2,553
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Strong-field physics with nanospheres

, , &
Article: 2010595 | Received 13 Aug 2021, Accepted 16 Nov 2021, Published online: 21 Apr 2022

References

  • Brabec T, Krausz F. Intense few-cycle laser fields: frontiers of nonlinear optics. Rev Mod Phys. 2000 Apr;72:545–60.
  • Becker W, Grasbon F, and Kopold R, et al. Above-Threshold Ionization: From Classical Features to Quantum Effects. Advances in Atomic, Molecular, and Optical Physics. 2002;48:35–98.
  • Scrinzi A, Ivanov MY, Kienberger R, et al. Attosecond physics. J Phys B. 2005;39:R1–R37.
  • Milošević DB, Paulus GG, Bauer D, et al. Above-threshold ionization by few-cycle pulses. J Phys B. 2006;39:R203–R262.
  • Krausz F, Ivanov M. Attosecond physics. Rev Mod Phys. 2009;81:163–234.
  • Lewenstein M, Balcou P, Ivanov MY, et al. Theory of high-harmonic generation by low-frequency laser fields. Phys Rev A. 1994;49:2117–2132.
  • Krause JL, Schafer KJ, Kulander KC. High-order harmonic generation from atoms and ions in the high intensity regime. Phys Rev Lett. 1992;68:3535–3538.
  • Schafer KJ, Yang B, DiMauro LF, et al. Above threshold ionization beyond the high harmonic cutoff. Phys Rev Lett. 1993;70:1599–1602.
  • Corkum PB. Plasma perspective on strong field multiphoton ionization. Phys Rev Lett. 1993;71:1994–1997.
  • Paulus GG, Becker W, Nicklich W, et al. Rescattering effects in above-threshold ionization: a classical model. J Phys B. 1994;27:L703–L708.
  • Schafer K, Wei Z, Vrakking M. Special issue celebrating 25 years of re-collision physics. J Phys B. 2017;50:170201.
  • McPherson A, Gibson G, Jara H, et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. J Opt Soc Am B. 1987;4:595–601.
  • Ferray M, L’Huillier A, Li XF, et al. Multiple-harmonic conversion of 1064 nm radiation in rare gases. J Phys B. 1988;21:L31.
  • Li XF, L’Huillier A, Ferray M, et al. Multiple-harmonic generation in rare gases at high laser intensity. Phys Rev A. 1989;39:5751–5761.
  • L’Huillier A, Lewenstein M, Salières P, et al. High-order harmonic-generation cutoff. Phys Rev A. 1993;48:R3433–R3436.
  • Paulus GG, Nicklich W, Xu H, et al. Plateau in above threshold ionization spectra. Phys Rev Lett. 1994;72:2851–2854.
  • Becker W, Goreslavski SP, Milosevic DB, et al. The plateau in above-threshold ionization: the keystone of rescattering physics. J Phys B. 2018;51:162002.
  • Paulus GG, Lindner F, Walther H, et al. Measurement of the phase of few-cycle laser pulses. Phys Rev Lett. 2003;91:253004.
  • Kitzler M, Lezius M. Spatial control of recollision wave packets with attosecond precision. Phys Rev Lett. 2005;95:253001.
  • Skruszewicz S, Tiggesbäumker J, Meiwes-Broer KH, et al. Two-color strong-field photoelectron spectroscopy and the phase of the phase. Phys Rev Lett. 2015;115:043001.
  • Medišauskas L, Wragg J, van der Hart H, et al. Generating isolated elliptically polarized attosecond pulses using bichromatic counterrotating circularly polarized laser fields. Phys Rev Lett. 2015;115:153001.
  • Milošević DB. Generation of elliptically polarized attosecond pulse trains. Opt Lett. 2015;40:2381–2384.
  • Krausz F, Stockman MI. Attosecond metrology: from electron capture to future signal processing. Nat Photon. 2014;8:205–213.
  • Schoetz J, Wang Z, Pisanty E, et al. Perspective on petahertz electronics and attosecond nanoscopy. ACS Photonics. 2019;6:3057–3069.
  • Kim S, Jin J, Kim YJ, et al. High-harmonic generation by resonant plasmon field enhancement. Nature. 2008;453:757–760.
  • Sivis M, Duwe M, Abel B, et al. Nanostructure-enhanced atomic line emission. Nature. 2012;485:E1–E2.
  • Sivis M, Ropers C. Nonlinear light generation in localized fields using gases and tailored solids. Cham: Springer International Publishing; 2020. p. 523–530. DOI:10.1007/978-3-030-34413-9_19.
  • Irvine SE, Dechant A, Elezzabi AY. Generation of 0.4-kev femtosecond electron pulses using impulsively excited surface plasmons. Phys Rev Lett. 2004;93:184801.
  • Dombi P, Irvine SE, Rácz P, et al. Observation of few-cycle, strong-field phenomena in surface plasmon fields. Opt Express. 2010;18:24206–24212.
  • Rácz P, Pápa Z, Márton I, et al. Measurement of nanoplasmonic field enhancement with ultrafast photoemission. Nano Lett. 2017;17:1181–1186.
  • Budai J, Pápa Z, Márton I, et al. Plasmon–plasmon coupling probed by ultrafast, strong-field photoemission with < 7 Å sensitivit. Nanoscale. 2018;10:16261–16267.
  • Dombi P, Pápa Z, Vogelsang J, et al. Strong-field nano-optics. Rev Mod Phys. 2020;92:025003.
  • Klein M, Schwitzgebel G. An improved lamellae drop-off technique for sharp tip preparation in scanning tunneling microscopy. Rev Sci Instrum. 1997;68:3099–3103.
  • Eisele M, Krüger M, Schenk M, et al. Note: production of sharp gold tips with high surface quality. Rev Sci Instrum. 2011;82:026101.
  • Lopes M, Toury T, de La Chapelle ML, et al. Fast and reliable fabrication of gold tips with sub-50 nm radius of curvature for tip-enhanced Raman spectroscopy. Rev Sci Instrum. 2013;84:073702.
  • Thomas S, Wachter G, Lemell C, et al. Large optical field enhancement for nanotips with large opening angles. New J Phys. 2015;17:063010.
  • Krüger M, Schenk M, Hommelhoff P. Attosecond control of electrons emitted from a nanoscale metal tip. Nature. 2011;475:78–81.
  • Herink G, Solli DR, Gulde M, et al. Field-driven photoemission from nanostructures quenches the quiver motion. Nature. 2012;483:190–193.
  • Feist A, Echternkamp KE, Schauss J, et al. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope. Nature. 2015;521:200.
  • Zherebtsov S, Fennel T, Plenge J, et al. Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields. Nat Phys. 2011;7:656–662.
  • Liu P, Ziemann PJ, Kittelson DB, et al. Generating particle beams of controlled dimensions and divergence: i. theory of particle motion in aerodynamic lenses and nozzle expansions. Aerosol Sc Technol. 1995;22:293–313.
  • Eppink ATJB, Parker DH. Velocity map imaging of ions and electrons using electrostatic lenses: application in photoelectron and photofragment ion imaging of molecular oxygen. Rev Sci Instrum. 1997;68:3477–3484.
  • Sugioka K, Cheng Y. Ultrafast lasers—reliable tools for advanced materials processing. Light Sci Appl. 2014;3:e149–e149.
  • Mie G. Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Ann Phys. 1908;330:377–445.
  • Seiffert L. Semi-classical description of near-field driven attosecond photoemission from nanostructures [dissertation]. University of Rostock; 2018. 10.18453/rosdok_id00002417.
  • Süßmann F, Seiffert L, Zherebtsov S, et al. Field propagation-induced directionality of carrier-envelope phase-controlled photoemission from nanospheres. Nat Commun. 2015;6:7944.
  • Ciappina MF, Pérez-Hernández JA, Landsman AS, et al. Attosecond physics at the nanoscale. Rep Prog Phys. 2017;80:054401.
  • Seiffert L, Henning P, Rupp P, et al. Trapping field assisted backscattering in strong-field photoemission from dielectric nanospheres. J Mod Opt. 2017;64:1096–1103.
  • Rupp P, Seiffert L, Liu Q, et al. Quenching of material dependence in few-cycle driven electron acceleration from nanoparticles under many-particle charge interaction. J Mod Opt. 2017;64:995–1003.
  • Powell JA, Summers AM, Liu Q, et al. Interplay of pulse duration, peak intensity, and particle size in laser-driven electron emission from silica nanospheres. Opt Express. 2019;27:27124–27135.
  • Liu Q, Zherebtsov S, Seiffert L, et al. All-optical spatio-temporal control of electron emission from SiO2 nanospheres with femtosecond two-color laser fields. New J Phys. 2019;21:073011.
  • Seiffert L, Süßmann F, Zherebtsov S, et al. Competition of single and double rescattering in the strong-field photoemission from dielectric nanospheres. Appl Phys B. 2016;122:1–9.
  • Rupp P, Burger C, Kling NG, et al. Few-cycle laser driven reaction nanoscopy on aerosolized silica nanoparticles. Nat Commun. 2019;10:1.
  • Constant E, Taranukhin VD, Stolow A, et al. Methods for the measurement of the duration of high-harmonic pulses. Phys Rev A. 1997;56:3870–3878.
  • Drescher M, Hentschel M, Kienberger R, et al. X-ray pulses approaching the attosecond frontier. Science. 2001;291:1923–1927.
  • Hentschel M, Kienberger R, Spielmann C, et al. Attosecond metrology. Nature. 2001;414:509.
  • Itatani J, Quéré F, Yudin GL, et al. Attosecond streak camera. Phys Rev Lett. 2002;88:173903.
  • Kienberger R, Goulielmakis E, Uiberacker M, et al. Atomic transient recorder. Nature. 2004;427:817–821.
  • Seiffert L, Liu Q, Zherebtsov S, et al. Attosecond chronoscopy of electron scattering in dielectric nanoparticles. Nat Phys. 2017;13:766–770.
  • Liu Q, Seiffert L, Trabattoni A, et al. Attosecond streaking metrology with isolated nanoparticles. J Opt. 2018;20:024002.
  • Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci. 1968;26:62–69.
  • Süßmann F. Attosecond dynamics of nano-localized fields probed by photoelectron spectroscopy [dissertation]. Ludwig Maximilians University of Munich; 2013. 10.5282/edoc.16144.
  • Bresch H. Photoionisation von freien aerosolpartikeln mit synchrotronstrahlung [dissertation]. 2007. 10.17169/refubium-6727.
  • Süßmann F, Zherebtsov S, Plenge J, et al. Single-shot velocity-map imaging of attosecond light-field control at kilohertz rate. Rev Sci Instrum. 2011;82:093109.
  • Rathje T, Johnson NG, Möller M, et al. Review of attosecond resolved measurement and control via carrier–envelope phase tagging with above-threshold ionization. J Phys B. 2012;45:074003.
  • Zherebtsov S, Süßmann F, Peltz C, et al. Carrier-envelope phase-tagged imaging of the controlled electron acceleration from SiO2 nanospheres in intense few-cycle laser fields. New J Phys. 2012;14:075010.
  • Varin C, Peltz C, Brabec T, et al. Attosecond plasma wave dynamics in laser-driven cluster nanoplasmas. Phys Rev Lett. 2012;108:175007.
  • Peltz C, Varin C, Brabec T, et al. Time-resolved x-ray imaging of anisotropic nanoplasma expansion. Phys Rev Lett. 2014;113:133401.
  • Liu Q, Seiffert L, Süßmann F, et al. Ionization-induced subcycle metallization of nanoparticles in few-cycle pulses. ACS Photonics. 2020;7:3207–3215.
  • Schötz J, Seiffert L, Maliakkal A, et al. Onset of charge interaction in strong-field photoemission from nanometric needle tips. Nanophotonics. 2021;10:3769–3775. DOI:10.1515/nanoph-2021-0276.
  • Strutt HJW. On the scattering of light by small particles. Lond Edinb Dubl Phil Mag. 1871;41:447–454.
  • Jackson JD. Classical electrodynamics. New York: Wiley; 1999.
  • Stratton JA. Electromagnetic theory. Hoboken, New Jersey: John Wiley & Sons; 2007. https://www.wiley.com/WileyCDA/WileyTitle/productCd-0470131535,miniSiteCd-IEEE2.html
  • Bohren CF, Huffman DR. Absorption and scattering of light by small particles. Weinheim: John Wiley & Sons; 1998. https://www.wiley.com/en-us/Absorption+and+Scattering+of+Light+by+Small+Particles-p-9780471293408
  • Wigner E. On the quantum correction for thermodynamic equilibrium. Phys Rev. 1932;40:749–759.
  • Cohen L. Time-frequency distributions – a review. Proc IEEE. 1989;77:941–981.
  • Hong KH, Kim JH, Kang Y, et al. Time-frequency analysis of chirped femtosecond pulses using Wigner distribution function. Appl Phys B. 2002;74:231–236.
  • Keldysh LV. Ionization in the field of a strong electromagnetic wave. Sov Phys – JETP. 1965;20:1307–1314.
  • Ammosov MV, Delone NB, Krainov VP. Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field. Sov Phys JETP. 1986;64:1191–1194.
  • Antonsson E. Photoexcitation, photoionization, and x-ray scattering of free nanoparticles prepared in a beam [dissertation]. Freie Universität Berlin; 2011. 10.17169/refubium-5212.
  • Schreiber E, Fitting HJ. Monte carlo simulation of secondary electron emission from the insulator SiO2. J Electron Spectrosc Relat Phenom. 2002;124:25–37.
  • Verlet L. Computer “experiments” on classical fluids. i. thermodynamical properties of Lennard-Jones molecules. Phys Rev. 1967;159:98–103.
  • Swope WC, Andersen HC, Berens PH, et al. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters. J Chem Phys. 1982;76:637–649.
  • Sönnichsen C, Franzl T, Wilk T, et al. Plasmon resonances in large noble-metal clusters. New J Phys. 2002;4:93.
  • Peltz C, Varin C, Brabec T, et al. Fully microscopic analysis of laser-driven finite plasmas using the example of clusters. New J Phys. 2012;14:065011.
  • Kuhr JC, Fitting HJ. Monte carlo simulation of electron emission from solids. J Electron Spectrosc Relat Phenom. 1999;105:257–273. 10.1016/S0368-2048(99) 00082–1.
  • Lotz W. An empirical formula for the electron-impact ionization cross-section. Zeitschrift für Physik. 1967;206:205–211.
  • Ashley JC, Anderson VE. Energy losses and mean free paths of electrons in silicon dioxide. IEEE Trans Nucl Sci. 1981;28:4131–4136.
  • Reich T, Yarzhemski VG, Nefedov VI. Calculation of inelastic mean free path of photoelectrons in some solids. J Electron Spectrosc Relat Phenom. 1988;46:255–267.
  • Passig J, Zherebtsov S, Irsig R, et al. Nanoplasmonic electron acceleration by attosecond-controlled forward rescattering in silver clusters. Nat Commun. 2017;8:1181.
  • Wang B, Li X, Fu P. The effects of a static electric field on high-order harmonic generation. J Phys B. 1998;31:1961.
  • Mairesse Y, Quéré F. Frequency-resolved optical gating for complete reconstruction of attosecond bursts. Phys Rev A. 2005;71:011401.
  • Gagnon J, Goulielmakis E, Yakovlev V. The accurate frog characterization of attosecond pulses from streaking measurements. Appl Phys B. 2008;92:25–32.
  • Goulielmakis E, Uiberacker M, Kienberger R, et al. Direct measurement of light waves. Science. 2004;305:1267–1269.
  • Schultze M, Fieß M, Karpowicz N, et al. Delay in photoemission. Science. 2010;328:1658–1662.
  • Nagele S, Pazourek R, Feist J, et al. Time-resolved photoemission by attosecond streaking: extraction of time information. J Phys B. 2011;44:081001.
  • Hockett P, Frumker E, Villeneuve DM, et al. Time delay in molecular photoionization. J Phys B. 2016;49:095602.
  • Dahlström JM, L’Huillier A, Maquet A. Introduction to attosecond delays in photoionization. J Phys B. 2012;45:183001.
  • Pazourek R, Nagele S, Burgdörfer J. Attosecond chronoscopy of photoemission. Rev Mod Phys. 2015;87:765–802.
  • Eisenbud L. The formal properties of nuclear collisions [dissertation]. Princeton University; 1948.
  • Wigner EP. Lower limit for the energy derivative of the scattering phase shift. Phys Rev. 1955 Apr;98:145–147.
  • Smith FT. Lifetime matrix in collision theory. Phys Rev. 1960 Apr;118:349–356.
  • Smirnova O, Spanner M, Ivanov MY. Coulomb and polarization effects in laser-assisted xuv ionization. J Phys B. 2006;39:S323.
  • Smirnova O, Mouritzen AS, Patchkovskii S, et al. Coulomb–laser coupling in laser-assisted photoionization and molecular tomography. J Phys B. 2007;40:F197.
  • Zhang CH, Thumm U. Electron-ion interaction effects in attosecond time-resolved photoelectron spectra. Phys Rev A. 2010;82:043405.
  • Cavalieri AL, Müller N, Uphues T, et al. Attosecond spectroscopy in condensed matter. Nature. 2007;449:1029–1032.
  • Neppl S, Ernstorfer R, Bothschafter EM, et al. Attosecond time-resolved photoemission from core and valence states of magnesium. Phys Rev Lett. 2012;109:087401.
  • Neppl S, Ernstorfer R, Cavalieri AL, et al. Direct observation of electron propagation and dielectric screening on the atomic length scale. Nature. 2015;517:342.
  • Siek F, Neb S, Bartz P, et al. Angular momentum–induced delays in solid-state photoemission enhanced by intra-atomic interactions. Science. 2017;357:1274–1277.
  • Signorell R, Goldmann M, Yoder BL, et al. Nanofocusing, shadowing, and electron mean free path in the photoemission from aerosol droplets. Chem Phys Lett. 2016;658:1–6.
  • Tanuma S, Powell CJ, Penn DR. Calculations of electron inelastic mean free paths. iii. data for 15 inorganic compounds over the 50–2000 ev range. Surf Interface Anal. 1991;17:927–939.
  • Hassan MT, Luu TT, Moulet A, et al. Optical attosecond pulses and tracking the nonlinear response of bound electrons. Nature. 2016;530:66–70.