3,778
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Large-area fabrication of 2D layered topological semimetal films and emerging applications

, & ORCID Icon
Article: 2034529 | Received 30 Nov 2021, Accepted 22 Jan 2022, Published online: 22 Feb 2022

References

  • Wang S, Lin B-C, Wang A-Q, et al. Quantum transport in dirac and Weyl semimetals: a review. ADV PHYS-X. 2017;2:518–24.
  • Klitzing K, Dorda G, Pepper M. New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys Rev Lett. 1980;45:494–497.
  • Fei F-C, Zhang S, Zhang M-H, et al. The material efforts for quantized hall devices based on topological insulators. Adv Mater. 2020;32:1904593.
  • Haldane FD. Model for a quantum hall effect without landau levels: condensed-matter realization of the “parity anomaly”. Phys Rev Lett. 1988;61:2015–2018.
  • Yan B-H, Felser C. Topological materials: WEYL semimetals. Annu Rev Condens Matter Phys. 2017;8:337–354.
  • Zhang M-H, Wang X-F, Song F-Q, et al. Electrical spin polarization through spin–momentum locking in topological-insulator nanostructures. Chin Phys B. 2018;27:097307.
  • Bernevig BA, Hughes TL, Zhang S-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science. 2016;314:1757–1761.
  • König M, Wiedmann S, Brüne C. Quantum spin Hall insulator state in HgTe quantum wells. Science. 2007;318:766–770.
  • Hsieh D, Xia Y, Qian D, et al. A tunable topological insulator in the spin helical dirac transport regime. Nature. 2009;460:1101–1105.
  • Chen YL, Analytis JG, Chu JH, et al. experimental realization of a three-dimensional topological insulator, bi2te3. Science. 2009;325:178–181.
  • Zhang H, Liu C-X, Qi X-L, et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat Phys. 2009;5:438–442.
  • Hasan MZ, Kane CL. Colloquium: topological insulators. Rev Mod Phys. 2010;82:3045–3067.
  • Xu S-Y, Belopolski I, Alidoust N. Discovery of a weyl fermion semimetal and topological fermi arcs. Science. 2015;349:613–617.
  • Liu Z-K, Zhou B, Zhang Y. Discovery of a three-dimensional topological dirac semimetal, Na3Bi. Science. 2014;343:864–867.
  • Burkov AA, Balents L. Weyl semimetal in a topological insulator multilayer. Phys Rev Lett. 2011;107:127205.
  • Wan X, Turner AM, Vishwanath A, et al. Topological semimetal and fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys Rev B. 2011;83:205101.
  • Lv B-Q, Weng H-M, Fu -B-B, et al. Experimental discovery of Weyl semimetal TaAs. Phys Rev X. 2015;5:031013.
  • Armitage NP, Mele EJ, Vishwanath A. Weyl and Dirac semimetals in three-dimensional solids. Rev Mod Phys. 2018;90:015001.
  • Di Bernardo I, Hellerstedt J, Liu C, et al. Progress in epitaxial thin-film Na3Bi as a topological electronic material. Adv Mater. 2021;33:2005897.
  • Wang Z-J, Weng H-M, Wu Q-S, et al. Three-dimensional Dirac semimetal and quantum transport in Cd3As2. Phys Rev B. 2013;88:125427.
  • Zhang K, Pan H-Y, Zhang M-H, et al. Controllable synthesis and magnetotransport properties of Cd3As2 Dirac semimetal nanostructures. RSC Adv. 2017;7:17689–17696.
  • Narang P, Garcia CAC, Felser C. The topology of electronic band structures. Nat Mater. 2021;20:293–300.
  • Lv B-Q, Qian T, Ding H. Experimental perspective on three-dimensional topological semimetals. Rev Mod Phys. 2021;93:025002.
  • Hu J, Xu S-Y, Ni N, et al. Transport of topological semimetals. Annu Rev Mater Sci. 2019;49:207–252.
  • Pan H, Tong B, Yu J, et al. Three-dimensional anisotropic magnetoresistance in the Dirac node-line material ZrSiSe. Sci Rep. 2018;8:9340.
  • Hu J, Tang Z, Liu J, et al. Evidence of topological nodal-line fermions in ZrSiSe and ZrSiTe. Phys Rev Lett. 2016;117:016602.
  • Schoop LM, Ali MN, Strasser C, et al. Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS. Nat Commun. 2016;7:11696.
  • Ali MN, Xiong J, Flynn S, et al. Large, non-saturating magnetoresistance in WTe2. Nature. 2014;514:205–208.
  • Duerloo KA, Li Y, Reed EJ. Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat Commun. 2014;5:4214.
  • Pletikosic I, Ali MN, Fedorov AV, et al. Electronic structure basis for the extraordinary magnetoresistance in WTe2. Phys Rev Lett. 2014;113:216601.
  • Jiang J, Tang F, Pan X-C, et al. Signature of strong spin-orbital coupling in the large nonsaturating magnetoresistance material WTe2. Phys Rev Lett. 2015;115:166601.
  • Sun Y, Wu S-C, Ali MN, et al. Prediction of Weyl semimetal in orthorhombic MoTe2. Phys Rev B. 2015;92:161107.
  • Deng K, Wan G-L, Deng P, et al. Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2. Nat Phys. 2016;12:1105–1110.
  • Yan M, Huang H, Zhang K, et al. Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe2. Nat Commun. 2017;8:257.
  • Fei F-C, Bo X-Y, Wang R, et al. Nontrivial Berry phase and type-II Dirac transport in the layered material PdTe2. Phys Rev B. 2017;96:041201.
  • Qi Y, Naumov PG, Ali MN, et al. Superconductivity in Weyl semimetal candidate MoTe2. Nat Commun. 2016;7:11038.
  • Kang D, Zhou Y, Yi W, et al. Superconductivity emerging from a suppressed large magnetoresistant state in tungsten ditelluride. Nat Commun. 2015;6:7804.
  • Li P, Wu W, Wen Y, et al. Spin-momentum locking and spin-orbit torques in magnetic nano-heterojunctions composed of Weyl semimetal WTe2. Nat Commun. 2018;9:3990.
  • Stiehl GM, Li R, Gupta V, et al. Layer-dependent spin-orbit torques generated by the centrosymmetric transition metal dichalcogenide β−MoTe2. Phys Rev B. 2019;100:184402.
  • Zhao B, Karpiak B, Khokhriakov D, et al. Unconventional Charge–Spin Conversion in Weyl-Semimetal WTe2. Adv Mater. 2020;32:2000818.
  • Liang S, Shi S, Hsu CH, et al. Spin-orbit torque magnetization switching in MoTe2/permalloy heterostructures. Adv Mater. 2020;32:2002799.
  • Safeer CK, Ontoso N, Ingla-Aynes J, et al. Large multidirectional spin-to-charge conversion in low-symmetry semimetal MoTe2 at room temperature. Nano Lett. 2019;19:8758–8766.
  • Ye-Quan C, Zhen-Dong C, Yong-Da C. Anisotropic ultrafast spin/valley dynamics in WTe2 films. arXiv:2008.08785.
  • Wang C, Sun -Y-Y, Huang S-Y, et al. Tunable plasmons in large-area WTe2 thin films. Phys Rev Appl. 2021;15:014010.
  • Park JC, Yun SJ, Kim H. Phase-engineered synthesis of centimeter-scale 1T′- and 2H-molybdenum ditelluride thin films. ACS Nano. 2015;9:6548–6554.
  • Zhou L, Xu K, Zubair A, et al. Large-Area Synthesis of High-Quality Uniform Few-Layer MoTe2. J Am Chem Soc. 2015;137:11892–11895.
  • Zhou L, Zubair A, Wang Z, et al. Synthesis of high-quality large-area homogenous 1T’ MoTe2 from chemical vapor deposition. Adv Mater. 2016;28:9526–9531.
  • Yang L, Zhang W, Li J, et al. Tellurization velocity-dependent metallic-semiconducting-metallic phase evolution in chemical vapor deposition growth of large-area, few-layer MoTe2. ACS Nano. 2017;11:1964–1972.
  • Shawkat MS, Chowdhury TA, Chung HS, et al. Large-area 2D PtTe2/silicon vertical-junction devices with ultrafast and high-sensitivity photodetection and photovoltaic enhancement by integrating water droplets. Nanoscale. 2020;12:23116–23124.
  • Tang S, Zhang C, Wong D, et al. Quantum spin Hall state in monolayer 1T’-WTe2. Nat Phys. 2017;13:683–687.
  • Lu Z, Xu Y, Yu Y, et al. Ultrahigh speed and broadband few‐Layer MoTe2/Si 2D–3D heterojunction‐based photodiodes fabricated by pulsed laser deposition. Adv Funct Mater. 2020;30:1907951.
  • Gao M, Zhang M, Niu W, et al. Tuning the transport behavior of centimeter-scale WTe2 ultrathin films fabricated by pulsed laser deposition. Appl Phys Lett. 2017;111:031906.
  • Yao JD, Zheng ZQ, Yang GW. Production of large-area 2D materials for high-performance photodetectors by pulsed-laser deposition. Prog Mater Sci. 2019;106:100573.
  • Yumigeta K, Kopas C, Blei M, et al. Low-temperature synthesis of 2D anisotropic MoTe2 using a high-pressure soft sputtering technique. Nanoscale Advances. 2020; 2: 1443–1448.
  • Mattinen M, Leskelä M, Ritala M. Atomic layer deposition of 2D metal dichalcogenides for electronics, catalysis, energy storage, and beyond. Adv Mater Interfaces. 2021;8:2001677.
  • Kim T, Park H, Joung D, et al. Wafer-scale epitaxial 1T′, 1T′-2H mixed, and 2H phases MoTe2 thin films grown by metal-organic chemical vapor deposition. Adv Mater Interfaces. 2018;5:1800439.
  • Kim D, Lee R, Kim S, et al. Two-dimensional phase-engineered 1T′– and 2H–MoTe2-based near-infrared photodetectors with ultra-fast response. J Alloys Compd. 2019;789:960–965.
  • Ma J, Deng K, Zheng L, et al. Experimental progress on layered topological semimetals. 2D Mater. 2019;6:032001.
  • Zhang M, Wang X, Song F, et al. Layered topological insulators and semimetals for magnetoresistance type sensors. Adv Quantum Technol. 2018;2:1800039.
  • Sánchez-Montejo E, Santana G, Domínguez A, et al. Phase stability in MoTe2 prepared by low temperature Mo tellurization using close space isothermal Te annealing. Mater Chem Phys. 2017;198:317–323.
  • Sun L, Ding M, Li J, et al. Phase-controlled large-area growth of MoTe2 and MoTe2-xOx/MoTe2 heterostructures for tunable memristive behavior. Appl Surf Sci. 2019;496:143687.
  • Hynek DJ, Singhania RM, Xu S, et al. cm(2)-scale synthesis of MoTe2 thin films with large grains and layer control. ACS Nano. 2021;15:410–418.
  • Song S, Sim Y, Kim S-Y, et al. Wafer-scale production of patterned transition metal ditelluride layers for two-dimensional metal–semiconductor contacts at the Schottky–Mott limit. Nat Electron. 2020;3:207–215.
  • Xie S, Chen L, Zhang T-B, et al. Fast solid-phase synthesis of large-area few-layer 1T’-MoTe2 films. J Cryst Growth. 2017;467:29–33.
  • Zhou Y, Jang H, Woods JM, et al. Wafer-scale growth of 2D PtTe2 with layer orientation tunable high electrical conductivity and superior hydrophobicity. Adv Funct Mater. 2017;27:1605928.
  • Wang M, Ko TJ, Shawkat MS, et al. Wafer-scale growth of 2D PtTe2 with layer orientation tunable high electrical conductivity and superior hydrophobicity. ACS Appl Mater Interfaces. 2020;12:10839–10851.
  • Xu H, Wei J, Zhou H, et al. High spin hall conductivity in large‐area type‐II Dirac semimetal PtTe2. Adv Mater. 2020;32:2000513.
  • Zhang K, Wang M, Zhou X, et al. Growth of large scale PtTe, PtTe2 and PtSe2 films on a wide range of substrates. Nano Res. 2020;14:1663–1667.
  • Liu L, Zemlyanov D, Chen YP. Epitaxial growth of monolayer PdTe2 and patterned PtTe2 by direct tellurization of Pd and Pt surfaces. 2D Mater. 2021;8:045033.
  • Li E, Zhang R-Z, Li H, et al. High quality PdTe2 thin films grown by molecular beam epitaxy. Chin Phys B. 2018;27:086804.
  • Deng K, Yan M, Yu C-P, et al. Crossover from 2D metal to 3D Dirac semimetal in metallic PtTe2 films with local Rashba effect. Sci Bull. 2019;64:1044–1048.
  • Wei T, Wang X, Yang Q, et al. Mid-Infrared photodetection of type-II Dirac semimetal 1T-PtTe2 grown by molecular beam epitaxy. ACS Appl Mater Interfaces. 2021;13:22757–22764.
  • Yan M, Wang E, Zhou X, et al. High quality atomically thin PtSe2 films grown by molecular beam epitaxy. 2D Mater. 2017;4:045015.
  • Liu Y, Qi S, Fang J, et al. Observation of in-plane quantum Griffiths singularity in two-dimensional crystalline superconductors. Phys Rev Lett. 2021;127:137001.
  • Tsipas P, Tsoutsou D, Fragkos S, et al. Massless Dirac fermions in ZrTe2 semimetal grown on InAs(111) by van der Waals epitaxy. ACS Nano. 2018;12:1696–1703.
  • He Q, Li P, Wu Z, et al. Molecular beam epitaxy ccalable growth of wafer-scale continuous semiconducting monolayer MoTe2 on inert amorphous dielectrics. Adv Mater. 2019;31:1901578.
  • Roy A, Movva HC, Satpati B, et al. Structural and electrical properties of MoTe2 and MoSe2 grown by molecular beam epitaxy. ACS Appl Mater Interfaces. 2016;8:7396–7402.
  • Diaz HC, Ma Y, Chaghi R, et al. High density of (pseudo) periodic twin-grain boundaries in molecular beam epitaxy-grown van der Waals heterostructure: moTe2/MoS2. Appl Phys Lett. 2016;108:191606.
  • Vishwanath S, Sundar A, Liu X, et al. MBE growth of few-layer 2H-MoTe2 on 3D substrates. J Cryst Growth. 2018;482:61–69.
  • Chen J, Wang G, Tang Y, et al. Quantum effects and phase tuning in epitaxial hexagonal and monoclinic MoTe2 Monolayers. ACS Nano. 2017;11:3282–3288.
  • Yu Y, Wang G, Qin S, et al. Molecular beam epitaxy growth of atomically ultrathin MoTe2 lateral heterophase homojunctions on graphene substrates. Carbon. 2017;115:526–531.
  • Tang S, Zhang C, Jia C, et al. Electronic structure of monolayer 1T′-MoTe2 grown by molecular beam epitaxy. APL Mater. 2018;6:026601.
  • Tsipas P, Fragkos S, Tsoutsou D, et al. Direct observation at room temperature of the orthorhombic Weyl semimetal phase in thin epitaxial MoTe2. Adv Funct Mater. 2018;28:1802084.
  • Zhou X, Jiang Z, Zhang K, et al. Electronic structure of molecular beam epitaxy grown 1T’-MoTe2 film and strain effect. Chin Phys B. 2019;28:107307.
  • Castelino R, Pham TT, Felten A, et al. Substrate temperature dependence of the crystalline quality for the synthesis of pure-phase MoTe 2 on graphene/6H-SiC(0001) by molecular beam epitaxy. Nanotechnology. 2020;31:115702.
  • Walsh LA, Yue R, Wang Q, et al. WTe2 thin films grown by beam-interrupted molecular beam epitaxy. 2D Mater. 2017;4:025044.
  • Asaba T, Wang Y, Li G, et al. Magnetic field enhanced superconductivity in epitaxial thin film WTe2. Sci Rep. 2018;8:6520.
  • Jia Z-Y, Song Y-H, Li X-B, et al. Direct visualization of a two-dimensional topological insulator in the single-layer1T′−WTe2. Phys Rev B. 2017;96:041108.
  • Li H, Chen A, Wang L, et al. Molecular beam epitaxy growth and strain-induced bandgap of monolayer 1T′-WTe2 on SrTiO3(001). Appl Phys Lett. 2020;117:161601.
  • Hu YJ, Yu WC, Lai KT, et al. Detection of hole pockets in the candidate type-II Weyl semimetal MoTe2 from Shubnikov-de Haas quantum oscillations. Phys Rev Lett. 2020;124:076402.
  • Wang B, Bin Zhang Z, Zhong SP, et al. Recent progress in high-performance photo-detectors enabled by the pulsed laser deposition technology. J Mater Chem C. 2020;8:4988–5014.
  • Gao W, Huang L, Xu J, et al. Broadband photocarrier dynamics and nonlinear absorption of PLD-grown WTe2 semimetal films. Appl Phys Lett. 2018;112:171112.
  • He M, Chen Y, Zhu L, et al. Third-order nonlinear optical properties of WTe2 films synthesized by pulsed laser deposition. Photonics Res. 2019;7:1493–1500.
  • Chen Y, Chen Y, Ning J, et al. Observation of Shubnikov-de Haas oscillations in large-scale Weyl semimetal WTe2 Films. Chinese Physics Letters. 2020; 37: 017104.
  • Chen Y, Liu R, Chen Y, et al. Large-area freestanding Weyl semimetal WTe2 membranes. Chinese Physics Letters. 2021; 38: 017101.
  • Vermeulen PA, Momand J, Kooi BJ. Low temperature epitaxy of tungsten–telluride heterostructure films. CrystEngComm. 2019;21:3409–3414.
  • Wang H, Chan CH, Suen CH, et al. Magnetotransport properties of layered topological material ZrTe2 thin film. ACS Nano. 2019;13:6008–6016.
  • Wang J, Jiang Z, Chen H, et al. Magnetron-sputtering deposited WTe_2for an ultrafast thulium-doped fiber laser. Opt Lett. 2017;42:5010–5013.
  • Wang J, Jiang Z, Chen H, et al. High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber. Photonics Res. 2018;6:535–541.
  • Fan Y, Li H, Dc M, et al. Spin pumping and large field-like torque at room temperature in sputtered amorphous WTe2−x films. APL Mater. 2020;8:041102.
  • Peng CW, Liao WB, Chen TY, et al. Efficient spin-orbit torque generation in semiconducting WTe2 with hopping transport. ACS Appl Mater Interfaces. 2021;13:15950–15957.
  • Huang JH, Deng KY, Liu PS, et al. Large‐area 2D layered MoTe2 by physical vapor deposition and solid‐phase crystallization in a tellurium‐free atmosphere. Adv Mater Interfaces. 2017;4:1700157.
  • Lin C-P, Hsu -H-H, Huang J-H, et al. Two-dimensional solid-phase crystallization toward centimeter-scale monocrystalline layered MoTe2 via two-step annealing. J Mater Chem C. 2021;9:15566–15576.
  • Shi D, Wang G, Li C, et al. Preparation and thermoelectric properties of MoTe2 thin films by magnetron co-sputtering. Vacuum. 2017;138:101–104.
  • Fei F, Bo X, Wang P, et al. Band structure perfection and superconductivity in type-II Dirac semimetal Ir1-xPtxTe2. Adv Mater. 2018;30:1801556.
  • Lanzara A, Bogdanov PV, Zhou XJ. Evidence for ubiquitous strong electron-phonon coupling in high-temperature superconductors. nature. 2001;412:510–514.
  • Egami T, Piekarz P, and Chung JH. Role of phonons in the mechanism of high-temperature superconductivity. Physica C Superconductivity. 2004;408:292–295.
  • Wu D, Lin Y, Xiong L, et al. Enhanced superconductivity in bilayer PtTe2 by alkali-metal intercalations. Phys Rev B. 2021;103:224502.
  • Cheng C, Sun J-T, Liu M, et al. Tunable electron-phonon coupling superconductivity in platinum diselenide. Phys Rev Mater. 2017;1:074804.
  • Anemone G, Casado Aguilar P, Garnica M, et al. Electron–phonon coupling in superconducting 1T-PdTe2. Npj 2D Materials and Applications. 2021; 5: 25.
  • Clark OJ, Neat MJ, Okawa K, et al. Fermiology and superconductivity of topological surface states in PdTe2. Phys Rev Lett. 2018;120:156401.
  • Liu C, Lian C-S, Liao M-H, et al. Two-dimensional superconductivity and topological states in PdTe2 thin films. Phys Rev Mater. 2018;2:094001.
  • Liu Y, Xu Y, Sun J, et al. Type-II Ising superconductivity and anomalous metallic state in macro-size ambient-stable ultrathin crystalline films. Nano Lett. 2020;20:5728–5734.
  • Fu D, Bo X, Fei F, et al. Quantum oscillations in type-II Dirac semimetal PtTe2. Phys Rev B. 2018;97:245109.
  • Pi L, Li L, Liu K, et al. Recent progress on 2D noble‐transition-metal dichalcogenides. Adv Funct Mater. 2019;29:1904932.
  • Su J, Liu K, and Wang F, et al. Van der Waals 2D Transition Metal Tellurides. Adv Mater Interfaces. 2019;6:1900741.
  • Cong-Li H, Hong-Jun X, Jian T, et al. Research progress of spin-orbit torques based on two-dimensional materials. Acta Phys Sinica. 2021;70:127501–127502.
  • Tong XW, Lin YN, Huang R, et al. Direct tellurization of Pt to synthesize 2D PtTe2 for high-performance broadband photodetectors and NIR image sensors. ACS Appl Mater Interfaces. 2020;12:53921–53931.
  • Yang Y, Zhang K, Zhang L, et al. Controllable growth of type‐II Dirac semimetal PtTe2 atomic layer on Au substrate for sensitive room temperature terahertz photodetection. InfoMat. 2021;3:705–715.
  • Zhang L, Guo C, Kuo C-N, et al. Terahertz photodetection with type‐II Dirac fermions in transition‐metal ditellurides and their heterostructures. Phys Status Solidi Rapid Res Lett. 2021;15:2100212.
  • Xu H, Guo C, Zhang J, et al. PtTe2-based type-II Dirac semimetal and its van der Waals heterostructure for sensitive room temperature terahertz photodetection. Small. 2019;15:1903362.
  • MacNeill D, Stiehl GM, Guimaraes MHD, et al. Control of spin–orbit torques through crystal symmetry in WTe2/ferromagnet bilayers. Nat Phys. 2016;13:300–305.
  • MacNeill D, Stiehl GM, Guimarães MHD, et al. Thickness dependence of spin-orbit torques generated by WTe2. Phys Rev B. 2017;96:054450.
  • Shi S, Liang S, Zhu Z, et al. All-electric magnetization switching and Dzyaloshinskii–Moriya interaction in WTe2/ferromagnet heterostructures. Nat Nanotechnol. 2019;14:945–949.
  • Shi S, Li J, Hsu CH, et al. Observation of the out‐of‐plane polarized spin current from CVD grown WTe2. Adv Quantum Technol. 2021;4:2100038.
  • Song C, Zhang R, Liao L, et al. Spin-orbit torques: materials, mechanisms, performances, and potential applications. Prog Mater Sci. 2021;118:100761.
  • Yang L, Wu H, Zhang W, et al. Anomalous oxidation and its effect on electrical transport originating from surface chemical instability in large-area, few-layer 1T’-MoTe2 films. Nanoscale. 2018;10:19906–19915.
  • Li J, Cheng S, Liu Z, et al. Centimeter-Scale, Large-Area, Few-Layer 1T′-WTe2 Films by Chemical Vapor Deposition and Its Long-Term Stability in Ambient Condition. J Phys Chem C. 2018;122:7005–7012.
  • Yao Q, Ji Y, Chen P, et al. Topological insulators-based magnetic heterostructures. ADV PHYS-X. 2021;6:1870560.
  • Chen Y, Gu X, Li Y, et al. Recent advances in topological quantum materials by angle-resolved photoemission spectroscopy. Matter. 2020;3:1114–1141.