA, Fordyce JAM, MacPhail-Bartley I, et al. Controlled Enantioselective Orientation of Chiral Molecules with an Optical Centrifuge. Phys Rev Lett. 2019;122(22):223201.
  • Ohmura H, Ito F, Tachiya M. Phase-sensitive molecular ionization induced by a phase-controlled two-color laser field in methyl halides. Phys Rev A. 2006;74(4):043410.
  • Hoki K, Kröner D, Manz J. Selective preparation of enantiomers from a racemate by laser pulses: model simulation for oriented atropisomers with coupled rotations and torsions. Chem Phys. 2001;267(1–3):59.
  • Li Y, Bruder C. Dynamic method to distinguish between left- and right-handed chiral molecules. Phys Rev A. 2008;77(1):015403.
  • Cardoza D, Baertschy M, Weinacht T. Understanding learning control of molecular fragmentation. Chem Phys Lett. 2005;411(4–6):311.
  • Cruz JMD, Lozovoy VV, Dantus M. Quantitative Mass Spectrometric Identification of Isomers Applying Coherent Laser Control. J Phys Chem A. 2005;109(38):8447.
  • Chen Z, Tong Q-N, Zhang -C-C, et al. Identification of isomers and control of ionization and dissociation processes using dual-mass-spectrometer scheme and genetic algorithm optimization. Chinese Phys B. 2015;24(4):043303.
  • Kotur M, Weinacht T, Pearson BJ, et al. Closed-loop learning control of isomerization using shaped ultrafast laser pulses in the deep ultraviolet. J Chem Phys. 2009;130:134311.
  • Stapelfeldt H, Seideman T. Colloquium: aligning molecules with strong laser pulse. Rev Mod Phys. 2003;75(2):543.
  • Seideman T, Hamilton E. Advances in Atomic. Molecular and Optical Physics. 2006;52:289.
  • Leibscher M, Averbukh IS, Rabitz H. Molecular Alignment by Trains of Short Laser Pulses. Phys Rev Lett. 2003;90(21):213001.
  • Ortigoso J. Conservation of Molecular Alignment for Cyclic Rotational Wave Packets in Periodic Pulse Trains. Phys Rev Lett. 2004;93(7):073001.
  • Leibscher M, Averbukh IS, Rabitz H. Enhanced molecular alignment by short laser pulses. Phys Rev A. 2004;69(1):013402.
  • Zeng GP, Zhong FJ, Wu CY, et al. Field-free molecular alignment and its application. Laser Phys. 2009;19(8):1691.
  • Zhang S, Lu C, Jia T, et al. Manipulation of molecular rotational dynamics with multiple laser pulses. Phys Chem Chem Phys. 2012;14(34):11994.
  • Rouzee A, Hertz E, Lavorel B, et al. Towards the adaptive optimization of field-free molecular alignment. J. Phys. B-At. Mol. Opt. 2008;41(7):074002.
  • Hertz E, Rouzee A, Guerin S, et al. Optimization of field-free molecular alignment by phase-shaped laser pulses. Phys Rev A. 2007;75(3):031403.
  • Bisgaard CZ, Poulsen MD, Peronne E, et al. Observation of Enhanced Field-Free Molecular Alignment by Two Laser Pulses. Phys Rev Lett. 2004;92(17):173004.
  • Lee KF, Litvinyuk IV, Dooley PW, et al. Two-pulse alignment of molecules. J. Phys. B-At. Mol. Opt. 2004;37(3):l43.
  • Artamonov M, Seideman T. Optimal-control approach to field-free three-dimensional alignment of polyatomic molecules. Phys Rev A. 2010;82(2):023413.
  • Viftrup SS, Kumarappan V, Trippel S, et al. Holding and Spinning Molecules in Space. Phys Rev Lett. 2007;99(14):143602.
  • Lee KF, Villeneuve DM, Corkum PB, et al. Field-Free Three-Dimensional Alignment of Polyatomic Molecules. Phys Rev Lett. 2006;97:173001.
  • Zhdanovich S, Milner AA, Bloomquist C, et al. Control of Molecular Rotation with a Chiral Train of Ultrashort Pulses. Phys Rev Lett. 2011;107(24):243004.
  • Bloomquist C, Zhdanovich S, Milner AA, et al. Directional spinning of molecules with sequences of femtosecond pulses. Phys Rev A. 2012;86(6):063413.
  • Lapert M, Hertz E, Guerin S, et al. Field-free permanent molecular planar alignment. Phys Rev A. 2009;80(5):051403.
  • Abe H, Ohtsuki Y. Development of nonresonant optimal control simulation to include polarization effects of laser pulses. Chem Phys. 2012;400:13.
  • Wells E, Rallis CE, Zohrabi M, et al. Adaptive strong-field control of chemical dynamics guided by three-dimensional momentum imaging. Nat Commun. 2013;4(1):2895.
  • Alnaser AS, Kubel M, Siemering R, et al. Subfemtosecond steering of hydrocarbon deprotonation through superposition of vibrational modes. Nat Commun. 2014;5:3800.
  • Blaga CI, Catoire F, Colosimo P, et al. Strong-field photoionization revisited. Nat Phys. 2009;5(5):335.
  • Quan W, Lin Z, Wu M, et al. Classical Aspects in Above-Threshold Ionization with a Midinfrared Strong Laser Field. Phys Rev Lett. 2009;103:093001.
  • Mancuso CA, Dorney KM, Hickstein DD, et al. Controlling Nonsequential Double Ionization in Two-Color Circularly Polarized Femtosecond Laser Fields. Phys Rev Lett. 2016;117(13):133201.
  • Eckart S, Richter M, Kunitski M, et al. Nonsequential Double Ionization by Counterrotating Circularly Polarized Two-Color Laser Fields. Phys Rev Lett. 2016;117:133202.
  • He LX, Lan PF, Le AT, et al. Real-Time Observation of Molecular Spinning with Angular High-Harmonic Spectroscopy. Phys Rev Lett. 2018;121:163201.
  • Pinkham D, Jones RR. Intense laser ionization of transiently aligned CO. Phys Rev A. 2005;72:023418.
  • Son S-K, Chu S-I. Theoretical study of orientation-dependent multiphoton ionization of polyatomic molecules in intense ultrashort laser fields: a new time-dependent Voronoi-cell finite difference method. Chem Phys. 2009;366:91.
  • Larsen JJ, Wendt-Larsen I, Stapelfeldt H. Controlling the Branching Ratio of Photodissociation Using Aligned Molecules. Phys Rev Lett. 1999;83(6):1123.
  • Weise F, Weber SM, Plewicki M, et al. Application of phase, amplitude, and polarization shaped pulses for optimal control on molecules. Chem Phys. 2007;332(2–3):313.
  • Brixner T, Krampert G, Pfeifer T, et al. Quantum Control by Ultrafast Polarization Shaping. Phys Rev Lett. 2004;92(20):208301.
  • Suzuki T, Minemoto S, Kanai T, et al. Optimal control of multiphoton ionization processes in aligned I2 Molecules with time-dependent polarization pulses. Phys Rev Lett. 2004;92(13):133005.
  • Malik DA, Kimel AV, Kirilyuk A, et al. Coherent Control of Angular Momentum Transfer in Resonant Two-Photon Light-Matter Interaction. Phys Rev Lett. 2010;104:133001.
  • Dudovich N, Oron D, Silberberg Y. Quantum Control of the Angular Momentum Distribution in Multiphoton Absorption Processes. Phys Rev Lett. 2004;92:103003.
  • Wollenhaupt M, Krug M, Kohler J, et al. Photoelectron angular distributions from strong-field coherent electronic excitation. Appl. Phys . B-Lasers O. 2009;95(2):245.
  • Pengel D, Kerbstadt S, Johannmeyer D, et al. Electron Vortices in Femtosecond Multiphoton Ionization. Phys Rev Lett. 2017;118:053003.
  • Ramakrishna S, Seideman T. Torsional Control by Intense Pulses. Phys Rev Lett. 2007;99(10):103001.
  • Madsen CB, Madsen LB, Viftrup SS, et al. Manipulating the Torsion of Molecules by Strong Laser Pulses. Phys Rev Lett. 2009;102(7):073007.
  • Floss J, Grohmann T, Leibscher M, et al. Nuclear spin selective laser control of rotational and torsional dynamics. J Chem Phys. 2012;136(8):084309.
  • Hansen JL, Nielsen JH, Madsen CB, et al. Control and femtosecond time-resolved imaging of torsion in a chiral molecule. J Chem Phys. 2012;136:204310.
  • Strasfeld DB, Middleton CT, Zanni MT. Mode selectivity with polarization shaping in the mid-IR. New J Phys. 2009;11(10):105046.
  • Sundstrom V. Femtobiology. Annu Rev Phys Chem. 2008;59:53.
  • Hildner R, Brinks D, van Hulst NF. Femtosecond coherence and quantum control of single molecules at room temperature. Nat Phys. 2011;7(2):172.
  • Bardeen CJ, Yakovlev VV, Squier JA, et al. Quantum Control of Population Transfer in Green Fluorescent Protein by Using Chirped Femtosecond Pulses. J Am Chem Soc. 1998;120(50):13023.
  • Wohlleben W, Buckup T, Herek JL, et al. Coherent Control for Spectroscopy and Manipulation of Biological Dynamics. Chemphyschem. 2005;6(5):850.
  • Lambert N, Chen YN, Cheng YC, et al. Quantum biology. Nat Phys. 2013;9(1):10.
  • Shipp DW, Sinjab F, Notingher I. Raman spectroscopy: techniques and applications in the life sciences. Adv Opt Photonics. 2017;9:315.
  • Krafft C, Schie IW, Meyer T, et al. Developments in spontaneous and coherent Raman scattering microscopic imaging for biomedical applications. Chem Soc Rev. 2016;45(7):1819.
  • Freudiger CW, Min W, Saar BG, et al. Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy. Science. 2008;322(5909):1857.
  • Daum R, Brauchle EM, Berrio DAC, et al. Non-invasive detection of DNA methylation states in carcinoma and pluripotent stem cells using Raman microspectroscopy and imaging. Sci Rep. 2019;9(1):7014.
  • Zhang X, Roeffaers MBJ, Basu S, et al. Label-Free Live-Cell Imaging of Nucleic Acids Using Stimulated Raman Scattering Microscopy. Chemphyschem. 2012;13:1054.
  • Ji MB, Orringer DA, Freudiger CW, et al. Rapid, Label-Free Detection of Brain Tumors with Stimulated Raman Scattering Microscopy. Sci Transl Med. 2013;5:201ra119.
  • Hoffman DP, Valley D, Ellis SR, et al. Optimally shaped narrowband picosecond pulses for femtosecond stimulated Raman spectroscopy. Opt Express. 2013;21:21685.
  • Dudovich N, Oron D, Silberberg Y. Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy. Nature. 2002;418:512.
  • Scully MO, Kattawar GW, Lucht RP, et al. FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores. P. Natl Acad Sci Usa. 2002;99(17):10994.
  • Freudiger CW, Min W, Holtom GR, et al. Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy. Nat Photonics. 2011;5:103.
  • Ogilvie JP, Debarre D, Solinas X, et al. Use of coherent control for selective two-photon fluorescence microscopy in live organisms. Opt Express. 2006;14(2):759.
  • Tu HH, Liu Y, Turchinovich D, et al. Stain-free histopathology by programmable supercontinuum pulses. Nat Photonics. 2016;10:534.
  • Wei L, Min W. Pump-probe optical microscopy for imaging nonfluorescent chromophores. Anal Bioanal Chem. 2012;403(8):2197.
  • Flynn DC, Bhagwat AR, Ogilvie JP. Chemical-contrast imaging with pulse-shaping based pump-probe spectroscopy. Multiphoton Microscopy in the Biomedical Sciences Xiii. 2013;8588:85881z.
  • Li B, Turinici G, Ramakrishna V, et al. Optimal dynamic discrimination of similar molecules through quantum learning control†. J Phys Chem B. 2002;106(33):8125.
  • Roth M, Guyon L, Roslund J, et al. Quantum Control of Tightly Competitive Product Channels. Phys Rev Lett. 2009;102(25):253001.
  • Rondi A, Kiselev D, Machado S, et al. Discriminating Biomolecules with Coherent Control Strategies. Chimia (Aarau). 2011;65(5):346.
  • Petersen J, Mitric R, Bonacic-Koutecky V, et al. How Shaped Light Discriminates Nearly Identical Biochromophores. Phys Rev Lett. 2010;105(7):073003.
  • Courvoisier F, Boutou V, Guyon L, et al. Discriminating bacteria from other atmospheric particles using femtosecond molecular dynamics. Photobio. A. 2006;180(3):300.
  • Tseng C-H, Weinacht TC, Rhoades AE, et al. Using shaped ultrafast laser pulses to detect enzyme binding. Opt Express. 2011;19(24):24638.
  • Rondi A, Bonacina L, Trisorio A, et al. Coherent manipulation of free amino acids fluorescence. Phys Chem Chem Phys. 2012;14(26):9317.
  • Nie B, Saytashev I, Chong AD, et al. Biomed. Biomedical Optics Express. 2012;3:1750.
  • Balu M, Saytashev I, Hou J, et al. Sub-40 fs, 1060-nm Yb-fiber laser enhances penetration depth in nonlinear optical microscopy of human skin. J Biomed Opt. 2015;20(12):120501.
  • Xi P, Andegeko Y, Weisel LR, et al. Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10fs pulses. Opt Commun. 2008;281:1841.
  • Xi P, Andegeko Y, Pestov D, et al. Two-photon imaging using adaptive phase compensated ultrashort laser pulses. J Biomed Opt. 2009;14(1):014002.
  • Pestov D, Andegeko Y, Lozovoy VV, et al. Pulse shaping for reducing photodamage in multiphoton microscopy. Multiphoton Microscopy in the Biomedical Sciences X. 2010;7569:756926.
  • Walowicz KA, Pastirk I, Lozovoy VV, et al. Multiphoton Intrapulse Interference. 1. Control of Multiphoton Processes in Condensed Phases. J Phys Chem A. 2002;106(41):9369.
  • Cruz JD, Lozovoy VV, Dantus M. Coherent control improves biomedical imaging with ultrashort shaped pulses. J. Photoch. Photobio. A. 2006;180:307.
  • Cruz JD, Pastirk I, Comstock M, et al. Use of coherent control methods through scattering biological tissue to achieve functional imaging. P. Natl Acad Sci Usa. 2004;101(49):16996.
  • Konar A, Lozovoy VV, Dantus M. Stimulated Emission Enhancement Using Shaped Pulses. J Phys Chem A. 2016;120:2002.
  • Kawano H, Nabekawa Y, Suda A, et al. Attenuation of photobleaching in two-photon excitation fluorescence from green fluorescent protein with shaped excitation pulses. Biochem Biophys Res Commun. 2003;311(3):592.
  • Midorikawa K, Chen JF, Kawano H, et al. Coherent control of multiphoton excitation process for biological fluorescence imaging. Commercial and Biomedical Applications of Ultrafast Lasers V. 2005;5714:99.
  • Tkaczyk ER, Mauring K, Tkaczyk AH, et al. Control of the blue fluorescent protein with advanced evolutionary pulse shaping. Biochem Biophys Res Commun. 2008;376(4):733.
  • Tkaczyk ER, Mignot A, Ye JY, et al. Increasing two-photon fluorescence signals by coherent control. Multiphoton Microscopy in the Biomedical Sciences VI. 2006;6089:608910.
  • Tkaczyk ER, Tkaczyk AH, Mauring K, et al. Control of Two-photon Fluorescence of Common Dyes and Conjugated Dyes. J. Fluoresc. 2009;19(3):517.
  • Savolainen J, Fanciulli R, Dijkhuizen N, et al. Controlling the efficiency of an artificial light-harvesting complex. Proc Natl Acad Sci U S A. 2008;105(22):7641.
  • Yang D, Savolainen J, Jafarpour A, et al., 12th World Congress of the International Photodynamic Association: photodynamic Therapy: back to the Future 7380 (2009) p.73806h.
  • Rhijn ACWV, Jafarpour A, Jurna M, et al. Coherent control of vibrational transitions: discriminating molecules in mixtures. Faraday Discuss. 2011;153:227.
  • Edwards JR, Ruparel H, Ju JY. Mass-spectrometry DNA sequencing. Mutat. Res.-Fund. Mol. M. 2005;573(1–2):3.
  • Tost J, Gut IG. DNA analysis by mass spectrometry—past, present and future. J Mass Spectrom. 2006;41(8):981.
  • Calderaro A, Arcangeletti MC, Rodighiero I, et al. Identification of different respiratory viruses, after a cell culture step, by matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). Sci Rep. 2016;6(1):36082.
  • Kurata-Nishimura M, Ando Y, Kobayashi T, et al. Sequencing of Isotope-Labeled Small RNA Using Femtosecond Laser Ablation Time-of-Flight Mass Spectrometry. Appl. Phys. Expres. 2010;3:047002.
  • Rethfeld B, Sokolowski-Tinten K, Linde DVD, et al. Timescales in the response of materials to femtosecond laser excitation. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING. 2004;79:767.
  • Koji S. Progress in ultrafast laser processing and future prospects. Nanophotonics-Berlin. 2017;6(2):393.
  • Spyridaki M, Koudoumas E, Tzanetakis P, et al. Temporal pulse manipulation and ion generation in ultrafast laser ablation of silicon. Appl Phys Lett. 2003;83(7):1474.
  • Dachraoui H, Husinsky W. Thresholds of Plasma Formation in Silicon Identified by Optimizing the Ablation Laser Pulse Form. Phys Rev Lett. 2006;97:107601.
  • Choi TY, Hwang DJ, Grigoropoulos CP. Femtosecond laser induced ablation of crystalline silicon upon double beam irradiation. Appl Surf Sci. 2002;197–198:720.
  • Ihtesham HC, Xianfan X, Weiner AM. Ultrafast double-pulse ablation of fused silica. Appl Phys Lett. 2005;86(15):151110.
  • Preuss S, Spath M, Zhang Y, et al. Time resolved dynamics of subpicosecond laser ablation. Appl Phys Lett. 1993;62:3049.
  • Deng YP, Xie XH, Xiong H, et al. Optical breakdown for silica and silicon with double femtosecond laser pulses. Opt Express. 2005;13(8):3096.
  • Han Z, Zhou C, Dai E, et al. Ultrafast double pulses ablation of Cr film on glass. Opt Commun. 2008;281(18):4723.
  • Babushok VI, Jr FCD, Gottfried JL, et al. Double pulse laser ablation and plasma: laser induced breakdown spectroscopy signal enhancement. Spectrochimica Acta Part B. 2006;61(9):999.
  • Semerok A, Dutouquet C. Ultrashort double pulse laser ablation of metals. Thin Solid Films. 2004;453–454:501.
  • Zhang Z, Rompay PAV, Pronkoa PP. Ion characteristics of laser-produced plasma using a pair of collinear femtosecond laser pulses. Appl Phys Lett. 2003;83(3):431.
  • Singha S, Hu Z, Gordon RJ. Ablation and plasma emission produced by dual femtosecond laser pulses. J Appl Phys. 2008;104(11):113520.
  • Hommes V, Miclea M, Hergenröder R. Silicon surface morphology study after exposure to tailored femtosecond pulses. Appl Surf Sci. 2006;252(20):7449.
  • Klini A, Loukakos PA, Gray D, et al. Laser Induced Forward Transfer of metals by temporally shaped femtosecond laser pulses. Opt Express. 2008;16(15):11300.
  • Noel S, Hermann J. Reducing nanoparticles in metal ablation plumes produced by two delayed short laser pulses. Appl Phys Lett. 2009;94:053120.
  • Noel S, Axente E, Hermann J. Investigation of plumes produced by material ablation with two time-delayed femtosecond laser pulses. Appl Surf Sci. 2009;255(24):9738.
  • Wang QX, Luo SZ, Chen Z, et al. Drilling of aluminum and copper films with femtosecond double-pulse laser. Opt Laser Technol. 2016;80:116.
  • Stoian R, Boyle M, Thoss A, et al. Laser ablation of dielectrics with temporally shaped femtosecond pulses. Applied Physics Letter. 2002;80(3):353.
  • Stoian R, Boyle M, Thoss A, et al. Dynamic temporal pulse shaping in advanced ultrafast laser material processing. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING. 2003;77:265.
  • Burakov IM, Bulgakova NM, Stoian R, et al. Theoretical investigations of material modification using temporally shaped femtosecond laser pulses. Appl Phys A-Mater. 2005;81:1639.
  • Stoian R, Mermillod-Blondin A, Bulgakova NM, et al. Optimization of ultrafast laser generated low-energy ion beams from silicon targets. Appl Phys Lett. 2005;87(12):124105.
  • Hergenroder R, Miclea M, Hommes V. Controlling semiconductor nanoparticle size distributions with tailored ultrashort pulses. Nanotechnology. 2006;17(16):4065.
  • Colombier JP, Combis P, Rosenfeld A, et al. Optimized energy coupling at ultrafast laser-irradiated metal surfaces by tailoring intensity envelopes: consequences for material removal from Al samples. Phys Rev B. 2006;74(22):224106.
  • Gunaratne T, Kangas M, Singh S, et al. Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses. Chem Phys Lett. 2006;423:197.
  • Hu Z, Singha S, Gordon RJ. Controlling the photoluminescence of gallium arsenide with trains of ultrashort laser pulses. Phys Rev B. 2010;82(11):115204.
  • Singha S, Hu Z, Gordon RJ. Closed Loop Coherent Control of Electronic Transitions in Gallium Arsenide. J Phys Chem A. 2011;115(23):6093.
  • Garrelie F, Bourquard F, Loir AS, et al. [INVITED] Control of femtosecond pulsed laser ablation and deposition by temporal pulse shaping. Opt Laser Technol. 2016;78:42.
  • Jiang L, Tsai HL. Repeatable nanostructures in dielectrics by femtosecond laser pulse trains. Appl Phys Lett. 2005;87(15):151104.
  • Jiang L, Tsai H-L. Energy Transport and Nanostructuring of Dielectrics by Femtosecond Laser Pulse Trains. J. Heat Trans.-T. Asme. 2006;128:926.
  • Jiang L, Tsai H-L. Modeling of ultrashort laser pulse-train processing of metal thin films. Int. J. Heat Mass Tran. 2007;50(17–18):3461.
  • Englert L, Rethfeld B, Haag L, et al. Control of ionization processes in high band gap materials via tailored femtosecond pulses. Opt Express. 2007;15(26):17855.
  • Englert L, Wollenhaupt M, Haag L, et al. Material processing of dielectrics with temporally asymmetric shaped femtosecond laser pulses on the nanometer scale. Appl. Phys. A-Mater. 2008;92(4):749.
  • Uchugonova A, Zhang HJ, Lemke C, et al. Nanosurgery with near-infrared 12-femtosecond and picosecond laser pulses. Multiphoton Microscopy in the Biomedical Sciences Xi. 2011;7903:79031n.
  • Vorobyev AY, Guo CL. Direct femtosecond laser surface nano/microstructuring and its applications. Laser Photonics Rev. 2013;7:385.
  • Her T-H, Finlay RJ, Wu C, et al. Microstructuring of silicon with femtosecond laser pulses. Appl Phys Lett. 1998;73(12):1673.
  • Castleman AW, Bowen KH. Clusters: structure, Energetics, and Dynamics of Intermediate States of Matter. J Phys Chem. 1996;100:12911.
  • Tsuji T, Watanabe N, Tsuji M. Laser induced morphology change of silver colloids: formation of nano-size wires. Appl Surf Sci. 2003;211(1–4):189.
  • Nichols WT, Sasaki T, Koshizaki N. Laser ablation of a platinum target in water. II. Ablation rate and nanoparticle size distributions. J Appl Phys. 2006;100:114912.
  • Lee J, Lee M. Laser-Induced Conversion of Au Powders to Highly Stable Nanoparticles with a Narrow Size Distribution. J Phys ChemC. 2016;120(24):13256.
  • Suzuki K, Tanaka N, Ando A, et al. Size-selected copper oxide nanoparticles synthesized by laser ablation. J Nanopart Res. 2012;14:863.
  • Vuckovic S, Svanqvist M, Popok VN. Laser ablation source for formation and deposition of size-selected metal clusters. Rev Sci Instrum. 2008;79:073303.
  • Tsakiris N, Anoop KK, Ausanio G, et al. Ultrashort laser ablation of bulk copper targets: dynamics and size distribution of the generated nanoparticles. J Appl Phys. 2014;115(24):243301.
  • Kobayashi T, Kato T, Matsuo Y, et al. Wavelength-dependent fragmentation and clustering observed after femtosecond laser ablation of solid C60. J Chem Phys. 2007;127(11):111101.
  • Doppner T, Fennel T, Diederich T, et al. Controlling the Coulomb Explosion of Silver Clusters by Femtosecond Dual-Pulse Laser Excitation. Phys Rev Lett. 2005;94(1):013401.
  • Martchenko T, Siedschlag C, Zamith S, et al. Optimal control of femtosecond laser–cluster interactions. Phys Rev A. 2005;72(5):053202.
  • Link S, Burda C, Nikoobakht B, et al. Laser-Induced Shape Changes of Colloidal Gold Nanorods Using Femtosecond and Nanosecond Laser Pulses. J Phys Chem B. 2000;104:6152.
  • Guillermin M, Liebig C, Garrelie F, et al. Adaptive control of femtosecond laser ablation plasma emission. Appl Surf Sci. 2009;255:5163.
  • Bulgakov AV, Ozerov I, Marine W. Silicon clusters produced by femtosecond laser ablation: non-thermal emission and gas-phase condensation. Appl. Phys. A-Mater. 2004;79(4–6):1591.
  • Siders CW, Cavalleri A, Sokolowski-Tinten K, et al. Detection of Nonthermal Melting by Ultrafast X-ray Diffraction. Science. 1999;286:1340.
  • Sokolowski-Tinten K, Solis J, Bialkowski J, et al. Dynamics of Ultrafast Phase Changes in Amorphous GeSb Films. Phys Rev Lett. 1998;81:3679.
  • Lindenberg AM, Larsson J, Sokolowski-Tinten K, et al. Atomic-Scale Visualization of Inertial Dynamics. Science. 2005;308(5720):392.
  • Sokolowski-Tinten K, Blome C, Dietrich C, et al. Femtosecond X-Ray Measurement of Ultrafast Melting and Large Acoustic Transients. Phys Rev Lett. 2001;87(22):225701.
  • Katz O, Natan A, Silberberg Y, et al. Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses. Appl Phys Lett. 2008;92(17):171116.
  • Rasskazov G, Ryabtsev A, Dantus M. Eye-safe near-infrared trace explosives detection and imaging. Opt Express. 2017;25:5832.
  • Glenn R, Dantus M. Single Broadband Phase-Shaped Pulse Stimulated Raman Spectroscopy for Standoff Trace Explosive Detection. J Phys Chem Lett. 2016;7:117.
  • Bremer MT, Dantus M. Standoff explosives trace detection and imaging by selective stimulated Raman scattering. Appl Phys Lett. 2013;103:061119.
  • Braun A, Korn G, Liu X, et al. Self-channeling of high-peak-power femtosecond laser pulses in air. Opt Lett. 1995;20(1):73.
  • Kasparian J, Rodriguez M, Mejean G, et al. White-Light Filaments for Atmospheric Analysis. Science. 2003;301(5629):61.
  • Mejean G, Kasparian J, Yu J, et al. Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system. Appl. Phys. B-Lasers O. 2004;78(5):535.
  • Brixner T, Damrauer NH, Niklaus P, et al. Photoselective adaptive femtosecond quantum control in the liquid phase. Nature. 2001;414(6859):57.
  • Calegari F, Vozzi C, Gasilov S, et al. Rotational Raman Effects in the Wake of Optical Filamentation. Phys Rev Lett. 2008;100:123006.
  • Cai H, Wu J, Peng Y, et al. Comparison study of supercontinuum generation by molecular alignment of N2 and O2. Opt Express. 2009;17:5822.
  • Cai H, Wu J, Li H, et al. Elongation of femtosecond filament by molecular alignment in air. Opt Express. 2009;17(23):21060.
  • Chen AM, Li SY, Qi HX, et al. Elongation of plasma channel generated by temporally shaped femtosecond laser pulse. Opt Commun. 2017;93:144.
  • Varma S, Chen YH, Milchberg HM. Trapping and Destruction of Long-Range High-Intensity Optical Filaments by Molecular Quantum Wakes in Air. Phys Rev Lett. 2008;101:205001.
  • Wu J, Cai H, Lu PF, et al. Intense ultrafast light kick by rotational Raman wake in atmosphere. Appl Phys Lett. 2009;95(22):221502.
  • Joshi D, Kumar D, Maini AK, et al. Detection of biological warfare agents using ultra violet-laser induced fluorescence LIDAR. Spectrochim Acta A. 2013;112:446.
  • Kaushal H, Kaddoum G. Applications of Lasers for Tactical Military Operations. IEEE Access. 2017;5:20736.
  • Valerie CC. The Challenges Facing Submarine Optical Communications. Opt Photonics News. 2014;25:28.
  • Smitha P, Singh I, Najim M, et al. Development of thin broad band radar absorbing materials using nanostructured spinel ferrites. Sci.-Mater. El. 2016;27–7731.
  • Shen ZZ, Chen JH, Li B, et al. Recent progress in SiC nanowires as electromagnetic microwaves absorbing materials. J Alloy Compd. 2020;815:152388.
  • Hernandez-Rueda J, Gotte N, Siegel J, et al. Nanofabrication of Tailored Surface Structures in Dielectrics Using Temporally Shaped Femtosecond-Laser Pulses. ACS Appl Mater Inter. 2015;7(12):6613–6619.
  • Fraggelakis F, Stratakis E, Loukakos PA. Control of periodic surface structures on silicon by combined temporal and polarization shaping of femtosecond laser pulses. Appl Surf Sci. 2018;444:154–160.
  • Deng JN, Qi HX, Zhao L, et al. Control of ablation morphology on Cu film with tailored femtosecond pulse trains. Appl. Phys. A-Mater. 2020;126(6):425. DOI: https://doi.org/10.1007/s00339-020-03589-0.
  • Qi Y, Qi HX, Wang QX, et al. The influence of double pulse delay and ambient pressure on femtosecond laser ablation of silicon. Opt Laser Technol. 2015;66:68.
  • Iam Choon K. Nonlinear Organic Liquid-Cored Fiber Array for All-Optical Switching and Sensor Protection Against Short-Pulsed Lasers. IEEE J. Sel. Top. Quant. 2008;14:946.
  • Qi Y, Qi HX, Chen AM, et al. Improvement of aluminum drilling efficiency and precision by shaped femtosecond laser. Appl Surf Sci. 2014;317:252.
  • Wang C, Fomovsky M, Miao GX, et al. Femtosecond laser crosslinking of the cornea for non-invasive vision correction. Nat Photonics. 2018;12(7):416.
  • Soong HK, Malta JB. Femtosecond Lasers in Ophthalmology. Am J Ophthalmol. 2009;147(2):189.
  • Mourou G, Brocklesby B, Tajima T, et al. The future is fibre accelerators. Nat Photonics. 2013;7:258.
  • Breitkopf S, Eidam T, Klenke A, et al. Stack and dump: peak-power scaling by coherent pulse addition in passive cavities. Eur. Phys. J.-Spec. Top. 2015;224(13):2573.
  • Wille H, Rodriguez M, Kasparian J, et al. Teramobile: a mobile femtosecond-terawatt laser and detection system. Eur. Phys. J.-Appl. Phys. 2002;20(3):183.
  • Dicaire I, Jukna V, Praz C, et al. Spaceborne laser filamentation for atmospheric remote sensing. Laser Photonics Rev. 2016;10(3):481.