2,233
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Physical mechanisms underpinning conductometric gas sensing properties of metal oxide nanostructures

, &
Article: 2044904 | Received 12 Nov 2021, Accepted 11 Feb 2022, Published online: 12 Apr 2022

References

  • Janata J. Principles of chemical sensors. New York: Springer Science & Business Media; 2010.
  • Briand D, Krauss A, Van der Schoot B, et al. Design and fabrication of high-temperature micro-hotplates for drop-coated gas sensors. Sens Actuators B Chem. 2000;68:223–32.
  • Simon I, Bàrsan N, Bauer M, et al. Micromachined metal oxide gas sensors: opportunities to improve sensor performance. Sens Actuators B Chem. 2001;73:1–26.
  • Semancik S, Cavicchi RE, Wheeler M, et al. Microhotplate platforms for chemical sensor research. Sens Actuators B Chem. 2001;579–591. DOI:10.1016/S0925-4005(01)00695-5.
  • Frost, Sullivan. Sensor innovations driving IoT: opportunity analysis. Frost and Sullivan. 2019.
  • European commission. [Online]. Available from: https://ec.europa.eu/growth/sectors/mechanical-engineering/equipment-potentially-explosive-atmospheres-atex_en
  • Yamazoe N, Sakai G, Shimanoe K. Oxide semiconductor gas sensors. Catalysis Surveys from Asia. 2003;63–75. DOI:10.1023/A:1023436725457.
  • Miller DR, Akbar SA, Morris PA. Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sens Actuators B Chem. 2014;250–272. DOI:10.1016/j.snb.2014.07.074.
  • Korotcenkov G, Cho B. Metal oxide composites in conductometric gas sensors: achievements and challenges. Sens Actuators B Chem. 2017;244:182–210.
  • Dey A. Semiconductor metal oxide gas sensors: a review. Mater Sci Eng B. 2018;206–217. DOI:10.1016/j.mseb.2017.12.036.
  • Comini E, Baratto C, Concina I, et al. Metal oxide nanoscience and nanotechnology for chemical sensors. Sens Actuators B Chem. 2013;3–20. DOI:10.1016/j.snb.2012.10.027.
  • Chowdhury N, Bhowmik B. Micro/nanostructured gas sensors: the physics behind the nanostructure growth, sensing and selectivity mechanisms. Nanoscale Adv. 2021;73–93. DOI:10.1039/D0NA00552E.
  • Sun Y-F, Liu S-B, Meng F-L, et al. Metal oxide nanostructures and their gas sensing properties: a review. Sensors. 2012;2610–2631. DOI:10.3390/s120302610.
  • Choopun S, Hongsith N, Wongrat E. Metal-oxide nanowires for gas sensors, in X. Peng (ed.), Nanowires - Recent Advances. IntechOpen, London; 2012. DOI:10.5772/54385.
  • Chen X, Wong CK, Yuan CA, et al. Nanowire-based gas sensors. Sens Actuators B Chem. 2013;178–195. DOI:10.1016/j.snb.2012.10.134.
  • Comini E. Metal oxide nanowire chemical sensors: innovation and quality of life. Materialstoday. 2016;19:559–567.
  • Mirzaei A, Lee J-H, Majhi SM, et al. Resistive gas sensors based on metal-oxide nanowires. J Appl Phys. 2019. DOI:10.1063/1.5118805.
  • Zappa D, Galstyan V, Kaur N, et al. “Metal oxide -based heterostructures for gas sensors”- A review. Anal Chim Acta. 2018;1–23. DOI:10.1016/j.aca.2018.09.020.
  • Xu F, Ho H-P. Light-activated metal oxide gas sensors: a review. Micromachines. 2017. DOI:10.3390/mi8110333.
  • Kumar R, Liu X, Zhang J, et al. Room-temperature gas sensors under photoactivation: from metal oxides to 2D materials. Nano-Micro Lett. 2020;1–37. DOI:10.1007/s40820-020-00525-y.
  • Sze S, Kwok KN. Physics of semiconductor devices. Hoboken, New Jersey, US: John Wiley & Sons; 2006.
  • Bàrsan N, Weimar U. Conduction model of metal oxide gas sensors. J Electroceram. 2001;143–167. DOI:10.1023/A:1014405811371.
  • Bàrsan N. Conduction models in gas-sensing SnO2 layers: grain-size effects and ambient atmosphere influence. Sens Actuators B Chem. 1994;241–246. DOI:10.1016/0925-4005(93)00873-W.
  • Yamazoe N, Shimanoe K. Theory of power laws for semiconductor gas sensors. Sensors and Actuators, B: Chemical. 2008;128(2):566–573. DOI:10.1016/j.snb.2007.07.036.
  • Asadzadeh MZ, Köck A, Popov M, et al. Response modeling of single SnO2 nanowire gas sensors. Sens Actuators B Chem. 2019;22–29. DOI:10.1016/j.snb.2019.05.041.
  • Hernandez-Ramirez F, Tarancon A, Casals O, et al. High response and stability in CO and humidity measures using a single SnO2 nanowire. Sens Actuators B Chem. 2007;3–17. DOI:10.1016/j.snb.2006.09.015.
  • Liao L, Lu H, Li J, et al. Size dependence of gas sensitivity of ZnO nanorods. J Phys Chem C. 2007;1900–1903. DOI:10.1021/jp065963k.
  • Tonezzer M, Hieu N. Size-dependent response of single-nanowire gas sensors. Sens Actuators B Chem. 2012;146–152. DOI:10.1016/j.snb.2012.01.022.
  • Brunet E, Maier T, Mutinati GC, et al. Comparison of the gas sensing performance of SnO2 thin film and SnO2 nanowire sensors. Sens Actuators B Chem. 2012;110–118. DOI:10.1016/j.snb.2012.02.025.
  • Hernandez-Ramirez F, Prades JD, Tarancon A, et al. Insight into the role of oxygen diffusion in the sensing mechanisms of SnO2 nanowires. Adv Funct Mater. 2008. DOI:10.1002/adfm.200701191.
  • Alenezi MR, Alzanki T, Almeshal A, et al. Hierarchically designed ZnO nanostructure based high performance gas sensors. RSC AdvancesRSC Advances. 2014;49521–49528. DOI:10.1039/C4RA08732A.
  • Alenezi MR, Henley SJ, Emerson NG, et al. From 1D and 2D ZnO nanostructures to 3D hierarchical structures with enhanced gas sensing properties. Nanoscale. 2014;235–247. DOI:10.1039/C3NR04519F.
  • Alenezi MR, Alshammari AS, Jayawardena KI, et al. Role of the exposed polar facets in the performance of thermally and UV activated ZnO nanostructured gas sensors. J Phys Chem C. 2013;17850–17858. DOI:10.1021/jp4061895.
  • Crêpellière J, Menguelti K, Wack S, et al. Spray deposition of silver nanowires on large area substrates for transparent electrodes. ACS Appl Nano Mater. 2021. DOI:10.1021/acsanm.0c02763.
  • Noh -Y-Y, Cheng X, Sirringhaus H, et al. Ink-jet printed ZnO nanowire field effect transistors. Appl Phys Lett. 2007. DOI:10.1063/1.2760041.
  • Forró C, László D, Serge W, et al. Predictive model for the electrical transport within nanowire networks. ACS nano. 2018;11080–11087. DOI:10.1021/acsnano.8b05406.
  • Benda R, Eric C, Bérengère L. Effective resistance of random percolating networks of stick nanowires: functional dependence on elementary physical parameters. J Appl Phys. 2019. DOI:10.1063/1.5108575.
  • Sysoev V, Schneider T, Goschnick J, et al. Percolating SnO2 nanowire network as a stable gas sensor: direct comparison of long-term performance versus SnO2 nanoparticle films. Sens Actuators B Chem. 2009;699–703. DOI:10.1016/j.snb.2009.03.065.
  • Comini E, Faglia G, Sberveglieri G, et al. Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl Phys Lett. 2002;1869–1871. DOI:10.1063/1.1504867.
  • Zhang D, Liu Z, Li C, et al. Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Lett. 2004;1919–1924. DOI:10.1021/nl0489283.
  • Ahn M-W, Park K-S, Heo J-H, et al. On-chip fabrication of ZnO-nanowire gas sensor with high gas sensitivity. Sens Actuators B Chem. 2009;168–173. DOI:10.1016/j.snb.2009.02.008.
  • Feng P, Wan Q, Wang T. Contact-controlled sensing properties of flowerlike ZnO nanostructures. Appl Phys Lett. 2005. DOI:10.1063/1.2135391.
  • Park S, An S, Ko H, et al. Synthesis of nanograined ZnO nanowires and their enhanced gas sensing properties. ACS Appl Mater Interfaces. 2012;3650–3656. DOI:10.1021/am300741r.
  • Khan R, Ra H-WKJ, Jang W, et al. Nanojunction effects in multiple ZnO nanowire gas sensor. Sens Actuators B Chem. 2010;389–393. DOI:10.1016/j.snb.2010.06.052.
  • Varpula A. Modeling of transient electrical characteristics for granular semiconductors. J Appl Phys. 2010. DOI:10.1063/1.3457854.
  • Varpula A, Sinkkonen J, Novikov S. Modelling of dc characteristics for granular semiconductors. Phys Scr. 2010. DOI:10.1088/0031-8949/2010/T141/014003.
  • Caicedo N, Leturcq R, Raskin J-P, et al. Detection mechanism in highly sensitive ZnO nanowires network gas sensors. Sens Actuators B Chem. 2019. DOI:10.1016/j.snb.2019.05.079.
  • Doo Seok J, Thomas R, Katiyar R, et al. Emerging memories: resistive switching mechanisms and current status. Rep Prog Phys. 2012;75:076502.
  • Kaixuan S, Jingsheng C, Xiaobing Y. The future of memristors: materials engineering and neural networks. Adv Funct Mater. 2020;31:2006773.
  • Ungureanu M, Zazpe R, Golmar F, et al. A light-controlled resistive switching memory. Adv Mater. 2012;2496–2500. DOI:10.1002/adma.201200382.
  • Puppo F, Di Ventra M, De Micheli G, et al. Memristive sensors for pH measure in dry conditions. Surf Sci. 2014;624:76–79.
  • Strukov DB, Snider GS, Stewart DR, et al. The missing memristor found. Nature. 2008;80–83. DOI:10.1038/nature06932.
  • Chen J-Y, Hsin C-L, Huang C-W, et al. Dynamic evolution of conducting nanofilament in resistive switching memories. Nano Lett. 2013;3671–3677. DOI:10.1021/nl4015638.
  • Hu C, Qi W, Shuai B, et al. The effect of oxygen vacancy on switching mechanism of ZnO resistive switching memory. Appl Phys Lett. 2016;110:073501.
  • Nyenke C, Dong L. Effect of NO2 and NH3 on the resistive switching behavior of W/CuxO/Cu devices. J Micromech Microeng. 2017. DOI:10.1088/1361-6439/aa8672.
  • Plecenik T, Moško M, Haidry A, et al. Fast highly-sensitive room-temperature semiconductor gas sensor based on the nanoscale Pt–TiO2–Pt sandwich. Sens Actuators B Chem. 2015;351–361. DOI:10.1016/j.snb.2014.10.003.
  • Vidis M, Plecenik T, Mossko M, et al. Gasistor: a memristor based gas-triggered switch and gas sensor with memory. Appl Phys Lett. 2019;115:093504.
  • Zhang R, Pang W, Feng Z, et al. Enabling selectivity and fast recovery of ZnO nanowire gas sensors through resistive switching. Sens Actuators B. 2017;357–363. DOI:10.1016/j.snb.2016.07.068.
  • Zeng W, Liu T, Wang Z. Sensitivity improvement of TiO2-doped SnO2 to volatile organic compounds. Physica E Low Dimens Syst Nanostruct. 2010;633–638. DOI:10.1016/j.physe.2010.10.010.
  • Wang L, Kang Y, Wang Y, et al. CuO nanoparticle decorated ZnO nanorod sensor for low-temperature H2S detection. Mater Sci Eng C. 2012;2079–2085. DOI:10.1016/j.msec.2012.05.042.
  • Grabowska E, Marchelek M, Paszkiewicz-Gawron M, et al. 3 - Metal oxide photocatalysts. Editor(s): Zaleska-Medynska A, In Metal Oxides, Metal Oxide-Based Photocatalysis, Elsevier. 2018;51–209. ISBN 9780128116340. DOI:10.1016/B978-0-12-811634-0.00003-2.
  • Wu B, Lin Z, Sheng M, et al. Visible-light activated ZnO/CdSe heterostructure-based gas sensors with low operating temperature. Appl Surf Sci. 2016;652–657. DOI:10.1016/j.apsusc.2015.11.037.
  • Mashock M, Yu K, Cui S, et al. Modulating gas sensing properties of CuO nanowires through creation of discrete nanosized p–n junctions on their surfaces. ACS Appl Mater Interfaces. 2012;4192–4199. DOI:10.1021/am300911z.
  • Woo H-S, Na CW, Kim I-D, et al. Highly sensitive and selective trimethylamine sensor using one-dimensional ZnO–Cr2O3 hetero-nanostructures. Nanotechnology. 2012. DOI:10.1088/0957-4484/23/24/245501.
  • Aygun S, Cann D. Response kinetics of doped CuO/ZnO heterocontacts. J Phys Chem A. 2005;7878–7882. DOI:10.1021/jp044481a.
  • Wang J, Yu M, Xia Y, et al. On-chip grown ZnO nanosheet-array with interconnected nanojunction interfaces for enhanced optoelectronic NO2 gas sensing at room temperature. J Colloid Interface Sci. 2019;554:19–28.
  • Wang L, Lou Z, Zhang R, et al. Hybrid Co3O4/SnO2 core-shell nanospheres as real-time rapid-response sensors for ammonia gas. ACS Appl Mater Interfaces. 2016;6539–6545. DOI:10.1021/acsami.6b00305.
  • Kim S-J, Na CW, Hwang I-S, et al. One-pot hydrothermal synthesis of CuO–ZnO composite hollow spheres for selective H2S detection. Sens Actuators B Chem. 2012;83–89. DOI:10.1016/j.snb.2012.01.045.
  • Tangirala VKK, Gomez-Pozos H, Rodriguez-Lugo V, et al. A study of the CO sensing responses of Cu-, Pt-and Pd-activated SnO2 sensors: effect of precipitation agents, dopants and doping methods. Sensors. 2017. DOI:10.3390/s17051011.
  • Xu X, Chen Y, Zhang G, et al. Highly sensitive VOCs-acetone sensor based on Ag-decorated SnO2 hollow nanofibers. J Alloys Compd. 2017;572–579. DOI:10.1016/j.jallcom.2017.01.348.
  • Zhang W, Yang B, Liu J, et al. Highly sensitive and low operating temperature SnO2 gas sensor doped by Cu and Zn two elements. Sens Actuators B Chem. 2017;982–989. DOI:10.1016/j.snb.2016.12.095.
  • Wang L, Wang Y, Yu K, et al. A novel low temperature gas sensor based on Pt-decorated hierarchical 3D SnO2 nanocomposites. Sens Actuators B Chem. 2016;91–101. DOI:10.1016/j.snb.2016.02.135.
  • Kumar K, Chowdhury A. Use of Novel Nanostructured Photocatalysts for the Environmental Sustainability of Wastewater Treatments. Editor(s): Saleem Hashmi, Imtiaz Ahmed Choudhury, Encyclopedia of Renewable and Sustainable Materials, Elsevier. 2020;949–964. ISBN 9780128131961. DOI:10.1016/B978-0-12-803581-8.11149-X.
  • Wang J, Shen H, Xia Y, et al. Light-activated room-temperature gas sensors based on metal oxide nanostructures: a review on recent advances. Ceram Int. 2020;47(6):735–37368.
  • Fan S-W, Srivastava AK, Dravid VP. UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO. Appl Phys Lett. 2009. DOI:10.1063/1.3243458.
  • Trawka M, Smulko J, Hasse L, et al. Fluctuation enhanced gas sensing with WO3-based nanoparticle gas sensors modulated by UV light at selected wavelengths. Sens Actuators B Chem. 2016;453–461. DOI:10.1016/j.snb.2016.05.032.
  • Espid E, Noce AS, Taghipour F. The effect of radiation parameters on the performance of photo-activated gas sensors. J Photochem Photobiol A. 2019;95–105. DOI:10.1016/j.jphotochem.2019.01.038.
  • Hyodo T, Urata K, Kamada K, et al. Semiconductor-type SnO2-based NO2 sensors operated at room temperature under UV-light irradiation. Sens Actuators B Chem. 2017;630–640. DOI:10.1016/j.snb.2017.06.155.
  • Zhang Q, Xie G, Xu M, et al. Visible light-assisted room temperature gas sensing with ZnO-Ag heterostructure nanoparticles. Sens Actuators B Chem. 2018;269–281. DOI:10.1016/j.snb.2017.12.052.
  • Peng L, Zhai J, Wang D, et al. Size-and photoelectric characteristics-dependent formaldehyde sensitivity of ZnO irradiated with UV light. Sens Actuators B Chem. 2010;66–73. DOI:10.1016/j.snb.2010.04.045.
  • Chinh ND, Quang ND, Lee H, et al. NO gas sensing kinetics at room temperature under UV light irradiation of In2O3 nanostructures. Sci Rep. 2016;1–11. DOI:10.1038/s41598-016-0001-8.
  • Chen H, Liu Y, Xie C, et al. A comparative study on UV light activated porous TiO2 and ZnO film sensors for gas sensing at room temperature. Ceram Int. 2012;503–509. DOI:10.1016/j.ceramint.2011.07.035.
  • Su X, Duan G, Xu Z, et al. Structure and thickness-dependent gas sensing responses to NO2 under UV irradiation for the multilayered ZnO micro/nanostructured porous thin films. J Colloid Interface Sci. 2017;150–158. DOI:10.1016/j.jcis.2017.04.055.
  • Park S, Sun G-J, Jin C, et al. Synergistic effects of a combination of Cr2O3-functionalization and UV-irradiation techniques on the ethanol gas sensing performance of ZnO nanorod gas sensors. ACS Appl Mater Interfaces. 2016;2805–2811. DOI:10.1021/acsami.5b11485.
  • Chizhov A, Rumyantseva M, Vasiliev R, et al. Visible light activation of room temperature NO2 gas sensors based on ZnO, SnO2 and In2O3 sensitized with CdSe quantum dots. Thin Solid Films. 2016;253–262. DOI:10.1016/j.tsf.2016.09.029.
  • Yao Y, Ji F, Yin M, et al. Ag nanoparticle-sensitized WO3 hollow nanosphere for localized surface plasmon enhanced gas sensors. ACS Appl Mater Interfaces. 2016;18165–18172. DOI:10.1021/acsami.6b04692.
  • Zhou F, Wang Q, Liu W. Au@ ZnO nanostructures on porous silicon for photocatalysis and gas-sensing: the effect of plasmonic hot-electrons driven by visible-light. Mater Res Express. 2016. DOI:10.1088/2053-1591/3/8/085006.
  • Zhang Y, Liu Y, Wang ZL. Fundamental Theory of Piezotronics. Adv Mater. 2011;3004–3013. DOI:10.1002/adma.201100906.
  • Niu HS, Youfan W, Xiaonan Z, et al. Enhanced performance of flexible ZnO nanowire based room-temperature oxygen sensors by Piezotronic effect. Adv Mater. 2013;25:3701–3706.
  • Zhou R, Hu G, Yu R, et al. Piezotronic effect enhanced detection of flammable/toxic gases by ZnO micro/nanowire sensors. Nano Energy. 2015;588–596. DOI:10.1016/j.nanoen.2015.01.036.
  • Liu X-L, Zhao Y, Wang W-J, et al. Photovoltaic self-powered gas sensing. IEEE Sensors J. 2021;21(5):5628–5644.