3,875
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Magnetoelectricity in two-dimensional materials

ORCID Icon &
Article: 2032343 | Received 01 Dec 2021, Accepted 12 Jan 2022, Published online: 06 Mar 2022

References

  • O’Dell TH. The electrodynamics of magneto-electric media. Amsterdam: North-Holland; 1970.
  • Landau LD, Lifshitz EM. Electrodynamics of continuous media. Second Revised ed. Oxford: Pergamon; 1984.
  • Fiebig M. Revival of the magnetoelectric effect. J Phys D. 2005;38:R123.
  • Jackson JD. Classical electrodynamics. 3rd ed. New York (NY): Wiley; 1999.
  • Dzyaloshinski IE. On the magneto-electrical effect in antiferromagnets. Zh Eksp Teor Fiz. 1959;37:881–33. [Sov Phys JETP, 628.:. 1960.
  • Schmid H. On a magnetoelectric classification of materials. Int J Magn. 1973;4:337–361.
  • Siratori K. Magneto-electric effect and solid state physics. Ferroelectrics. 1994;161:29–41.
  • Fiebig M, Lottermoser T, Meier D, et al. The evolution of multiferroics. Nat Rev Mater. 2016;1:16046.
  • Spaldin NA. Multiferroics: past, present, and future. MRS Bull. 2017;42:385–390.
  • Eerenstein W, Mathur ND, Scott JF. Multiferroic and magnetoelectric materials. Nature. 2006;442:759–765.
  • Dong S, Liu JM, Cheong SW, et al. Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and topology. Adv Phys. 2015;64:519–626.
  • Spaldin NA, Ramesh R. Advances in magnetoelectric multiferroics. Nat Mater. 2019;18:203–212.
  • Dong S, Xiang H, Dagotto E. Magnetoelectricity in multiferroics: a theoretical perspective. Natl Sci Rev. 2019;6:629–641.
  • Hu JM, Duan CG, Nan CW, et al. Understanding and designing magnetoelectric heterostructures guided by computation: progresses, remaining questions, and perspectives. npj Comput Mater. 2017;3:1–21.
  • Chu YH, Martin LW, Holcomb MB, et al. Controlling magnetism with multiferroics. Mater Today. 2007;10:16–23.
  • Fusil S, Garcia V, Barthélémy A, et al. Magnetoelectric devices for spintronics. Annu Rev Mater Res. 2014;44:91–116.
  • Ortega N, Kumar A, Scott JF, et al. Multifunctional magnetoelectric materials for device applications. J Phys: Condens Matter. 2015;27:504002.
  • Song C, Cui B, Li F, et al. Recent progress in voltage control of magnetism: materials, mechanisms, and performance. Prog Mater Sci. 2017;87:33–82.
  • Manipatruni S, Nikonov DE, Lin CC, et al. Scalable energy-efficient magnetoelectric spin–orbit logic. Nature. 2019;565:35–42.
  • Sikivie P. Experimental tests of the “invisible” axion. Phys Rev Lett. 1983;51:1415–1417.
  • Wilczek F. Two applications of axion electrodynamics. Phys Rev Lett. 1987;58:1799–1802.
  • Hehl FW, Obukhov YN, Rivera JP, et al. Relativistic nature of a magnetoelectric modulus of Cr2O3 crystals: a four-dimensional pseudoscalar and its measurement. Phys Rev A. 2008;77:022106.
  • Qi XL, Hughes TL, Zhang SC. Topological field theory of time-reversal invariant insulators. Phys Rev B. 2008;78:195424.
  • Essin AM, Moore JE, Vanderbilt D. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Phys Rev Lett. 2009;102:146805.
  • Armitage NP, Wu L. On the matter of topological insulators as magnetoelectrics. SciPost Phys. 2019;6:46.
  • Nenno DM, Garcia CAC, Gooth J, et al. Axion physics in condensed-matter systems. Nat Rev Phys. 2020;2:682–696.
  • Sekine A, Nomura K. Axion electrodynamics in topological materials. J Appl Phys. 2021;129:141101.
  • Ma J, Pesin DA. Chiral magnetic effect and natural optical activity in metals with or without Weyl points. Phys Rev B. 2015;92:235205.
  • Deng K, Van Dyke JS, Minic D, et al. Exploring self-consistency of the equations of axion electrodynamics in Weyl semimetals. Phys Rev B. 2021;104:075202.
  • Qi XL, Li R, Zang J, et al. Inducing a magnetic monopole with topological surface states. Science. 2009;323:1184–1187.
  • Fechner M, Spaldin NA, Dzyaloshinskii IE. Magnetic field generated by a charge in a uniaxial magnetoelectric material. Phys Rev B. 2014;89:184415.
  • Meier QN, Fechner M, Nozaki T, et al. Search for the magnetic monopole at a magnetoelectric surface. Phys Rev X. 2019;9:011011.
  • Martn-Ruiz A, Cambiaso M, Urrutia LF. Electro- and magnetostatics of topological insulators as modeled by planar, spherical, and cylindrical θ boundaries: green’s function approach. Phys Rev D. 2016;93:045022.
  • Martín-Ruiz A, Cambiaso M, Urrutia LF. Axion electrodynamics in magnetoelectric media. In: Kamenetskii E, editor. Chirality, magnetism and magnetoelectricity. (topics in applied physics. Vol. 138. Cham: Springer; 2021. p. 459–492.
  • Ouellet J, Bogorad Z. Solutions to axion electrodynamics in various geometries. Phys Rev D. 2019;99:055010.
  • Ochiai T. Theory of light scattering in axion electrodynamics. J Phys Soc Jpn. 2012;81:094401.
  • Khomskii DI. Magnetic monopoles and unusual dynamics of magnetoelectrics. Nat Commun. 2014;5:4793.
  • Khomskii DI. Multiferroics and beyond: electric properties of different magnetic textures. J Exp Theor Phys. 2021;132:482–492.
  • Uri A, Kim Y, Bagani K, et al. Nanoscale imaging of equilibrium quantum Hall edge currents and of the magnetic monopole response in graphene. Nat Phys. 2020;16:164–170.
  • Kamenetskii EO. Electrodynamics of magnetoelectric media and magnetoelectric fields. Ann Phys. 2020;532:1900423.
  • Velev JP, Jaswal SS, Tsymbal EY. Multi-ferroic and magnetoelectric materials and interfaces. Phil Trans R Soc A. 2011;369:3069–3097.
  • Hu JM, Nan T, Sun NX, et al. Multiferroic magnetoelectric nanostructures for novel device applications. MRS Bull. 2015;40:728–735.
  • Novoselov KS, Jiang D, Schedin F, et al. Two-dimensional atomic crystals. Proc Natl Acad Sci USA. 2005;102:10451–10453.
  • Novoselov KS, Mishchenko A, Carvalho A, et al. 2D materials and van der Waals heterostructures. Science. 2016;353:aac9439.
  • Liu Y, Weiss NO, Duan X, et al. Van der Waals heterostructures and devices. Nat Rev Mater. 2016;1:1–17.
  • Sierra JF, Fabian J, Kawakami RK, et al. Van der Waals heterostructures for spintronics and opto-spintronics. Nat Nanotechnol. 2021;16:856–868.
  • Bauer G, Kuchar F, and Heinrich H, editors. . In: Two-dimensional systems, heterostructures, and superlattices. Vol. 53 Springer series in solid-state sciences . Berlin: Springer; 1984.
  • Davies JH. The physics of low-dimensional semiconductors. Cambridge (UK): Cambridge U Press; 1998.
  • Himpsel FJ. Magnetic quantum wells. J Phys: Condens Matter. 1999;11:9483–9494.
  • Dietl T, Ohno H. Dilute ferromagnetic semiconductors: physics and spintronic structures. Rev Mod Phys. 2014;86:187–251.
  • Gibertini M, Koperski M, Morpurgo AF, et al. Magnetic 2D materials and heterostructures. Nat Nanotechnol. 2019;14:408–419.
  • Gong C, Zhang X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science. 2019;363:eaav4450.
  • Mak KF, Shan J, and Ralph DC. Probing and controlling magnetic states in 2D layered magnetic materials. Nat Rev Phys. 2019 1 ;646–661.
  • Wei S, Liao X, Wang C, et al. Emerging intrinsic magnetism in two-dimensional materials: theory and applications. 2D Mater. 2020;8:012005.
  • Lu C, Wu M, Lin L, et al. Single-phase multiferroics: new materials, phenomena, and physics. Natl Sci Rev. 2019;6:653–668.
  • Tang X, Kou L. Two-dimensional ferroics and multiferroics: platforms for new physics and applications. J Phys Chem Lett. 2019;10:6634–6649.
  • Zhong T, Li X, Wu M, et al. Room-temperature multiferroicity and diversified magnetoelectric couplings in 2D materials. Natl Sci Rev. 2020;7:373–380.
  • Gao Y, Gao M, Lu Y. Two-dimensional multiferroics. Nanoscale. 2021;13:19324–19340.
  • Pournaghavi N, Pertsova A, MacDonald AH, et al. Nonlocal sidewall response and deviation from exact quantization of the topological magnetoelectric effect in axion-insulator thin films. Phys Rev B. 2021;104:L201102.
  • Ascher E. Higher-order magneto-electric effects. Phil Mag. 1968;17:149–157.
  • Grimmer H. The forms of tensors describing magnetic, electric and toroidal properties. Ferroelectrics. 1994;161:181–189.
  • Nye JF. Physical properties of crystals. Oxford: Oxford University Press; 1957.
  • Ganichev SD, Trushin M, Schliemann J. Spin polarization by current.In: Tsymbal EY, Žutić I, editors. Spintronics handbook: spin transport and magnetism. 2nd. Vol. 2, Chapter 7. Boca Raton: CRC Press; 2019. p. 317–338
  • Manchon A, Železný J, Miron IM, et al. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev Mod Phys. 2019;91:035004.
  • Ivchenko EL, Pikus GE. New photogalvanic effect in gyrotropic crystals. Pis’ma Zh Eksp Teo Fiz. 1978;27:640–643.[ JETP Lett. 27, 604 (1978)].
  • Belinicher VI. Space-oscillating photocurrent in crystals without symmetry center. Phys Lett A. 1978 May;66:213–214.
  • Aronov AG, Lyanda-Geller YB, Pikus GE. Spin polarization of electrons by an electric current. Sov Phys JETP. 1991;73:537–541.
  • Edelstein VM. Spin polarization of conduction electrons induced by electron current in two-dimensional asymmetric electron systems. Solid State Commun. 1990;73:233–235.
  • Levitov LS, Nazarov YV, Éliashberg GM. Magnetoelectric effects in conductors with mirror isomer symmetry. Zh Eksp Teor Fiz. 1985;88:229–236. [Sov. Phys. JETP 61, 133 (1985)]
  • He WY, Goldhaber-Gordon D, Law KT. Giant orbital magnetoelectric effect and current-induced magnetization switching in twisted bilayer graphene. Nat Commun. 2020;11:1650.
  • Johansson A, Göbel B, Henk J, et al. Spin and orbital Edelstein effects in a two-dimensional electron gas: theory and application to SrTiO3 interfaces. Phys Rev Res. 2021;3:013275.
  • Johansen O, Risinggård V, Sudbø A, et al. Current Control of Magnetism in Two-Dimensional Fe3GeTe2. Phys Rev Lett. 2019;122:217203.
  • Xue F, and Haney PM. Intrinsic staggered spin-orbit torque for the electrical control of antiferromagnets: Application to CrI3 Phys Rev B ; 2021 104 224414 . :
  • Lee J, Wang Z, Xie H, et al. Valley magnetoelectricity in single-layer MoS2. Nat Mater. 2017;16:887–891.
  • Xu X, Yao W, Xiao D, et al. Spin and pseudospins in layered transition metal dichalcogenides. Nat Phys. 2014;10:343–350.
  • Rado GT. Statistical theory of magnetoelectric effects in antiferromagnetics. Phys Rev. 1962;128:2546–2556.
  • Tinkham M. Group theory and quantum mechanics. New York: McGraw-Hill; 1964.
  • Rado GT, Ferrari JM, Maisch WG. Magnetoelectric susceptibility and magnetic symmetry of magnetoelectrically annealed TbPO4. Phys Rev B. 1984;29:4041–4048.
  • Rivera JP. A short review of the magnetoelectric effect and related experimental techniques on single phase (multi-) ferroics. Eur Phys J B. 2009;71:299.
  • Ressouche E, Loire M, Simonet V, et al. Magnetoelectric MnPS3 as a candidate for ferrotoroidicity. Phys Rev B. 2010;82:100408.
  • Kurumaji T, Seki S, Ishiwata S, et al. Magnetoelectric responses induced by domain rearrangement and spin structural change in triangular-lattice helimagnets NiI2 and CoI2. Phys Rev B. 2013;87:014429.
  • Chu H, Roh CJ, Island JO, et al. Linear magnetoelectric phase in Ultrathin MnPS3 probed by optical second harmonic generation. Phys Rev Lett. 2020;124:027601.
  • Long G, Henck H, Gibertini M, et al. Persistence of magnetism in atomically thin MnPS3 crystals. Nano Lett. 2020;20:2452–2459.
  • Ju H, Lee Y, Kim KT, et al. Possible persistence of multiferroic order down to bilayer limit of van der Waals material NiI2. Nano Lett. 2021;21:5126–5132.
  • Ni Z, Haglund AV, Wang H, et al. Imaging the Néel vector switching in the monolayer antiferromagnet MnPSe3 with strain-controlled Ising order. Nat Nanotechnol. 2021;16:782–787.
  • Chittari BL, Park Y, Lee D, et al. Electronic and magnetic properties of single-layer MPX3 metal phosphorous trichalcogenides. Phys Rev B. 2016;94:184428.
  • McGuire MA. Cleavable magnetic materials from van der Waals layered transition metal halides and chalcogenides. J Appl Phys. 2020;128:110901.
  • Jiang S, Shan J, Mak KF. Electric-field switching of two-dimensional van der Waals magnets. Nat Mater. 2018;17:406–410.
  • Huang B, Clark G, Klein DR, et al. Electrical control of 2D magnetism in bilayer CrI3. Nat Nanotechnol. 2018;13:544–548.
  • Jiang S, Li L, Wang Z, et al. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat Nanotechnol. 2018;13:549–553.
  • Sivadas N, Okamoto S, Xu X, et al. Stacking-dependent magnetism in bilayer CrI3. Nano Lett. 2018;18:7658–7664.
  • Lei C, Chittari BL, Nomura K, et al. Magnetoelectric response of Antiferromagnetic CrI3 Bilayers. Nano Lett. 2021;21:1948–1954.
  • Hill NA. Why are there so few magnetic ferroelectrics? J Phys Chem B. 2000;104:6694–6709.
  • Spaldin NA. Multiferroics beyond electric-field control of magnetism. Proc R Soc A. 2020;476:20190542.
  • Luo W, Xu K, Xiang H. Two-dimensional hyperferroelectric metals: a different route to ferromagnetic-ferroelectric multiferroics. Phys Rev B. 2017;96:235415.
  • Li L, Wu M. Binary compound bilayer and multilayer with vertical polarizations: two-dimensional ferroelectrics, multiferroics, and nanogenerators. ACS Nano. 2017;11:6382–6388.
  • Huang C, Du Y, Wu H, et al. Prediction of intrinsic ferromagnetic ferroelectricity in a transition-metal halide monolayer. Phys Rev Lett. 2018;120:147601.
  • Qi J, Wang H, Chen X, et al. Two-dimensional multiferroic semiconductors with coexisting ferroelectricity and ferromagnetism. Appl Phys Lett. 2018;113:043102.
  • Lai Y, Song Z, Wan Y, et al. Two-dimensional ferromagnetism and driven ferroelectricity in van der Waals CuCrP2S6. Nanoscale. 2019;11:5163–5170.
  • Zhang JJ, Lin L, Zhang Y, et al. Type-II multiferroic Hf2VC2F2 MXene monolayer with high transition temperature. J Am Chem Soc. 2018;140:9768–9773.
  • Ai H, Song X, Qi S, et al. Intrinsic multiferroicity in two-dimensional VOCl2 monolayers. Nanoscale. 2019;11:1103–1110.
  • Tan H, Li M, Liu H, et al. Two-dimensional ferromagnetic-ferroelectric multiferroics in violation of the d0 rule. Phys Rev B. 2019;99:195434.
  • Ding N, Chen J, Dong S, et al. Ferroelectricity and ferromagnetism in a VOI2 monolayer: role of the Dzyaloshinskii-Moriya interaction. Phys Rev B. 2020;102:165129.
  • Yang Q, Xiong W, Zhu L, et al. Chemically functionalized phosphorene: two-dimensional multiferroics with vertical polarization and mobile magnetism. J Am Chem Soc. 2017;139:11506–11512.
  • Tu Z, Wu M. 2D diluted multiferroic semiconductors upon intercalation. Adv Electron Mater. 2019;5:1800960.
  • Zhang J, Shen X, Wang Y, et al. Design of two-dimensional multiferroics with direct polarization-magnetization coupling. Phys Rev Lett. 2020;125:017601.
  • Duan X, Huang J, Xu B, et al. A two-dimensional multiferroic metal with voltage-tunable magnetization and metallicity. Mater Horiz. 2021;8:2316–2324.
  • Cherifi RO, Ivanovskaya V, Phillips LC, et al. Electric-field control of magnetic order above room temperature. Nat Mater. 2014;13:345–351.
  • Gong C, Kim EM, Wang Y, et al. Multiferroicity in atomic van der Waals heterostructures. Nat Commun. 2019;10:2657.
  • Lu Y, Fei R, Lu X, et al. Artificial multiferroics and enhanced magnetoelectric effect in van der Waals heterostructures. ACS Appl Mater Interfaces. 2020;12:6243–6249.
  • Yang B, Shao B, Wang J, et al. Realization of semiconducting layered multiferroic heterojunctions via asymmetrical magnetoelectric coupling. Phys Rev B. 2021;103:L201405.
  • Li P, Zhou XS, and Guo ZX. Intriguing magnetoelectric effect in two-dimensional ferromagnetic/perovskite oxide ferroelectric heterostructure Npj Comput Mater 2022 8 20 . :
  • Su Y, Li X, Zhu M, et al. Van der Waals multiferroic tunnel junctions. Nano Lett. 2021;21:175–181.
  • Shang J, Tang X, Gu Y, et al. Robust magnetoelectric effect in the decorated graphene/In2Se3 heterostructure. ACS Appl Mater Interfaces. 2021;13:3033–3039.
  • Matsukura F, Tokura Y, Ohno H. Control of magnetism by electric fields. Nat Nanotechnol. 2015;10:209–220.
  • Sawicki M, Chiba D, Korbecka A, et al. Experimental probing of the interplay between ferromagnetism and localization in (Ga,Mn)As. Nat Phys. 2010;6:22–25.
  • Lee B, Jungwirth T, MacDonald AH. Ferromagnetism in diluted magnetic semiconductor heterojunction systems. Semicond Sci Technol. 2002;17:393–403.
  • Lee B, Jungwirth T, MacDonald AH. Field-effect magnetization reversal in ferromagnetic semiconductor quantum wells. Phys Rev B. 2002;65:193311.
  • Boukari H, Kossacki P, Bertolini M, et al. Light and electric field control of ferromagnetism in magnetic quantum structures. Phys Rev Lett. 2002;88:207204.
  • Anh LD, Hai PN, Kasahara Y, et al. Modulation of ferromagnetism in (In,Fe)As quantum wells via electrically controlled deformation of the electron wave functions. Phys Rev B. 2015;92:161201.
  • Xing W, Chen Y, Odenthal PM, et al. Electric field effect in multilayer Cr2Ge2Te6: a ferromagnetic 2D material. 2D Mater. 2017;4:024009.
  • Wang Z, Zhang T, Ding M, et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat Nanotechnol. 2018;13:554–559.
  • Sun YY, Zhu LQ, Li Z, et al. Electric manipulation of magnetism in bilayer van der Waals magnets. J Phys: Condens Matter. 2019;31:205501.
  • Deng Y, Yu Y, Song Y, et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature. 2018;563:94–99.
  • Bastard G, Mendez EE, Chang LL, et al. Variational calculations on a quantum well in an electric field. Phys Rev B. 1983;28:3241–3245.
  • Castro EV, Novoselov KS, Morozov SV, et al. Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys Rev Lett. 2007;99:216802.
  • Du L, Hasan T, Castellanos-Gomez A, et al. Engineering symmetry breaking in 2D layered materials. Nat Rev Phys. 2021;3:193–206.
  • Papadakis SJ, De Poortere EP, Manoharan HC, et al. The effect of spin splitting on the metallic behavior of a two-dimensional system. Science. 1999;283:2056–2058.
  • Habib B, Tutuc E, Melinte S, et al. Negative differential Rashba effect in two-dimensional hole systems. Appl Phys Lett. 2004;85:3151–3153.
  • Zhang Y, Tang TT, and Girit C, et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature. 2009;459:820–823.
  • Shimazaki Y, Yamamoto M, Borzenets IV, et al. Generation and detection of pure valley current by electrically induced Berry curvature in bilayer graphene. Nat Phys. 2015;11:1032–1036.
  • Winkler R, Zülicke U. Collinear orbital antiferromagnetic order and magnetoelectricity in quasi-two-dimensional itinerant-electron paramagnets, ferromagnets, and antiferromagnets. Phys Rev Res. 2020;2:043060.
  • Gorbatsevich AA, Kapaev VV, Kopaev YV. Magnetoelectric phenomena in nanoelectronics. Ferroelectrics. 1994;161:303–310.
  • Zhang D, Shi M, Zhu T, et al. Topological axion states in the magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect. Phys Rev Lett. 2019;122:206401.
  • Otrokov MM, Rusinov IP, Blanco-Rey M, et al. Unique thickness-dependent properties of the van der Waals interlayer antiferromagnet MnBi2Te4 films. Phys Rev Lett. 2019;122:107202.
  • Li J, Li Y, Du S, et al. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials. Sci Adv. 2019;5:eaaw5685.
  • Liu C, Wang Y, Li H, et al. Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator. Nat Mater. 2020;19:522–527.
  • Gao A, Liu YF, Hu C, et al. Layer Hall effect in a 2D topological axion antiferromagnet. Nature. 2021;595:521–525.
  • Zhu T, Wang H, Zhang H, et al. Tunable dynamical magnetoelectric effect in antiferromagnetic topological insulator MnBi2Te4 films. Npj Comput Mater. 2021;7:121.
  • Zülicke U, Winkler R. Magnetoelectric effect in bilayer graphene controlled by valley-isospin density. Phys Rev B. 2014;90:125412.
  • Kammermeier M, Wenk P, Zülicke U. In-plane magnetoelectric response in bilayer graphene. Phys Rev B. 2019;100:075421.
  • Gong Z, Liu GB, Yu H, et al. Magnetoelectric effects and valley-controlled spin quantum gates in transition metal dichalcogenide bilayers. Nat Commun. 2013;4:2053.
  • Schaibley JR, Yu H, Clark G, et al. Valleytronics in 2D materials. Nat Rev Mater. 2016;1:16055.
  • Sometani T. Image method for a dielectric plate and a point charge. Eur J Phys. 2000;21:549–554.
  • Kumagai M, Takagahara T. Excitonic and nonlinear-optical properties of dielectric quantum-well structures. Phys Rev B. 1989;40:12359–12381.
  • Dirac PAM. Quantised singularities in the electromagnetic field. Proc R Soc Lond A. 1931;133:60–72.
  • Schwinger J. A magnetic model of matter. Science. 1969;165:757–761.
  • Witten E. Dyons of charge eθ/2π. Phys Lett B. 1979;86:283–287.
  • Planelles J. Axion electrodynamics in topological insulators for beginners; 2021. Available from: https://arxiv.org/abs/2111.07290
  • Sommerfeld A. . In: Partial differential equations in physics. Vol. VI Lectures on theoretical physics . New York (NY): Academic Press; 1949.
  • Chew WC. Waves and fields in inhomogenous media. Piscataway (NJ): Wiley-IEEE Press; 1999. IEEE Press Series on Electromagnetic Wave Theory.
  • Cai W. Computational methods for electromagnetic phenomena: electrostatics in solvation, scattering, and electron transport. Cambridge: Cambridge University Press; 2013.
  • Ascher E. Kineto-electric and kinetomagnetic effects in crystals. Int J Magnetism. 1974;5:287–295.
  • Brown WF, Hornreich RM, Shtrikman S. Upper bound on the magnetoelectric susceptibility. Phys Rev. 1968;168:574–577.
  • Foner S. High-field antiferromagnetic resonance in Cr2O3. Phys Rev. 1963;130:183–197.
  • Lal HB, Srivastava R, Srivastava KG. Magnetoelectric effect in Cr2O3 single crystal as studied by dielectric-constant method. Phys Rev. 1967;154:505–507.
  • Wiegelmann H, Jansen AGM, Wyder P, et al. Magnetoelectric effect of Cr2O3 in strong static magnetic fields. Ferroelectrics. 1994;162:141–146.