4,008
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Second order nonlinear frequency generation at the nanoscale in dielectric platforms

ORCID Icon, ORCID Icon, , ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon & ORCID Icon show all
Article: 2022992 | Received 19 Nov 2021, Accepted 21 Dec 2021, Published online: 13 Jan 2022

References

  • Celebrano M, Wu X, Baselli M, et al. Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation. Nat Nanotechnol. 2015;10:412–25.
  • Kauranen M, Zayats AV. Nonlinear plasmonics. Nat Photonics. 2012;6:737–748.
  • Kabashin AV, Evans P, Pastkovsky S, et al. Plasmonic nanorod metamaterials for biosensing. Nat Mater. 2009;8:867–871.
  • Kuznetsov AI, Miroshnichenko AE, Brongersma ML, et al. Optically resonant dielectric nanostructures. Science. 2016;354. DOI:10.1126/science.aag2472
  • Grinblat G. Nonlinear dielectric nanoantennas and metasurfaces: frequency conversion and wavefront control. ACS Photonics. 2021;8:3406–3432.
  • Zheludev NI, Kivshar YS. From metamaterials to metadevices. Nat Mater. 2012;11:917–924.
  • Decker M, Staude I, Falkner M, et al. High-efficiency dielectric huygens’ surfaces. Adv Opt Mater. 2015;3:813–820.
  • Butet J, Brevet P-F, Martin OJ. Optical second harmonic generation in plasmonic nanostructures: from fundamental principles to advanced applications. ACS Nano. 2015;9:10545–10562.
  • Zhang HC, Fan Y, Guo J, et al. Second-harmonic generation of spoof surface plasmon polaritons using nonlinear plasmonic metamaterials. ACS Photonics. 2015;3:139–146.
  • Noor A, Damodaran AR, Lee I-H, et al. Mode-matching enhancement of second-harmonic generation with plasmonic nanopatch antennas. ACS Photonics. 2020;7:3333–3340.
  • Thyagarajan K, Rivier S, Lovera A, et al. Enhanced second-harmonic generation from double resonant plasmonic antennae. Opt Express. 2012;20:12860–12865.
  • Albella P, de La Osa RA, Moreno F, et al. Electric and magnetic field enhancement with ultralow heat radiation dielectric nanoantennas: considerations for surface-enhanced spectroscopies. ACS Photonics. 2014;1:524–529.
  • Petosa A, Apisak I. Dielectric resoNATOr antennas: a historical review and the current state of the art. IEEE Antennas Propag Magazine. 2010;52:91–116.
  • Bohren CF, Huffman DR. Absorption and scattering of light by small particles. Weinheim, Germany: John Wiley & Sons; 2008.
  • Zhao Q, Zhou J, Zhang F, et al. Mie resonance-based dielectric metamaterials. Mater Today. 2009;12:60–69.
  • Evlyukhin AB, Novikov SM, Zywietz U, et al. Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. Nano Lett. 2012;12:3749–3755.
  • Kuznetsov AI, Miroshnichenko AE, Fu YH, et al. Magnetic light. Sci Rep. 2012;2:1–6.
  • Fu YH, Kuznetsov AI, Miroshnichenko AE, et al. Directional visible light scattering by silicon nanoparticles. Nat Commun. 2013;4:1–6.
  • Person S, Jain M, Lapin Z, et al. Demonstration of zero optical backscattering from single nanoparticles. Nano Lett. 2013;13:1806–1809.
  • Krasnok AE, Simovski CR, Belov PA, et al. Superdirective dielectric nanoantennas. Nanoscale. 2014;6:7354–7361.
  • Krasnok AE, Miroshnichenko AE, Belov PA, et al. All-dielectric optical nanoantennas. Opt Express. 2012;20:20599–20604.
  • Liu S, Sinclair MB, Saravi S, et al. Resonantly enhanced second-harmonic generation using III–V semiconductor all-dielectric metasurfaces. Nano Lett. 2016;16:5426–5432.
  • Liu S, Vabishchevich PP, Vaskin A, et al. An all-dielectric metasurface as a broadband optical frequency mixer. Nat Commun. 2018;9:1–6.
  • Vabishchevich PP, Liu S, Sinclair MB, et al. Enhanced second-harmonic generation using broken symmetry III–V semiconductor fano metasurfaces. ACS Photonics. 2018;5:1685–1690.
  • Kruk S, Weismann M, Bykov AY, et al. Enhanced magnetic second-harmonic generation from resonant metasurfaces. ACS Photonics. 2015;2:1007–1012.
  • Marino G, Rocco D, Gigli C, et al. Harmonic generation with multi-layer dielectric metasurfaces. Nanophotonics. 2021;10:1837–1843.
  • Fedotova A, Younesi M, Sautter J, et al. Second-Harmonic Generation in resonant nonlinear metasurface based on lithium niobate. Nano Lett. 2020;20:8608–8614.
  • Löchner FJ, Fedotova AN, Liu S, et al. Polarization-dependent second harmonic diffraction from resonant GaAs metasurfaces. ACS Photonics. 2018;5:1786–1793.
  • Tong W, Gong C, Liu X, et al. Enhanced third harmonic generation in a silicon metasurface using trapped mode. Opt Express. 2016;24:19661–19670.
  • Frizyuk K, Volkovskaya I, Smirnova D, et al. Second-harmonic generation in Mie-resonant dielectric nanoparticles made of noncentrosymmetric materials. Phys Rev B. 2019;99:075425.
  • Shcherbakov MR, Neshev DN, Hopkins B, et al. Enhanced third-harmonic generation in silicon nanoparticles. Nano Lett. 2014;14:6488–6492.
  • Wang L, Kruk S, Xu L, et al. Shaping the third-harmonic radiation from silicon nanodimers. Nanoscale. 2017;9:2201–2206.
  • Melik-Gaykazyan E, Kruk SS, Camacho-Morales R, et al. Selective third-harmonic generation by structured light in mie-resonant nanoparticles. ACS Photonics. 2018;5:728–733.
  • Kroychuk MK, Shorokhov AS, Yagudin DF, et al. Enhanced nonlinear light generation in oligomers of silicon nanoparticles under vector beam illumination. Nano Lett. 2020;20:3471–3477.
  • Smirnova D, Kruk S, Leykam D, et al. Third-harmonic generation in photonic topological metasurfaces. Phys Rev Lett. 2019;123:103901.
  • Rahmani M, Leo G, Brener I, et al. Nonlinear frequency conversion in optical nanoantennas and metasurfaces: materials evolution and fabrication. Opto-Electronic Advances. 2018;1:180021.
  • Boyd RW. Nonlinear optics. United States: Academic Press; 2020.
  • Anthur AP, Zhang H, Paniagua-Dominguez R, et al. Continuous wave second harmonic generation enabled by quasi-bound-states in the continuum on gallium phosphide metasurfaces. Nano Lett. 2020;20:8745–8751.
  • Sanatinia R, Anand S, Swillo M. Modal engineering of second-harmonic generation in single GaP nanopillars. Nano Lett. 2014;14:5376–5381.
  • Sautter JD, Xu L, Miroshnichenko AE, et al. Tailoring second-harmonic emission from (111)-GaAs nanoantennas. Nano Lett. 2019;19:3905–3911.
  • Carletti L, Zilli A, Moia F, et al. Steering and encoding the polarization of the second harmonic in the visible with a monolithic LiNbO3 metasurface. ACS Photonics. 2021;8:731–737.
  • Huang Z, Lu H, Xiong H, et al. Fano resonance on nanostructured lithium niobate for highly efficient and tunable second harmonic generation. Nanomaterials. 2019;9:69.
  • De Ceglia D, Carletti L, Vincenti MA, et al. Second-harmonic generation in mie-resonant GaAs nanowires. Appl Sci. 2019;9:3381.
  • Barreda A, Saiz J, Gonzalez F, et al. Recent advances in high refractive index dielectric nanoantennas: basics and applications. AIP Adv. 2019;9:040701.
  • Wolf O, Campione S, Yang Y, et al. Multipolar second harmonic generation in a symmetric nonlinear metamaterial. Sci Rep. 2017;7:1–7.
  • Kang L, Bao H, Werner DH. Efficient second-harmonic generation in high Q-factor asymmetric lithium niobate metasurfaces. Opt Lett. 2021;46:633–636.
  • Aitchison JS, Hutchings D, Kang J, et al. he nonlinear optical properties of AlGaAs at the half band gap. IEEE J Quantum Electron. 1997;33:341–348.
  • Gigli C, Marino G, Borne A, et al. ll-dielectric nanoresoNATOrs for X(2) nonlinear optics. Front Phys. 2019;7:221.
  • Carletti L, Locatelli A, Stepanenko O, et al. Enhanced second-harmonic generation from magnetic resonance in AlGaAs nanoantennas. Opt Express. 2015;23:26544–26550.
  • Gili VF, Carletti L, Locatelli A, et al. Monolithic AlGaAs second-harmonic nanoantennas. Opt Express. 2016;24:15965–15971.
  • Rocco D, Vincenti MA, De Angelis C. Boosting second harmonic radiation from AlGaAs nanoantennas with epsilon-near-zero materials. Appl Sci. 2018;8:2212.
  • Rocco D, De Angelis C, De Ceglia D, et al. Dielectric nanoantennas on epsilon-near-zero substrates: impact of losses on second order nonlinear processes. Opt Commun. 2020;456:124570.
  • Rocco D, Gili VF, Ghirardini L, et al. Tuning the second-harmonic generation in AlGaAs nanodimers via non-radiative state optimization. Photonics Res. 2018;6:B6–B12.
  • Carletti L, Koshelev K, De Angelis C, et al. Giant nonlinear response at the nanoscale driven by bound states in the continuum. Phys Rev Lett. 2018;121:033903.
  • Gili VF, Ghirardini L, Rocco D, et al. Metal–dielectric hybrid nanoantennas for efficient frequency conversion at the anapole mode. Beilstein J Nanotechnol. 2018;9:2306–2314.
  • Han Z, Ding F, Cai Y, et al. Significantly enhanced second-harmonic generations with all-dielectric antenna array working in the quasi-bound states in the continuum and excited by linearly polarized plane waves. Nanophotonics. 2021;10:1189–1196.
  • Jiang H, Cai Y, Han Z. Strong second-harmonic generation in dielectric optical nanoantennas resulting from the hybridization of magnetic dipoles and lattice resonances. JOSA B. 2020;37:3146–3151.
  • Carletti L, Kruk SS, Bogdanov AA, et al. High-harmonic generation at the nanoscale boosted by bound states in the continuum. Phys Rev Res. 2019;1:023016.
  • Li Y, Huang Z, Sui Z, et al. Optical anapole mode in nanostructured lithium niobate for enhancing second harmonic generation. Nanophotonics. 2020;9:3575–3585.
  • Volkovskaya I, Xu L, Huang L, et al. Multipolar second-harmonic generation from high-Qquasi-BIC states in subwavelength resonators. Nanophotonics. 2020;9:3953–3963.
  • Koshelev K, Bogdanov A, Kivshar Y. Meta-optics and bound states in the continuum. Sci Bull. 2019;64:836–842.
  • Melik-Gaykazyan E, Koshelev K, Choi J-H, et al. From Fano to Quasi-BIC resonances in individual dielectric nanoantennas. Nano Lett. 2021;21:1765–1771.
  • Miroshnichenko A, Evlyukhin A, Yu Y, et al. Nonradiating anapole modes in dielectric nanoparticles. Nat Commun. 2015;6:1–8.
  • Fonda L. Bound states embedded in the continuum and the formal theory of scattering. Ann Phys. 1963;22:123–132.
  • Stillinger F, Herrick D. Bound-states in continuum. Phys Rev A. 1975;11:446–454.
  • Friedrich H, Wintgen D. Interfering resonances and bound states in the continuum. Phys Rev A. 1985;32:3231–3242.
  • Hsu C, Zhen B, Stone AD, et al. Bound states in the continuum. Nat Rev Mater. 2016;1:1–13.
  • Paddon P, Young J. Two-dimensional vector-coupled-mode theory for textured planar waveguides. Phys Rev B. 2000;61:2090–2101.
  • Bulgakov E, Sadreev A. Robust bound state in the continuum in a nonlinear microcavity embedded in a photonic crystal waveguide. Opt Lett. 2014;39:5212–5215.
  • Sadrieva Z, Belyakov M, Balezin M, et al. Experimental observation of a symmetry-protected bound state in the continuum in a chain of dielectric disks. Phys Rev A. 2019;99:053804.
  • Marinica D, Borisov A, Shabanov S. Bound states in the continuum in photonics. Phys Rev Lett. 2008;100:183902.
  • Bulgakov E, Pichugin K, Sadreev A. All-optical light storage in bound states in the continuum and release by demand. Opt Express. 2015;23:22520–22531.
  • Gandolfi M, Tognazzi A, Rocco D, et al. Near-unity third-harmonic circular dichroism driven by a quasibound state in the continuum in asymmetric silicon metasurfaces. Phys Rev A. 2021;104:023524.
  • Carletti L, Marino G, Ghirardini L, et al. Nonlinear goniometry by second-harmonic generation in AlGaAs nanoantennas. ACS Photonics. 2018;5:4386–4392.
  • Ghirardini L, Marino G, Gili VF, et al. Shaping the nonlinear emission pattern of a dielectric nanoantenna by integrated holographic gratings. Nano Lett. 2018;18:6750–6755.
  • Rocco D, Gigli C, Carletti L, et al. Vertical second harmonic generation in asymmetric dielectric nanoantennas. IEEE Photonics J. 2020;12:1–7.
  • Gigli C, Marino G, Artioli A, et al. Tensorial phase control in nonlinear meta-optics. Optica. 2021;8:269–276.
  • Xu L, Rahmani M, Smirnova D, et al. Highly-efficient longitudinal second-harmonic generation from doubly-resonant AlGaAs nanoantennas. Photonics. 2018;5:29.
  • Carletti L, Rocco D, Locatelli A, et al. Controlling second-harmonic generation at the nanoscale with monolithic AlGaAs-on-AlOx antennas. Nanotechnology. 2017;28:114005.
  • Frizyuk K. Second-harmonic generation in dielectric nanoparticles with different symmetries. JOSA B. 2019;36:F32–F37.
  • Rocco D, Carletti L, Caputo R, et al. Switching the second harmonic generation by a dielectric metasurface via tunable liquid crystal. Opt Express. 2020;28:12037–12046.
  • Celebrano M, Rocco D, Gandolfi M, et al. Optical tuning of dielectric nanoantennas for thermo-optically reconfigurable nonlinear metasurfaces. Opt Lett. 2021;46:2453–2456.
  • Rocco D, Gandolfi M, Tognazzi A, et al. Opto-thermally controlled beam steering in nonlinear all-dielectric metastructures. Opt Express. 2021;29:37128–37139.
  • Tognazzi A, Locatelli A, Vincenti M, et al. Tunable optical antennas using vanadium dioxide metal-insulator phase transitions. Plasmonics. 2019;14:1283–1288.
  • Cao T, Liu K, Tang Y, et al. A high-index Ge2Sb2Te5-based fabry–perot cavity and its application for third-harmonic generation. Laser Photonics Rev. 2019;13:1900063.
  • Carletti L, de Ceglia D, Vincenti M, et al. Self-tuning of second-harmonic generation in GaAs nanowires enabled by nonlinear absorption. Opt Express. 2019;27:32480–32489.
  • Guo X, Ding Y, Ni X. Electrically tunable second harmonic generation enhancement on a parametrically excited metasurface, FTh1C.3 CLEO: QELS_Fundamental Science, 2020.
  • Schirato A, Mazzanti A, Proietti Zaccaria R, et al. All-optically reconfigurable plasmonic metagrating for ultrafast diffraction management. Nano Lett. 2021;21:1345–1351.
  • Pogna EAA, Celebrano M, Mazzanti A, et al. Ultrafast, all optically reconfigurable, nonlinear nanoantenna. ACS Nano. 2021;15:11150–11157.
  • Carletti L, Gandolfi M, Rocco D, et al. Reconfigurable nonlinear response of dielectric and semiconductor metasurfaces. Nanophotonics. 2021;10:4209–4221.
  • Sain B, Meier C, Zentgraf T. Nonlinear optics in all-dielectric nanoantennas and metasurfaces: a review. Advanced Photonics. 2019;1:024002.
  • Li G, Zhang S, Zentgraf T. Nonlinear photonic metasurfaces. Nat Rev Mater. 2017;2:1–14.
  • Zilli A, Rocco D, Finazzi M, et al. Frequency tripling via sum-frequency generation at the nanoscale. ACS Photonics. 2021;8:1175–1182.
  • Vincenti M, De Ceglia D, Roppo V, et al. Harmonic generation in metallic, GaAs-filled nanocavities in the enhanced transmission regime at visible and UV wavelengths. Opt Express. 2011;19:2064–2078.
  • Camacho-Morales R, Dreischuh A, Xu L, et al. Infrared upconversion imaging in nonlinear metasurfaces. Advanced Photonics. 2021;3:036002.
  • Morales MC, Rocco D, Xu L, et al. Infrared imaging in nonlinear GaAs metasurfaces. SPIE Micro+ Nano Materials, Devices, and Applications. 2019;11201:112011S.
  • Xu L, Saerens G, Timofeeva M, et al. Forward and backward switching of nonlinear unidirectional emission from GaAs nanoantennas. ACS Nano. 2020;14:1379–1389.
  • Chen S, Rahmani M, Li KF, et al. Third harmonic generation enhanced by multipolar interference in complementary silicon metasurfaces. ACS Photonics. 2018;5:1671–1675.
  • Xu L, Rahmani M, Kamali KZ, et al. Boosting third-harmonic generation by a mirror-enhanced anapole resoNATOr. Light: Science and Applications. 2018;7:1–8.