3,482
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Phases of the hydrogen isotopes under pressure: metallic hydrogen

&
Article: 1961607 | Received 03 Mar 2021, Accepted 23 Jul 2021, Published online: 25 Aug 2021

References

  • Wigner E, Huntington HB. On the Possibility of a Metallic Modification of Hydrogen. The Journal of Chemical Physics. 1935;3:764.
  • Dias R, Silvera IF. Observation of the Wigner-Huntington Transition to Solid Metallic Hydrogen. Science. 2017;355:715–718.
  • Silvera IF. The solid molecular hydrogens in the condensed phase: fundamentals and static properties. Reviews of Modern Physics. 1980;52:393.
  • Dias R, Noked O, Silvera IF. Quantum Phase Transition in Solid Hydrogen at High Pressure. Phys Rev B. 2019;100:184112.
  • Drummond ND, Monserrat B, Lloyd-Williams JH, et al. Quantum Monte Carlo study of the phase diagram of solid molecular hydrogen at extreme pressures. Nature Communications. 2015;6. DOI:https://doi.org/10.1038/ncomms8794
  • Clay RC, Mcminis J, McMahon JM, et al. Benchmarking exchange-correlation functionals for hydrogen at high pressures using quantum Monte Carlo. Phys Rev B. 2014;89. DOI:https://doi.org/10.1103/PhysRevB.89.184106
  • Azadi S, Monserrat B, Foulkes WMC, et al. Dissociation of High-Pressure Solid Molecular Hydrogen: a Quantum Monte Carlo and Anharmonic Vibrational Study. Physical Review Letters. 2014;112:165501.
  • McMinis J, Clay RCCIII,D, Lee D. Molecular to Atomic Phase Transition in Hydrogen under High Pressure. Physical Review Letters. 2015;114:105305.
  • Rillo G, Morales MA, Ceperley DM, et al. Coupled electron-ion Monte Carlo simulation of hydrogen molecular crystals. J Chem Phys. 2018;148:102314.
  • Borinaga M, Riego P, Leonardo A, et al. Anharmonic enhancement of superconductivity in metallic molecular Cmca   −  4 hydrogen at high pressure: a first-principles study. Journal of Physics: Condensed Matter. 2016;28:494001.
  • Brovman EG, Kagan Y, Kholas A. Properties of Metallic Hydrogen under Pressure. Sov Phys JETP. 1972;35:783-787.
  • Babaev E, Sudbo A, Ashcroft NW. A superconductor to superfluid phase transition in liquid metallic hydrogen. Nature. 2004;431:666–668.
  • Ramaker DE, Kumar L, Harris FE. Exact-Exchange Crystal Hartree-Fock Calculations of Molecular and Metallic Hydrogen and Their Transitions. Physical Review Letters. 1975;34:812.
  • Friedli C, Ashcroft NW. Combined representation method for use in band-structure calculations: application to highly compressed hydrogen. Physical Review B. 1977;16:662.
  • Cudazzo P, Profeta G, Sanna A, et al. Ab Initio Description of High-Temperature Superconductivity in Dense Molecular Hydrogen. Physical Review Letters. 2008;100:257001.
  • Landau LD, Zeldovich YB. On the relation between the liquid and the gaseous states of metals. Acta Phys -chim USSR. 1943;18:380.
  • Norman GE, Starostin AN. The invalidity of the classsical description of a non-degnerated dense plasma. Teplofiz Vys Temp. 1968;6:410.
  • McMahon JM, Morales MA, Pierleoni C, et al. The properties of hydrogen and helium under extreme conditions. Reviews of Modern Physics. 2012;84:1607–1653.
  • Weir ST, Mitchell AC, Nellis WJ. Metallization of Fluid Molecular Hydrogen at 140 GPa (1.4 Mbar). Physical Review Letters. 1996;76:1860.
  • Guillot T. The interiors of giant Planets: models & outstanding questions. Annual Review of Earth and Planetary Sciences. 2005;33:493.
  • Ashcroft NW. Metallic Hydrogen: a High-Temperature Superconductor? Phys Rev Lett. 1748;21:1968.
  • McMahon JM, Ceperley DM. High-temperature superconductivity in atomic metallic hydrogen. Phys Rev B. 2011;84:144515.
  • Borinaga M, Errea I, Calandra M, et al. Anharmonic effects in atomic hydrogen: superconductivity and lattice dynamical stability. Phys Rev B. 2016;B 93:174308.
  • Kudryashov NA, Kutukov AA, Mazuer EA. Critical temperature of metallic hydrogen at a pressure of 500 GPa. JETP Lett. 2016;104:460.
  • Yan Y, Gong J, Liu Y. Ab initio studies of superconductivity in monatomic metallic hydrogen under high pressure. Phys Lett A. 2011;375:1264.
  • Verma AK, Modak P, Schrodi F, et al., Phonon-mode specific contributions to room-temperature superconductivity in atomic hydrogen at high pressures, CM arXiv 2011.11883 (2020).
  • Tinkham M. Energy Gap Interpretation of Experiments on Infrared Transmission through Superconducting Films. Phys Rev. 1956;104:845.
  • Carbotte JP, Nicol EJ, Timusk T. Detecting Superconductivity in the High Pressure Hydrides and Metallic Hydrogen from Optical Properties. Phys Rev Lett. 2018;121:047002.
  • Carlsson AE, Ashcroft NW. Approaches for Reducing the Insulator-Metal Transition Pressure in Hydrogen. Phys Rev Lett. 1983;50:1305.
  • Ashcroft NW. Hydrogen Dominant Metallic Alloys: high Temperature Superconductors? Phys Rev Lett. 2004;92:187002.
  • Drozdov AP, Eremets MI, Troyan IA, et al. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature. 2015;525:73-76.
  • Drozdov AP, et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature. 2019;569:528-531.
  • Somayazulu M, Ahart M, Mishra AK, et al. Evidence for Superconductivity above 260 K in Lanthanum Superhydride at Megabar Pressures. Phys Rev Lett. 2019;122:027001.
  • Snider E, Dasenbrock-Gammon N, McBride R, et al. Room-temperature superconductivity in a carbonaceous sulfur hydride. Nature. 2020;586:373-377.
  • Hardy WN, Silvera IF, McTague JP. Raman Scattering in Oriented Crystals of Paradeuterium and Orthohydrogen. Phys Rev B. 1975;12:753.
  • Silvera IF, Jochemsen R. Orientational Ordering in Solid Hydrogen: dependence of Critical Temperature and Concentration on Density. Phys Rev Lett. 1979;43:337.
  • Silvera IF, in AIRAPT (Forschungszentrum Karlsruhe http://bibliothek.fzk.de/zb/verlagspublikationen/AIRAPT_EHPRG2005/, Karlsruhe, Germany, 2005.
  • Sharma SK, Mao HK, Bell PM. Raman Measurements of Hydrogen in the Pressure Range 0.2-630 Kbar at Room Temperature. Phys Rev Lett. 1980;46:886.
  • Raich JC, Etters RD. Rotational Molecular Motion in Solid H2 and D2 Under Pressure. J Low Temp Phys. 1972;6:229.
  • Silvera IF, Wijngaarden RJ. New low temperature phase of molecular deuterium at ultra high pressure. RPhys ev Lett. 1981;47:39.
  • Lagendijk A, Silvera IF. Roton Softening in the Solid Hydrogen. Phys Letters. 1981;84A:28.
  • Lorenzana HE, Silvera IF, Goettel KA. Orientational Phase Transitions in Hydrogen at Megabar Pressures. Phys Rev Lett. 1939;64:1990.
  • Hemley RJ, Mao HK. Phase Transition in Solid Molecular Hydrogen at Ultrahigh Pressures. Phys Rev Lett. 1988;61:857.
  • Lorenzana HE, Silvera IF, Goettel KA. Evidence for a Structural Phase Transition in Solid Hydrogen at Megabar Pressures. Phys Rev Lett. 1989;63:2080.
  • Hemley RJ, Mao HK. Isotope Effects in Dense Solid Hydrogen: phase Transition in Deuterium at 190(±20) GPa. Phys Rev Lett. 1989;63:1393.
  • Hemley RJ, Mao HK, Hanfland M. Spectroscopic Investigations of the Insulator-Metal Transition in Solid Hydrogen. In: Pucci R, Piccitto G, eds. Molecular Systems Under High Pressure, North-Holland, Amsterdam; 1991. p. 223.
  • Cui L, Chen NH, Jeon SJ, et al. Megabar pressure triple point in solid deuterium, Phys. Rev Lett. 1994;72:3048.
  • Vereschagin LF, Yakovlev EN, Timofeev YA. Possibility of transition of hydrogen into the metallic state. JETP Lett. 1975;21: 85-86.
  • Lorenzana HE, Boppart H, Silvera IF. A Study of Pressure Distributions in a Megabar Diamond Indentor Cell. Rev Sci Instrum. 1988;59:2583.
  • Mao H-K, Hemley R. Optical Studies of Hydrogen above 200 Gigapascals: evidence for Metallization by Band Overlap. Science. 1989;244:1462.
  • Silvera IF. Evidence for Band Overlap Metallization of Hydrogen. Science. 1990;247.
  • Mao HK, Hemley RJ, Hanfland M. Infrared Reflectance Measurements of the Insulator-Metal Transition in Solid Hydrogen. Phys Rev Lett. 1990;65:484.
  • Eggert JH, Goettel KA, Silvera IF. High Pressure Dielectric Catastrophe and the Possibility that the Hydrogen-A Phase is Metallic. Europhys Lett. 1990;11:775.
  • Hemley RJ, Hanfland M, Mao HK. High Pressure Dielectric Measurements of Solid Hydrogen to 170 GPa. Nature. 1991;350:488.
  • Eggert JH, Moshary F, Evans WJ, et al. Absorption and Reflectance in Hydrogen up to 230 GPa: implications for Metallization. Phys Rev Lett. 1991;66:193.
  • Hanfland M, Hemley RJ, Mao HK. Optical Absorption Measurements of Hydrogen at Megabar Pressures. Phys Rev B. 1991;43:8767.
  • Chen NH, Sterer E, Silvera IF. Extended infrared studies of high pressure hydrogen. Phys Rev Lett. 1663;76:1996.
  • Hemley RJ, Mao H-K, Goncharov AF, et al. Synchrotron Infrared Spectroscopy to 0.15 eV of H2 and D2 at Megabar Pressures. Phys Rev Lett. 1667;76:1996.
  • Hawke RS, Burgess TJ, Duerre DE, et al. Observation of Electrical Conductivity of Isentropically Compresssed Hydrogen at Megabar Pressures. Phys Rev Lett. 1978;41:994.
  • Nellis WJ, Weir ST, Mitchell AC. Metallization and electrical conductivity of hydrogen in Jupiter. Science. 1996;273:936-938.
  • Bonev SA, Schwegler E, Ogitsu T, et al. A quantum fluid of metallic hydrogen suggested by first-principles calculations. Nature. 2004;431:669-672.
  • Deemyad S, Silvera IF. Melting Line of Hydrogen at High Pressures. Phys Rev Lett. 2008;100:155701.
  • Subramanian N, Goncharov AF, Struzhkin VV, et al. Bonding changes in hot fluid hydrogen at megabar pressures. Proc Nat Acad Sci. 2011;108:6014.
  • Howie R, Dalladay-Simpson P, Gregoryanz E. Raman spectroscopy of hot hydrogen above 200 GPa. Nat Mater. 2015;14:495.
  • Narayana C, Luo H, Orloff J, et al. Solid hydrogen at 342 GPa: no evidence for an alkali metal. Nature. 1998;393:46.
  • Loubeyre P, Occelli F, LeToullec R. Optical studies of solid hydrogen to 320 GPa: evidence for black hydrogen. Nature. 2002;416:613.
  • Eremets MI, Troyan IA. Conductive Dense Hydrogen. Nat Mater. 2011;10:927.
  • Nellis WJ, Ruoff AL, Silvera IF, Has Metallic Hydrogen Been Made in a Diamond Anvil Cell?, arXiv:1201.0407v1 (2012).
  • Eremets MI, Troyan IA, Lerch P, et al. Infrared study of hydrogen up to 310GPa at room temperature. High Pressure Res. 2013;33:377.
  • Zha CS, Liu Z, Ahart M, et al. High-Pressure Measurements of Hydrogen Phase IV Using Synchrotron Infrared Spectroscopy. Phys Rev Lett. 2013;110:217402.
  • Loubeyre P, Occelli F, Dumas P. Hydrogen phase IV revisited via synchrotron infrared measurements in H2 and D2 up to 290 GPa at 296 K. Phys Rev B. 2013;87:134101.
  • Howie RT, Guillaume CL, Scheler T, et al. Mixed molecular and atomic phase of dense hydrogen. Phys Rev Lett. 2012;108:125501.
  • Howie RT, Scheler T, Guillaume CL, et al. Proton tunneling in phase IV of hydrogen and deuterium. Phys Rev B. 2012;86:214104.
  • Pickard C, Needs RJ. Structure of phase III of solid hydrogen. Nat Phys. 2007;3:473-476.
  • Pickard CJ, Martinez-Canales M, Needs RJ. Density functional theory study of phase IV of solid hydrogen. Phys Rev B. 2012;85:214114.
  • Liu H, Ma Y. Proton or Deuteron Transfer in Phase IV of Solid Hydrogen and Deuterium. Phys Rev Lett. 2013;110:025903.
  • Magdau IB, Ackland GJ. Identification of high-pressure phases III and IV in hydrogen: simulating Raman spectra using molecular dynamics. Phys Rev B. 2013;87:174110.
  • Dias R, Noked O, Silvera IF. New Phases and Dissociation-Recombination of Hydrogen Deuteride to 3.4 Megabar. PRL. 2016;116:145501.
  • Dias R, Noked O, Silvera IF, New Quantum Phase Transition in Dense Hydrogen: the Phase Diagram to 420 GPa, arXiv:1603.02162v1 (2016).
  • Eremets MI, Troyan IA, Drozdov AP, Low temperature phase diagram of hydrogen at pressures up to 380 GPa. A possible metallic phase at 360 GPa and 200 K, arXiv:1601.04479 (2016).
  • Eremets MI, Drozdov AP, Kong PP, et al., Molecular semimetallic hydrogen, arXiv:1708.05217 (2017).
  • Rillo G, Morales MA, Ceperley DM, et al., Optical properties of high pressure liquid hydrogen across molecular dissociation, Proceedings of the National Academy of Sciences of the United States of America 116, 9770-9774 (2019).
  • Dogan M, Oh S, Cohen ML. Observed metallization of hydrogen interpreted as a band structure effect. J Phys Cond Matter. 2021;33:1.
  • Dalladay-Simpson P, Howie RT, Gregoryanz E. Evidence for a new phase of dense hydrogen above 325 gigapascals. Nature. 2016;529:63.
  • Dias R, Noked O, Silvera IF, “No Evidence for a new phase of dense hydrogen above 325 gigapascals”, condensed matter arXiv:1605.05703 (2016).
  • Silvera IF, Dias R. Metallic Hydrogen. J Phys Condens Matter. 2018;30:254003.
  • Nellis WJ. Metallic liquid hydrogen and likely Al2O3 metallic glass | springerLink. Eur Phys J Spec Top. 2011;196:121.
  • Liu H, Tse JS, Nellis WJ. The electrical conductivity of Al2O3 under shock-compression. Sci liuRep. 2015;5:12823.
  • Shen G, et al. Toward an international practical pressure scale: a proposal for an IPPS ruby gauge (IPPS-Ruby2020). High Pressure Res. 2020;40:299-341.
  • Liu XD, Dalladay-Simpson P, Howie RT, et al. Comment on “Observation of the Wigner-Huntington transition to metallic hydrogen. Science. 2017;357:6353.
  • Ruoff AL, Xia H, Xia Q. The Effect of a Tapered Aperature on X-ray Diffraction from a Sample with a Pressure Gradient: studies on Three Samples with a Maximum Pressure of 560 GPa. Rev Sci Instrum. 1992;63:4342.
  • Goncharov AF, Struzhkin VV, Comment on Observation of the Wigner-Huntington transition to metallic hydrogen, arXiv:1702.04246 (2017).
  • Silvera IF, Dias R. Erratum for the Research Article “Observation of the Wigner-Huntington transition to metallic hydrogen”. Science. 2017;357:eaao5843.
  • Eremets MI, Drozdov AP, Kong PP, et al., Semimetallic molecular hydrogen at pressure above 350 GPa, Nature Physics (2019).
  • Goettel KA, Eggert JH, Silvera IF, et al. Optical Evidence for the Metallization of Xenon at 132 (5)GPa. Phys Rev Lett. 1989;62:665.
  • Wooten F. Optical Properties of Solids. Academic Press, Inc., New York; 1972.
  • Eremets MI, Gregoryanz EA, Struzhkin VV, et al. Electrical Conductivity of Xenon at Megabar Pressures. Phys Rev Lett. 2000;85:2797.
  • Mott NF. Metal-Insulator Transitions. 2nd ed. London: Taylor & Francis; 1990.
  • Dewaele A, Loubeyre P, Dumas P, et al. Oxygen impurities reduce the metallization pressure of xenon. Phys Rev B. 2012;86:014103.
  • Azadi S, Kuhne TD. Absence of Metallization in Solid Molecular Hydrogen. JETP Lett. 2012;95:449-453.
  • Loubeyre P, Occelli F, Dumas P, Observation of a first order phase transition to metal hydrogen near 425 GPa., ArXiv:1906.05634 (2019).
  • Silvera IF, Dias R, Comment on: observation of a first order phase transition to metal hydrogen near 425 GPa., arXiv: 1907.03198 (2019).
  • Loubeyre P, Occelli F, Dumas P, Comment on: observation of the Wigner-Huntington transition to metallic hydrogen., condensed matter arXiv:1702.07192 (2017).
  • Shimizu H, Brody EM, Mao HK, et al., Brillouin Measurements of n-H2 and n-D2 in the Pressure Range 0.5 to 20 GPa at Room Temperature, Adv.in Earth and Planetary Sci,High Press.Res.Geophys. 12, 135-145 (1982).
  • Shimizu H, Kumazawa T. Equation of State for Fluid Hydrogen-Isotopes H2, D2, and T2 up to Their Freezing Points at 300 K. J Chem Phys. 1983;78:4632.
  • Loubeyre P, Jean-Louis M, Silvera IF. Density dependence of the intramolecular distance in solid H2: a spectroscopic determination. Phy Rev. 1991;B 43:10191.
  • Keesom WH, Smedt JD, Mooy HH. Crystal structure of parahydrogen. Nature. 1930;126:757.
  • Goncharenko I, Loubeyre P. Neutron and X-ray diffraction study of the broken symmetry phase transition in solid deuterium. Nature. 2005;435:1206-1209.
  • Loubeyre P, Occelli F, Dumas P. Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen. Nature. 2020;577:631-635.
  • Azadi S, Foulkes WMC, Kühne TD. Quantum Monte Carlo study of high pressure solid molecular hydrogen. New J Phys. 2013;15:113005.
  • Ji C, et al. Ultrahigh-pressure isostructural electronic transitions in hydrogen. Nature. 2019;573:558-562.
  • Knudson MD, Desjarlais MP, Becker A, et al. Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium. Science. 2015;348:1455-1459.
  • Celliers PM, et al. Insulator-metal transition in dense fluid deuterium. Science. 2018;361:677-682.
  • Zaghoo M, Salamat A, Silvera IF. Evidence of a first-order phase transition to metallic hydrogen. Phys Rev B. 2016;93:155128.
  • Dzyabura V, Zaghoo M, Silvera IF, Evidence of a liquid-liquid phase transition in hot dense hydrogen, Proceedings of the National Academy of Sciences of the United States of America 110, 8040-804 (2013).
  • Zaghoo M, Silvera IF. Conductivity and Dissociation in Metallic Hydrogen with Implications for Planetary Interiors. Proc Nat Acad Sci. 2017;114:11873.
  • Ohta K, Ichimaru K, Einaga M, et al. Phase boundary of hot dense fluid hydrogen. Sci Rep. 2015;5:16560.
  • Pierleoni C, Morales MA, Rillo G, et al. Liquid–liquid phase transition in hydrogen by coupled electron–ion Monte Carlo simulations. PNAS. 2016;113:4953-495.
  • Zaghoo M, Husband R, Silvera IF. Striking Isotope Effect on the Metallization Phase Lines of Liquid Hydrogen and Deuterium. Phys Rev B. 2018;98:104102.
  • Desjarlais MP, Knudson MD, Redmer R. Insulator-metal transition in dense fluid deuterium. Science. 2019;363:6433.
  • Desjarlais MP, Knudson MD, Redmer R. Thermodynamics of the insulator-metal transition in dense liquid deuterium. Phys. Rev. B; 2020;101:104101-104108.
  • Celliers PM, et al. Response to Comment on “Insulator-metal transition in dense fluid deuterium”. Science. 2019;363:6433-4
  • Houtput M, Tempere J, Silvera IF, Finite element simulation of the liquid-liquid transition to metallic hydrogen, submitted to PRB; see arxiv (2018).
  • Norman GE, Saitov IM. Ionization of Molecules at the Fluid–Fluid Phase Transition in Warm Dense Hydrogen. Doklady Physics. 2017;62:284-288.
  • McWilliams RS, Dalton DA, Mahmood MF, et al. Optical Properties of Fluid Hydrogen at the Transition to a Conducting State. Phys Rev Lett. 2016;116:255501.
  • Silvera IF, Husband R, Salamat A, et al., Expanded Comment on: optical Properties of Fluid Hydrogen at the Transition to a Conducting State, arXiv:1608.04479 (2016).
  • Jiang S, Holtgrewe N, Geballe ZM, et al., Insulator-metal transition in liquid hydrogen and deuterium, arXiv:1810.01360 (2018).