3,279
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Flame assisted synthesis of nanostructures for device applications

&
Article: 1997153 | Received 01 Mar 2021, Accepted 19 Oct 2021, Published online: 11 Nov 2021

References

  • Strobel R, Pratsinis SE. Flame aerosol synthesis of smart nanostructured materials. J Mater Chem. 2007;17:4743–50.
  • Pratsinis SE. Flame aerosol synthesis of ceramic powders. Prog Energy Combust Sci. 1998;24:197–219.
  • Tricoli A, Elmøe TD. Flame spray pyrolysis synthesis and aerosol deposition of nanoparticle films. AIChE J. 2012;58:3578–3588.
  • Teoh WY, Amal R, Mädler L. Flame spray pyrolysis: an enabling technology for nanoparticles design and fabrication. Nanoscale. 2010;2:1324–1347.
  • Liu Y, Zha S, Liu M. Novel nanostructured electrodes for solid oxide fuel cells fabricated by combustion chemical vapor deposition (CVD). Adv Mater. 2004;16:256–260.
  • Mädler L, Roessler A, Pratsinis SE, et al. Direct formation of highly porous gas-sensing films by in situ thermophoretic deposition of flame-made Pt/SnO2 nanoparticles. Sens Actuators B Chem. 2006;114:283–295.
  • Tricoli A, Graf M, Mayer F, et al. Micropatterning layers by flame aerosol deposition‐annealing. Adv Mater. 2008;20:3005–3010.
  • Nasiri N, Bo R, Wang F, et al. Ultraporous electron‐depleted ZnO nanoparticle networks for highly sensitive portable visible‐blind UV photodetectors. Adv Mater. 2015;27:4336–4343.
  • Liu G, Karuturi SK, Simonov AN, et al. Robust sub‐monolayers of Co3O4 nano‐islands: a Highly transparent morphology for efficient water oxidation catalysis. Adv Energy Mater. 2016;6:1600697.
  • Nasiri N, Ceramidas A, Mukherjee S, et al. Ultra-porous nanoparticle networks: a biomimetic coating morphology for enhanced cellular response and infiltration. Sci Rep. 2016;6:1–11.
  • Tricoli A, Righettoni M, Pratsinis SE. Anti-fogging nanofibrous SiO2 and nanostructured SiO2− TiO2 films made by rapid flame deposition and in situ annealing. Langmuir. 2009;25:12578–12584.
  • Wong WS, Liu G, Nasiri N, et al. Omnidirectional self-assembly of transparent superoleophobic nanotextures. Acs Nano. 2017;11:587–596.
  • Karthikeyan J, Berndt C, Tikkanen J, et al. Preparation of nanophase materials by thermal spray processing of liquid precursors. Nanostruct Mater. 1997;9:137–140.
  • Mueller R, Mädler L, Pratsinis SE. Nanoparticle synthesis at high production rates by flame spray pyrolysis. Chem Eng Sci. 2003;58:1969–1976.
  • Elmøe TD, Tricoli A, Grunwaldt J-D, et al. Filtration of nanoparticles: evolution of cake structure and pressure-drop. J Aerosol Sci. 2009;40:965–981.
  • Nasiri N, Elmøe TD, Liu Y, et al. Self-assembly dynamics and accumulation mechanisms of ultra-fine nanoparticles. Nanoscale. 2015;7:9859–9867.
  • Tricoli A, Righettoni M, Krumeich F, et al. Scalable flame synthesis of SiO2 nanowires: dynamics of growth. Nanotechnology. 2010;21:465604.
  • Williams JO. Metal organic chemical vapor deposition (MOCVD) perspectives and prospects. Angew Chem Int Ed Engl. 1989;28:1110–1120.
  • Strobel R, Pratsinis SE. Effect of solvent composition on oxide morphology during flame spray pyrolysis of metal nitrates. Phys Chem Chem Phys. 2011;13:9246–9252.
  • Jossen R, Pratsinis SE, Stark WJ, et al. Criteria for flame‐spray synthesis of hollow, shell‐like, or inhomogeneous oxides. J Am Ceram Soc. 2005;88:1388–1393.
  • Mäkelä J, Keskinen H, Forsblom T, et al. Generation of metal and metal oxide nanoparticles by liquid flame spray process. J Mater Sci. 2004;39:2783–2788.
  • Mäkelä JM, Haapanen J, Harra J, et al. Liquid flame spray—a hydrogen-oxygen flame based method for nanoparticle synthesis and functional nanocoatings. KONA Powder Part J. 2017;34:141–154.
  • Chung S-L, Katz JL. The counterflow diffusion flame burner: a new tool for the study of the nucleation of refractory compounds. Combust Flame. 1985;61:271–284.
  • Xing Y, Koylu UO, Rosner DE. In situ light-scattering measurements of morphologically evolving flame-synthesized oxide nanoaggregates. Appl Opt. 1999;38:2686–2697.
  • Masters, K.Spray Drying Handbook. Spray Drying Handbook, fourth edition; Halstead Press: New York, 1985.
  • Chang H, Park J-H, Jang HD. Flame synthesis of silica nanoparticles by adopting two-fluid nozzle spray. Colloids Surf A Physicochem Eng Asp. 2008;313:140–144.
  • Jung DS, Hong SK, Ju SH, et al. (CeTb) MgAl11O19 phosphor particles prepared by spray pyrolysis from spray solution containing citric acid and ethylene glycol. Jpn J Appl Phys. 2005;44:4975.
  • Alam M, Flagan R. Controlled nucleation aerosol reactors: production of bulk silicon. Aerosol Sc Technol. 1986;5:237–248.
  • Wiggers H, Starke R, Roth P. Silicon particle formation by pyrolysis of silane in a hot wall gasphase reactor. Chem Eng Technol. 2001;24:261–264.
  • Bain Wasmund E, Saberi S, Coley KS. Modeling of an aerosol reactor for optimizing product properties. AIChE J. 2007;53:1429–1440.
  • Weimer AW, Roach RP, Haney CN, et al. Rapid carbothermal reduction of boron oxide in a graphite transport reactor. AIChE J. 1991;37:759–768.
  • Buesser B, Pratsinis SE. Design of nanomaterial synthesis by aerosol processes. Annu Rev Chem Biomol Eng. 2012;3:103–127.
  • Mangolini L, Thimsen E, Kortshagen U. High-yield plasma synthesis of luminescent silicon nanocrystals. Nano Lett. 2005;5:655–659.
  • Liao F, Girshick S, Mook W, et al. Superhard nanocrystalline silicon carbide films. Appl Phys Lett. 2005;86:171913.
  • Phillips J, Luhrs CC, Richard M. Engineering particles using the aerosol-through-plasma method. IEEE Trans Plasma Sci. 2009;37:726–739.
  • Vollath D, Szabo D. Synthesis of nanocrystalline MoS2 and WS2 in a microwave plasma. Mater Lett. 1998;35:236–244.
  • van Erven J, Munao D, Fu Z, et al. The improvement and upscaling of a laser chemical vapor pyrolysis reactor. KONA Powder Part J. 2009;27:157–173.
  • Gupta A, Swihart MT, Wiggers H. Luminescent colloidal dispersion of silicon quantum dots from microwave plasma synthesis: exploring the photoluminescence behavior across the visible spectrum. Adv Funct Mater. 2009;19:696–703.
  • Gleiter H. Nanocrystalline materials. Adv Struct Funct Mater. 1991;33:1–37.
  • Granqvist C, Buhrman R. Ultrafine metal particles. J Appl Phys. 1976;47:2200–2219.
  • Guillou N, Nistor L, Fuess H, et al. Microstructural studies of nanocrystalline CeO2 produced by gas condensation. Nanostruct Mater. 1997;8:545–557.
  • Ceylan A, Jastrzembski K, Shah SI. Enhanced solubility Ag-Cu nanoparticles and their thermal transport properties. Metall Mater Trans A. 2006;37:2033–2038.
  • Osterwalder N, Capello C, Hungerbühler K, et al. Energy consumption during nanoparticle production: how economic is dry synthesis? J Nanopart Res. 2006;8:1–9.
  • Meierhofer F, Fritsching U. Synthesis of metal oxide nanoparticles in flame sprays: review on process technology, modeling, and diagnostics. Energy Fuels. 2021;35:5495–5537.
  • Schimmoeller B, Pratsinis SE, Baiker A. Flame aerosol synthesis of metal oxide catalysts with unprecedented structural and catalytic properties. ChemCatChem. 2011;3:1234–1256.
  • Wiggers H. Novel material properties based on flame-synthesized nanomaterials. KONA Powder Part J. 2009;27:186–194.
  • Zimmermann MB, Hilty FM. Nanocompounds of iron and zinc: their potential in nutrition. Nanoscale. 2011;3:2390–2398.
  • Athanassiou EK, Grass RN, Stark WJ. Chemical aerosol engineering as a novel tool for material science: from oxides to salt and metal nanoparticles. Aerosol Sc Technol. 2010;44:161–172.
  • Mueller R, Kammler HK, Pratsinis SE, et al. Non-agglomerated dry silica nanoparticles. Powder Technol. 2004;140:40–48.
  • Karthikeyan J, Berndt C, Tikkanen J, et al. Nanomaterial powders and deposits prepared by flame spray processing of liquid precursors. Nanostruct Mater. 1997;8:61–74.
  • Mekasuwandumrong O, Phothakwanpracha S, Jongsomjit B, et al. Influence of flame conditions on the dispersion of Pd on the flame spray-derived Pd/TiO2 nanoparticles. Powder Technol. 2011;210:328–331.
  • Chew S, Patey TJ, Waser O, et al. Thin nanostructured LiMn2O4 films by flame spray deposition and in situ annealing method. J Power Sources. 2009;189:449–453.
  • Rodriguez-Perez D, Castillo JL, Antoranz JC. Density scaling laws for the structure of granular deposits. Phys Rev E. 2007;76:011407.
  • Rodríguez-Pérez D, Castillo JL, Antoranz JC. Relationship between particle deposit characteristics and the mechanism of particle arrival. Phys Rev E. 2005;72:021403.
  • Mädler L, Lall AA, Friedlander SK. One-step aerosol synthesis of nanoparticle agglomerate films: simulation of film porosity and thickness. Nanotechnology. 2006;17:4783.
  • Bandyopadhyaya R, Lall AA, Friedlander SK. Aerosol dynamics and the synthesis of fine solid particles. Powder Technol. 2004;139:193–199.
  • Windeler RS, Lehtinen KE, Friedlander SK. Production of nanometer-sized metal oxide particles by gas phase reaction in a free jet. II: particle size and neck formation—comparison with theory. Aerosol Sc Technol. 1997;27:191–205.
  • Tricoli A, Pratsinis SE. Dispersed nanoelectrode devices. Nat Nanotechnol. 2010;5:54–60.
  • Tricoli A, Nasiri N, Chen H, et al. Ultra-rapid synthesis of highly porous and robust hierarchical ZnO films for dye sensitized solar cells. Solar Energy. 2016;136:553–559.
  • Tran‐Phu T, Chen H, Bo R, et al. High‐temperature one‐step synthesis of efficient nanostructured bismuth vanadate photoanodes for water oxidation. Energy Technol. 2019;7:1801052.
  • Thimsen E, Rastgar N, Biswas P. Nanostructured TiO2 films with controlled morphology synthesized in a single step process: performance of dye-sensitized solar cells and photo water splitting. J Phys Chem C. 2008;112:4134–4140.
  • Gockeln M, Pokhrel S, Meierhofer F, et al. Fabrication and performance of Li4Ti5O12/C Li-ion battery electrodes using combined double flame spray pyrolysis and pressure-based lamination technique. J Power Sources. 2018;374:97–106.
  • Blattmann CO, Pratsinis SE. Single-step fabrication of polymer nanocomposite films. Materials. 2018;11:1177.
  • Tricoli A, Graf M, Pratsinis SE. Optimal doping for enhanced SnO2 sensitivity and thermal stability. Adv Funct Mater. 2008;18:1969–1976.
  • Sahm T, Mädler L, Gurlo A, et al. Flame spray synthesis of tin dioxide nanoparticles for gas sensing. Sens Actuators B Chem. 2004;98:148–153.
  • Abegg S, Klein Cerrejon D, Güntner AT, et al. Thickness optimization of highly porous flame-aerosol deposited WO3 films for NO2 sensing at PPB. Nanomaterials. 2020;10:1170.
  • Krumeich F, Waser O, Pratsinis SE. Thermal annealing dynamics of carbon-coated LiFePO4 nanoparticles studied by in-situ analysis. J Solid State Chem. 2016;242:96–102.
  • Waser O, Büchel R, Hintennach A, et al. Continuous flame aerosol synthesis of carbon-coated nano-LiFePO4 for Li-ion batteries. J Aerosol Sci. 2011;42:657–667.
  • Hamid N, Wennig S, Hardt S, et al. High-capacity cathodes for lithium-ion batteries from nanostructured LiFePO4 synthesized by highly-flexible and scalable flame spray pyrolysis. J Power Sources. 2012;216:76–83.
  • Hamid N, Wennig S, Heinzel A, et al. Influence of carbon content, particle size, and partial manganese substitution on the electrochemical performance of LiFe x Mn 1-x PO 4/carbon composites. Ionics. 2015;21:1857–1866.
  • Schopf SO, Salameh S, Mädler L. Transfer of highly porous nanoparticle layers to various substrates through mechanical compression. Nanoscale. 2013;5:3764–3772.
  • Liewhiran C, Tamaekong N, Wisitsoraat A, et al. Highly selective environmental sensors based on flame-spray-made SnO2 nanoparticles. Sens Actuators B Chem. 2012;163:51–60.
  • Kammler HK, Mädler L. Characterization of fine dry powders. In: B Lee, S Komarneni, eds. Chemical Processing of Ceramics. 2nd ed.Boca Raton: CRC Press; 2005: 233- 265.
  • Li S, Ren Y, Biswas P, et al. Flame aerosol synthesis of nanostructured materials and functional devices: processing, modeling, and diagnostics. Prog Energy Combust Sci. 2016;55:1–59.
  • Zong Y, Li S, Niu F, et al. Direct synthesis of supported palladium catalysts for methane combustion by stagnation swirl flame. Proc Combust Inst. 2015;35:2249–2257.
  • Zhang Y, Shuiqing L, Deng S, et al. Direct synthesis of nanostructured TiO2 films with controlled morphologies by stagnation swirl flames. J Aerosol Sci. 2012;44:71–82.
  • Zachariah MR, Dimitriou P. Controlled nucleation in aerosol reactors for suppression of agglomerate formation: a numerical study. Aerosol Sc Technol. 1990;13:413–425.
  • Wang J, Li S, Yan W, et al. Synthesis of TiO2 nanoparticles by premixed stagnation swirl flames. Proc Combust Inst. 2011;33:1925–1932.
  • Johannessen T, Pratsinis SE, Livbjerg H. Computational fluid-particle dynamics for the flame synthesis of alumina particles. Chem Eng Sci. 2000;55:177–191.
  • Mühlenweg H, Gutsch A, Schild A, et al. Process simulation of gas-to-particle-synthesis via population balances: investigation of three models. Chem Eng Sci. 2002;57:2305–2322.
  • Shmakov A, Korobeinichev O, Knyazkov D, et al. Combustion chemistry of Ti (OC3H7) 4 in premixed flat burner-stabilized H2/O2/Ar flame at 1 atm. Proc Combust Inst. 2013;34:1143–1149.
  • Tsantilis S, Kammler H, Pratsinis S. Population balance modeling of flame synthesis of titania nanoparticles. Chem Eng Sci. 2002;57:2139–2156.
  • Tsantilis S, Pratsinis SE. Narrowing the size distribution of aerosol-made titania by surface growth and coagulation. J Aerosol Sci. 2004;35:405–420.
  • Manuputty MY, Akroyd J, Mosbach S, et al. Modelling TiO2 formation in a stagnation flame using method of moments with interpolative closure. Combust Flame. 2017;178:135–147.
  • Yan W, Li S, Zhang Y, et al. Effects of dipole moment and temperature on the interaction dynamics of titania nanoparticles during agglomeration. J Phys Chem C. 2010;114:10755–10760.
  • Schwarz JA, Contescu C, Contescu A. Methods for preparation of catalytic materials. Chem Rev. 1995;95:477–510.
  • Johannessen T, Jensen JR, Mosleh M, et al. Flame synthesis of nanoparticles: applications in catalysis and product/process engineering. Chem Eng Res Des. 2004;82:1444–1452.
  • Stark WJ, Pratsinis SE, Baiker A. Heterogeneous catalysis by flame-made nanoparticles. CHIMIA Int J Chem. 2002;56:485–489.
  • Belver C, Bedia J, Gómez-Avilés A, et al. Semiconductor photocatalysis for water purification. Nanoscale Mater Water Purif. 2019;581–651.
  • Wang Y, Wang Q, Zhan X, et al. Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale. 2013;5:8326–8339.
  • Murugan K, Subasri R, Rao T, et al. Synthesis, characterization and demonstration of self-cleaning TiO2 coatings on glass and glazed ceramic tiles. Prog Org Coat. 2013;76:1756–1760.
  • Kim SC, Park Y-K, Nah JW. Property of a highly active bimetallic catalyst based on a supported manganese oxide for the complete oxidation of toluene. Powder Technol. 2014;266:292–298.
  • Chiarello GL, Selli E, Forni L. Photocatalytic hydrogen production over flame spray pyrolysis-synthesised TiO2 and Au/TiO2. Appl Catal B Environ. 2008;84:332–339.
  • Kho YK, Teoh WY, Iwase A, et al. Flame preparation of visible-light-responsive BiVO4 oxygen evolution photocatalysts with subsequent activation via aqueous route. ACS Appl Mater Interfaces. 2011;3:1997–2004.
  • Xiong Z, Lei Z, Xu Z, et al. Flame spray pyrolysis synthesized ZnO/CeO2 nanocomposites for enhanced CO2 photocatalytic reduction under UV–Vis light irradiation. J CO2 Util. 2017;18:53–61.
  • Abe Y, Laine RM. Photocatalytic plate‐like La2Ti2O7 nanoparticles synthesized via liquid‐feed flame spray pyrolysis (LF‐FSP) of metallo‐organic precursors. J Am Ceram Soc. 2020;103:4832–4839.
  • Chen H, Bo R, Tran‐Phu T, et al. One‐Step Rapid and Scalable Flame Synthesis of Efficient WO3 Photoanodes for Water Splitting. ChemPlusChem. 2018;83:569–576.
  • Chiang C-Y, Aroh K, Franson N, et al. Copper oxide nanoparticle made by flame spray pyrolysis for photoelectrochemical water splitting–Part II. Photoelectrochemical study. Int J Hydrogen Energy. 2011;36:15519–15526.
  • Chen H, Mulmudi HK, Tricoli A. Flame spray pyrolysis for the one-step fabrication of transition metal oxide films: recent progress in electrochemical and photoelectrochemical water splitting. Chin Chem Lett. 2020;31:601–604.
  • Ng YH, Iwase A, Kudo A, et al. Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting. J Phys Chem Lett. 2010;1:2607–2612.
  • Saeidi S, Amin NAS, Rahimpour MR. Hydrogenation of CO2 to value-added products—A review and potential future developments. J CO2 Util. 2014;5:66–81.
  • Porosoff MD, Yan B, Chen JG. Catalytic reduction of CO 2 by H 2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities. Energy Environ Sci. 2016;9:62–73.
  • Gao X, Liu G, Zhu Y, et al. Earth-abundant transition metal oxides with extraordinary reversible oxygen exchange capacity for efficient thermochemical synthesis of solar fuels. Nano Energy. 2018;50:347–358.
  • Tada S, Larmier K, Büchel R, et al. Methanol synthesis via CO 2 hydrogenation over CuO–ZrO 2 prepared by two-nozzle flame spray pyrolysis. Catal Sci Technol. 2018;8:2056–2060.
  • Wegner K, Medicus M, Schade E, et al. Tailoring catalytic properties of copper manganese oxide nanoparticles (Hopcalites‐2G) via flame spray pyrolysis. ChemCatChem. 2018;10:3914–3922.
  • Lovell EC, Großman H, Horlyck J, et al. Asymmetrical double flame spray pyrolysis-designed SiO2/Ce0. 7Zr0. 3O2 for the dry reforming of methane. ACS Appl Mater Interfaces. 2019;11:25766–25777.
  • Kirubakaran A, Jain S, Nema R. A review on fuel cell technologies and power electronic interface. Renew Sust Energ Rev. 2009;13:2430–2440.
  • Choy K, Charojrochkul S, Steele B. Fabrication of cathode for solid oxide fuel cells using flame assisted vapour deposition technique. Solid State Ion. 1997;96:49–54.
  • Seo DJ, Ryu KO, Park SB, et al. Synthesis and properties of Ce1− xGdxO2− x/2 solid solution prepared by flame spray pyrolysis. Mater Res Bull. 2006;41:359–366.
  • Lee H, Kim TJ, Li C, et al. Flame aerosol synthesis of carbon-supported Pt–Ru catalysts for a fuel cell electrode. Int J Hydrogen Energy. 2014;39:14416–14420.
  • Gockeln M, Glenneberg J, Busse M, et al. Flame aerosol deposited Li4Ti5O12 layers for flexible, thin film all-solid-state Li-ion batteries. Nano Energy. 2018;49:564–573.
  • Abram C, Shan J, Yang X, et al. Flame aerosol synthesis and electrochemical characterization of Ni-rich layered cathode materials for Li-ion batteries. ACS Appl Energy Mater. 2019;2:1319–1329.
  • Bo R, Taheri M, Liu B, et al. Hierarchical metal‐organic framework films with controllable meso/macroporosity. Adv Sci. 2020;7:2002368.
  • Sun X, Radovanovic PV, Cui B. Advances in spinel Li 4 Ti 5 O 12 anode materials for lithium-ion batteries. New J Chem. 2015;39:38–63.
  • Sazali N, Wan Salleh WN, Jamaludin AS, et al. New perspectives on fuel cell technology: a brief review. Membranes (Basel). 2020;10:99.
  • Sel S, Duygulu O, Kadiroglu U, et al. Synthesis and characterization of nano-V2O5 by flame spray pyrolysis, and its cathodic performance in Li-ion rechargeable batteries. Appl Surf Sci. 2014;318:150–156.
  • Stepien M, Saarinen JJ, Teisala H, et al. Adjustable wettability of paperboard by liquid flame spray nanoparticle deposition. Appl Surf Sci. 2011;257:1911–1917.
  • Aromaa M, Arffman A, Suhonen H, et al. Atmospheric synthesis of superhydrophobic TiO2 nanoparticle deposits in a single step using Liquid Flame Spray. J Aerosol Sci. 2012;52:57–68.
  • Bedi TS, Kumar S, Kumar R. Corrosion performance of hydroxyapatite and hydroxyapatite/titania bond coating for biomedical applications. Mater Res Express. 2019;7:015402.
  • Wong WS, Tricoli A. Multiscale engineering and scalable fabrication of super (de) wetting Coatings. Adv Coat Mater. 2018;393.
  • Jia Y, Liu G, Wu X, et al. Anti-fogging and anti-reflective silica nanofibrous film fabricated by seedless flame method. Mater Lett. 2013;108:200–203.
  • Tuominen M, Teisala H, Aromaa M, et al. Creation of superhydrophilic surfaces of paper and board. J Adhesi Sci Technol. 2014;28:864–879.
  • De Falco G, Ciardiello R, Commodo M, et al. TiO2 nanoparticle coatings with advanced antibacterial and hydrophilic properties prepared by flame aerosol synthesis and thermophoretic deposition. Surf Coat Technol. 2018;349:830–837.
  • Wong WS, Tricoli A. Cassie-levitated droplets for distortion-free low-energy solid–liquid interactions. ACS Appl Mater Interfaces. 2018;10:13999–14007.
  • Deng X, Mammen L, Butt H-J, et al. Candle soot as a template for a transparent robust superamphiphobic coating. Science. 2012;335:67–70.
  • Stepien M, Chinga-Carrasco G, Saarinen JJ, et al. Wear resistance of nanoparticle coatings on paperboard. Wear. 2013;307:112–118.
  • Mäkelä JM, Haapanen J, Aromaa M, et al. Roll-to-roll coating by liquid flame spray nanoparticle deposition. MRS Online Proc Lib (OPL). 2015;1747:37-42.
  • Wong WS, Liu G, Tricoli A. Superamphiphobic bionic proboscis for contamination‐free manipulation of nano and core–shell droplets. Small. 2017;13:1603688.
  • Vial S, Reis RL, Oliveira JM. Recent advances using gold nanoparticles as a promising multimodal tool for tissue engineering and regenerative medicine. Curr Opin Solid State Mater Sci. 2017;21:92–112.
  • Ataol S, Tezcaner A, Duygulu O, et al. Synthesis and characterization of nanosized calcium phosphates by flame spray pyrolysis, and their effect on osteogenic differentiation of stem cells. J Nanopart Res. 2015;17:1–14.
  • Rubio L, Pyrgiotakis G, Beltran-Huarac J, et al. Safer-by-design flame-sprayed silicon dioxide nanoparticles: the role of silanol content on ROS generation, surface activity and cytotoxicity. Part Fibre Toxicol. 2019;16:1–15.
  • Strobel L, Hild N, Mohn D, et al. Novel strontium-doped bioactive glass nanoparticles enhance proliferation and osteogenic differentiation of human bone marrow stromal cells. J Nanopart Res. 2013;15:1–9.
  • Sotiriou GA, Teleki A, Camenzind A, et al. Nanosilver on nanostructured silica: antibacterial activity and Ag surface area. Chem Eng J. 2011;170:547–554.
  • Brobbey KJ, Haapanen J, Gunell M, et al. One-step flame synthesis of silver nanoparticles for roll-to-roll production of antibacterial paper. Appl Surf Sci. 2017;420:558–565.
  • De Falco G, Porta A, Petrone A, et al. Antimicrobial activity of flame-synthesized nano-TiO 2 coatings. Environ Sci Nano. 2017;4:1095–1107.
  • Tricoli A, Righettoni M, Teleki A. Semiconductor gas sensors: dry synthesis and application. Angew Chem. 2010;49:7632–7659.
  • Wetchakun K, Samerjai T, Tamaekong N, et al. Semiconducting metal oxides as sensors for environmentally hazardous gases. Sens Actuators B Chem. 2011;160:580–591.
  • Righettoni M, Tricoli A, Gass S, et al. Breath acetone monitoring by portable Si: WO3 gas sensors. Anal Chim Acta. 2012;738:69–75.
  • Righettoni M, Tricoli A. Toward portable breath acetone analysis for diabetes detection. J Breath Res. 2011;5:037109.
  • Mädler L, Sahm T, Gurlo A, et al. Sensing low concentrations of CO using flame-spray-made Pt/SnO2 nanoparticles. J Nanopart Res. 2006;8:783–796.
  • Righettoni M, Tricoli A, Pratsinis SE. Si: WO3 sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis. Anal Chem. 2010;82:3581–3587.
  • Samerjai T, Tamaekong N, Liewhiran C, et al. Selectivity towards H2 gas by flame-made Pt-loaded WO3 sensing films. Sens Actuators B Chem. 2011;157:290–297.
  • Chen Z, Xu Z, Zhao H. Flame spray pyrolysis synthesis and H2S sensing properties of CuO-doped SnO2 nanoparticles. Proc Combust Inst. 2020;38:6743-6751.
  • Chen H, Bo R, Shrestha A, et al. NiO–ZnO nanoheterojunction networks for room‐temperature volatile organic compounds sensing. Adv Opt Mater. 2018;6:1800677.
  • Li H, Zhang L. Photocatalytic performance of different exposed crystal facets of BiOCl. Current Opin Green Sustainable Chem. 2017;6:48–56.
  • Homola J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev. 2008;108:462–493.
  • Sotiriou GA, Sannomiya T, Teleki A, et al. Non‐toxic dry‐coated nanosilver for plasmonic biosensors. Adv Funct Mater. 2010;20:4250–4257.
  • Fusco Z, Rahmani M, Bo R, et al. High‐temperature large‐scale self‐assembly of highly faceted monocrystalline au metasurfaces. Adv Funct Mater. 2019;29:1806387.
  • Fusco Z, Bo R, Wang Y, et al. Self-assembly of Au nano-islands with tuneable organized disorder for highly sensitive SERS. J Mater Chem C. 2019;7:6308–6316.
  • Fusco Z, Rahmani M, Tran‐Phu T, et al. Photonic fractal metamaterials: a metal–semiconductor platform with enhanced volatile‐compound sensing performance. Adv Mater. 2020;32:2002471.
  • Tran-Phu T, Daiyan R, Fusco Z, et al. Multifunctional nanostructures of Au–Bi 2 O 3 fractals for CO 2 reduction and optical sensing. ?J Mater Chem A. 2020;8:11233–11245.
  • Tran‐Phu T, Daiyan R, Fusco Z, et al. Nanostructured β‐Bi2O3 fractals on carbon fibers for highly selective CO2 electroreduction to formate. Adv Funct Mater. 2020;30:1906478.
  • Nasiri N, Bo R, Chen H, et al. Structural engineering of nano‐grain boundaries for low‐voltage UV‐photodetectors with gigantic photo‐to dark‐current ratios. Adv Opt Mater. 2016;4:1787–1795.
  • Nasiri N, Bo R, Hung TF, et al. Tunable band‐selective UV‐photodetectors by 3D self‐assembly of heterogeneous nanoparticle networks. Adv Funct Mater. 2016;26:7359–7366.
  • Nasiri N, Bo R, Fu L, et al. Three-dimensional nano-heterojunction networks: a highly performing structure for fast visible-blind UV photodetectors. Nanoscale. 2017;9:2059–2067.