6,707
Views
5
CrossRef citations to date
0
Altmetric
Reviews

Deep learning for topological photonics

ORCID Icon, , , & ORCID Icon
Article: 2046156 | Received 29 Oct 2021, Accepted 21 Feb 2022, Published online: 15 Mar 2022

References

  • Raghu S, Haldane FDM. Analogs of quantum-hall-effect edge states in photonic crystals. Phys Rev A. 2008;78:033834.
  • Lu L, Fu L, Joannopoulos JD, et al. Weyl points and line nodes in gyroid photonic crystals. Nat Photonics. 2013;7:294–29.
  • Bliokh KY, Smirnova D, Nori F. Quantum spin hall effect of light. Science. 2015;348:1448–1451.
  • Yang Z, Gao F, Shi X, et al. Topological acoustics. Phys Rev Lett. 2015;114:114301.
  • Krishnamoorthy HNS, Jacob Z, Narimanov E, et al. Topological transitions in metamaterials. Science. 2012;336:205–209.
  • Wang Z, Chong YD, Joannopoulos JD, et al. Reflection-free one-way edge modes in a gyromagnetic photonic crystal. Phys Rev Lett. 2008;100:013905.
  • Kane CL, Mele EJ. Z2 topological order and the quantum spin hall effect. Phys Rev Lett. 2005;95:146802.
  • Hafezi M, Mittal S, Fan J, et al. Imaging topological edge states in silicon photonics. Nat Photonics. 2013;7:1001–1005.
  • Lu L, Wang Z, Ye D, et al. Experimental observation of weyl points. Science. 2015;349:622–624.
  • Ma T, Shvets G. All-Si valley-hall photonic topological insulator. New J Phys. 2016;18:025012.
  • Yang B, Guo Q, Tremain B, et al. Direct observation of topological surface-state arcs in photonic metamaterials. Nat Commun. 2017;8:97.
  • Kim M, Lee D, Lee D, et al. Topologically nontrivial photonic nodal surface in a photonic metamaterial. Phys Rev B. 2019;99:235423.
  • Guo Q, Yang B, Xia L, et al. Three dimensional photonic dirac points in metamaterials. Phys Rev Lett. 2017;119:213901.
  • Kim M, Gao W, Lee D, et al. Extremely broadband topological surface states in a photonic topological metamaterial. Adv Opt Mater. 2019;7:1900900.
  • Hafezi M, Demler EA, Lukin MD, et al. Robust optical delay lines with topological protection. Nat Phys. 2011;7:907–912.
  • Yang Y, Yamagami Y, Yu X, et al. Terahertz topological photonics for on-chip communication. Nat Photonics. 2020;14:446–451.
  • Barik S, Karasahin A, Flower C, et al. A topological quantum optics interface. Science. 2018;359:666–668.
  • Zhang P, Shen H, Zhai H. Machine learning topological invariants with neural networks. Phys Rev Lett. 2018;120:66401.
  • Long Y, Ren J, Li Y, et al. Inverse design of photonic topological state via machine learning. Appl Phys Lett. 2019;114:181105.
  • LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–444.
  • Jordan MI, Mitchell TM. Machine learning: trends, perspectives, and prospects. Science. 2015;349:255–260.
  • Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems. Lake Tahoe, Nevada. 2012;25:1097–1105.
  • Deng L, Li X. Machine learning paradigms for speech recognition: an overview. IEEE Trans Audio Speech Lang Process. 2013;21:1060–1089.
  • Shalev-Shwartz S, Shammah S, Shashua AS. Safe, multi-agent, reinforcement learning for autonomous driving. arXiv:1610.03295 [cs.AI]. 2016.
  • Silver D, Huang A, Maddison CJ, et al. Mastering the game of go with deep neural networks and tree search. Nature. 2016;529:484–489.
  • Benjamin S-L, Alán A-G. Inverse molecular design using machine learning: generative models for matter engineering. Science. 2018;361:360–365.
  • Goh GB, Hodas NO, Vishnu A. Deep learning for computational chemistry. J Comput Chem. 2017;38:1291–1307.
  • Baldi P, Sadowski P, Whiteson D. Searching for exotic particles in high-energy physics with deep learning. Nat Commun. 2014;5:4308.
  • Klitzing KV, Dorda G, Pepper M. New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys Rev Lett. 1980;45:494–497.
  • Thouless DJ, Kohmoto M, Nightingale MP, et al. Quantized hall conductance in a two-dimensional periodic potential. Phys Rev Lett. 1982;49:405–408.
  • Lu J, Qiu C, Deng W, et al. Valley topological phases in bilayer sonic crystals. Phys Rev Lett. 2018;120:116802.
  • Huber SD. Topological mechanics. Nat Phys. 2016;12:621–623.
  • Wang Z, Chong Y, Joannopoulos JD, et al. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature. 2009;461:772–775.
  • Kohmoto M. Topological invariant and the quantization of the hall conductance. Ann Phys. 1985;160:343–354.
  • Ando Y. Topological Insulator Materials. J Phys Soc Jap. 2013;82:102001.
  • Haldane FDM, Raghu S. Possible Realization of Directional Optical Waveguides in Photonic Crystals with Broken Time-Reversal Symmetry. Phys Rev Lett. 2008;100:013904.
  • Ozawa T, Price HM, Amo A, et al. Topological photonics. Rev Mod Phys. 2019;91:015006.
  • Su WP, Schrieffer JR, Heeger AJ. Solitons in polyacetylene. Phys Rev Lett. 1979;42:1698–1701.
  • Malkova N, Hromada I, Wang X, et al. Observation of optical shockley-like surface states in photonic superlattices. Opt Lett. 2009;34:1633–1635.
  • El Hassan A, Kunst FK, Moritz A, et al. Corner states of light in photonic waveguides. Nat Photonics. 2019;13:697–700.
  • Kim M, Rho J. Topological edge and corner states in a two-dimensional photonic su-schrieffer-heeger lattice. Nanophotonics. 2020;9:3227–3234.
  • Batra N, Sheet G. Physics with coffee and doughnuts. Resonance. 2020;25:765–786.
  • Rudner MS, Lindner NH, Berg E, et al. Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems. Phys Rev X. 2013;3:031005.
  • Poo Y, Wu R, Lin Z, et al. Experimental realization of self-guiding unidirectional electromagnetic edge states. Phys Rev Lett. 2011;106:093903.
  • Cheng X, Jouvaud C, Ni X, et al. Robust reconfigurable electromagnetic pathways within a photonic topological insulator. Nat Mater. 2016;15:542–548.
  • Slobozhanyuk A, Mousavi SH, Ni X, et al. Three-dimensional all-dielectric photonic topological insulator. Nat Photonics. 2017;11:130–136.
  • Yang Y, Gao Z, Xue H, et al. Realization of a three-dimensional photonic topological insulator. Nature. 2019;565:622–626.
  • Wu L-H, Hu X. Scheme for achieving a topological photonic crystal by using dielectric material. Phys Rev Lett. 2015;114:223901.
  • Kim M, Kim Y, Rho J. Spin-valley locked topological edge states in a staggered chiral photonic crystal. New J Phys. 2020;22:113022.
  • Maczewsky LJ, Zeuner JM, Nolte S, et al. Observation of photonic anomalous floquet topological insulators. Nat Commun. 2017;8:13756.
  • Rechtsman MC, Zeuner JM, Plotnik Y, et al. Photonic floquet topological insulators. Nature. 2013;496:196–200.
  • Lindner NH, Refael G, Galitski V. Floquet topological insulator in semiconductor quantum wells. Nat Phys. 2011;7:490–495.
  • Verbin M, Zilberberg O, Kraus YE, et al. Observation of topological phase transitions in photonic quasicrystals. Phys Rev Lett. 2013;110:076403.
  • Aubry S,André G. Analyticity breaking and Anderson localization in incommensurate lattices. Ann Isr Phys Soc. 1980;3:133.
  • Levine D, Steinhardt PJ. Quasicrystals: a new class of ordered structures. Phys Rev Lett. 1984;53:2477–2480.
  • Kraus YE, Lahini Y, Ringel Z, et al. Topological states and adiabatic pumping in quasicrystals. Phys Rev Lett. 2012;109:106402.
  • Noh J, Benalcazar WA, Huang S, et al. Topological protection of photonic mid-gap defect modes. Nat Photonics. 2018;12:408–415.
  • Lin Q, Xiao M, Yuan L, et al. Photonic weyl point in a two-dimensional resonator lattice with a synthetic frequency dimension. Nat Commun. 2016;7:13731.
  • Chen WJ, Xiao M, Chan CT. Photonic crystals possessing multiple weyl points and the experimental observation of robust surface states. Nat Commun. 2016;7:13038.
  • Yang B, Guo Q, Tremain B, et al. Ideal weyl points and helicoid surface states in artificial photonic crystal structures. Science. 2018;359:1013–1016.
  • Holanda NL,Griffith MAR. Machine learning topological phases in real space. Phys Rev B. 2020;102:054107.
  • Pilozzi L, Farrelly FA, Marcucci G, et al. Topological nanophotonics and artificial neural networks. Nanotechnology. 2021;32:142001.
  • Pilozzi L, Farrelly FA, Marcucci G, et al. Machine learning inverse problem for topological photonics. Commun Phys. 2018;1:57.
  • Singh R, Agarwal A, Anthony W. Mapping the design space of photonic topological states via deep learning. Opt Express. 2020;28:27893–27902.
  • Wu B, Ding K, Chan CT, et al. Machine prediction of topological transitions in photonic crystals. Phys Rev Appl. 2020;14:044032 .
  • Kim M, Jacob Z, Rho J. Recent advances in 2D, 3D and higher-order topological photonics. Light Sci Appl. 2020;9:130.
  • Lu L, Joannopoulos JD, Soljačić M. Topological photonics. Nat Photonics. 2014;8:821–829.
  • Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature. 1986;323:533–536.
  • Lawrence S, Giles CL, Tsoi AC, et al. Face recognition: a convolutional neural-network approach. IEEE Trans Neural Networks. 1997;8:98–113.
  • Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1566 [cs.CV]. 2014.
  • Jiang J, Chen M, Fan JA. Deep neural networks for the evaluation and design of photonic devices. Nat Rev Mater. 2021;6:679–700.
  • Snoek J, Larochelle H, Adams RP. Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems. Lake Tahoe, Nevada. 2012;25:2951–2959.
  • Bergstra J, Bengio Y. Random search for hyper-parameter optimization. J Mach Learn Res. 2012;13:281–305.
  • Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. Proceedings of the 14th international joint conference on Artificial intelligence. San Francisco, CA, USA. 1995;2:1137–1143.
  • Bengio Y. No unbiased estimator of the variance of k-fold cross-validation. J Mach Learn Res. 2004;5:1089–1105.
  • Hinton G. Dropout : a simple way to prevent neural networks from overfitting. J Mach Learn Res. 2014;15:1929–1958.
  • Caruana R, Lawrence S, Giles C. Overfitting in neural nets: backpropagation, conjugate gradient, and early stopping. Advances in Neural Information Processing Systems. Denver, CO, USA. 2000;13:402–408.
  • Goodfellow I, Bengio Y, Courville A. Regularization for Deep Learning. In: Deep Learning. Cambridge, MA, USA: MIT press; 2016; p. 224–270.
  • Peurifoy J, Shen Y, Jing L, et al. Nanophotonic particle simulation and inverse design using artificial neural networks. Sci Adv. 2018;4:eaar4206.
  • Malkiel I, Mrejen M, Nagler A, et al. Plasmonic nanostructure design and characterization via deep learning. Light Sci Appl. 2018;7:60.
  • Asano T, Noda S. Iterative optimization of photonic crystal nanocavity designs by using deep neural networks. Nanophotonics. 2019;8:2243–2256.
  • Christensen T, Loh C, Picek S, et al. Predictive and generative machine learning models for photonic crystals. Nanophotonics. 2020;9:4183–4192.
  • Da Silva Ferreira A, Malheiros-Silveira GN, Hernandez-Figueroa HE. Computing optical properties of photonic crystals by using multilayer perceptron and extreme learning machine. J Light Technol. 2018;36:4066–4073.
  • Chugh S, Gulistan A, Ghosh S, et al. Machine learning approach for computing optical properties of a photonic crystal fiber. Opt Express. 2019;27:36414–36425.
  • Asano T, Noda S. Optimization of photonic crystal nanocavities based on deep learning. Opt Express. 2018;26:32704–32717.
  • Wiecha PR, Muskens OL. Deep learning meets nanophotonics: a generalized accurate predictor for near fields and far fields of arbitrary 3d nanostructures. Nano Lett. 2020;20:329–338.
  • Kudyshev ZA, Kildishev AV, Shalaev VM, et al. Machine learning–assisted global optimization of photonic devices. Nanophotonics. 2020;10:371–383.
  • Ma W, Cheng F, Liu Y. Deep-learning-enabled on-demand design of chiral metamaterials. ACS Nano. 2018;12:6326–6334.
  • Li Y, Xu Y, Jiang M, et al. Self-learning perfect optical chirality via a deep neural network. Phys Rev Lett. 2019;123:213902.
  • Tao Z, Zhang J, You J, et al. Exploiting deep learning network in optical chirality tuning and manipulation of diffractive chiral metamaterials. Nanophotonics. 2020;9:2945–2956.
  • Sajedian I, Kim J, Rho J. Finding the optical properties of plasmonic structures by image processing using a combination of convolutional neural networks and recurrent neural networks. Microsyst Nanoeng. 2019;5:27.
  • Balin I, Garmider V, Long Y, et al. Training artificial neural network for optimization of nanostructured VO 2 -based smart window performance. Opt Express. 2019;27:A1030–A1040.
  • Nadell CC, Huang B, Malof JM, et al. Deep learning for accelerated all-dielectric metasurface design. Opt Express. 2019;27:27523–27535.
  • An S, Fowler C, Zheng B, et al. A deep learning approach for objective-driven all-dielectric metasurface design. ACS Photonics. 2019;6:3196–3207.
  • Inampudi S, Mosallaei H. Neural network based design of metagratings. Appl Phys Lett. 2018;112:241102.
  • So S, Badloe T, Noh J, et al. Deep learning enabled inverse design in nanophotonics. Nanophotonics. 2020;9:1041–1057.
  • Ma W, Liu Z, Kudyshev ZA, et al. Deep learning for the design of photonic structures. Nat Photonics. 2021;15:77–90.
  • Xu Y, Zhang X, Fu Y, et al. Interfacing photonics with artificial intelligence: an innovative design strategy for photonic structures and devices based on artificial neural networks. Photonics Res. 2021;9:B135–B152.
  • Liu Z, Zhu D, Raju L, et al. Tackling photonic inverse design with machine learning. Adv Sci. 2021;8:2002923.
  • So S, Lee D, Badloe T, et al. Inverse design of ultra-narrowband selective thermal emitters designed by artificial neural networks. Opt Mater Express. 2021;11:1863–1873.
  • Noh J, Nam YH, So S, et al. Design of a transmissive metasurface antenna using deep neural networks. Opt Mater Express. 2021;11:2310–2317.
  • Qu Y, Jing L, Shen Y, et al. Migrating knowledge between physical scenarios based on artificial neural networks. ACS Photonics. 2019;6:1168–1174.
  • Ma W, Liu Y. A data-efficient self-supervised deep learning model for design and characterization of nanophotonic structures. Sci China Phys Mech Astron. 2020;63:284212.
  • Trivedi R, Su L, Lu J, et al. Data-driven acceleration of photonic simulations. Sci Rep. 2019;9:19728.
  • Baxter J, Calà Lesina A, Guay JM, et al. Plasmonic colours predicted by deep learning. Sci Rep. 2019;9:8074.
  • Liu D, Tan Y, Khoram E, et al. Training deep neural networks for the inverse design of nanophotonic structures. ACS Photonics. 2018;5:1365–1369.
  • So S, Mun J, Rho J. Simultaneous inverse design of materials and structures via deep learning: demonstration of dipole resonance engineering using core-shell nanoparticles. ACS Appl Mater Interfaces. 2019;11:24264–24268.
  • So S, Yang Y, Lee T, et al. On-demand design of spectrally sensitive multiband absorbers using an artificial neural network. Photonics Res. 2021;9:B153–B158.
  • Kingma DP, Welling M. Auto-encoding variational bayes. arXiv:1312.6114[stat.ML]. 2013.
  • Goodfellow I, Pouget-Abadie J, Mirza M. Generative adversarial nets. In: Advances in Neural Information Processing Systems. Montreal, Canada. 2014;27:2672–2680.
  • Ma W, Cheng F, Xu Y, et al. Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy. Adv Mater. 2019;31:1901111.
  • Tang Y, Kojima K, Koike‐Akino T, et al. Generative deep learning model for inverse design of integrated nanophotonic devices. Laser Photonics Rev. 2020;14:2000287.
  • Liu Z, Zhu D, Rodrigues SP, et al. Generative model for the inverse design of metasurfaces. Nano Lett. 2018;18:6570–6576.
  • So S, Rho J. Designing nanophotonic structures using conditional deep convolutional generative adversarial networks. Nanophotonics. 2019;8:1255–1261.
  • Jiang J, Sell D, Hoyer S, et al. Free-form diffractive metagrating design based on generative adversarial networks. ACS Nano. 2019;13:8872–8878.
  • Jiang J, Fan JA. Global optimization of dielectric metasurfaces using a physics-driven neural network. Nano Lett. 2019;19:5366–5372.
  • Jiang J, Fan JA. Multiobjective and categorical global optimization of photonic structures based on resNet generative neural networks. Nanophotonics. 2020;10:361–369.
  • Molesky S, Lin Z, Piggott AY, et al. Inverse design in nanophotonics. Nat Photonics. 2018;12:659–670.
  • Araki H, Mizoguchi T, Hatsugai Y. Phase diagram of a disordered higher-order topological insulator: a machine learning study. Phys Rev B. 2019;99:085406.
  • Sun N, Yi J, Zhang P, et al. Deep learning topological invariants of band insulators. Phys Rev B. 2018;98:085402.
  • Zhang Y, Kim EA. Quantum loop topography for machine learning. Phys Rev Lett. 2017;118:216401.
  • Deng DL, Li X, Das Sarma S. Machine learning topological states. Phys Rev B. 2017;96:195145.
  • Carrasquilla J. Neural networks identify topological phases. Physics. 2017;10:56.
  • Peano V, Sapper F, Marquardt F. Rapid exploration of topological band structures using deep learning. Phys Rev X. 2021;11:021052.
  • Ming Y, Lin CT, Bartlett SD, et al. Quantum topology identification with deep neural networks and quantum walks. npj Comput Mater. 2019;5:88.
  • Mehta P, Wang CH, Day AGR, et al. A high-bias, low-variance introduction to machine learning for physicists. Phys Rep. 2019;810:1–124.
  • Yoshioka N, Akagi Y, Katsura H. Learning disordered topological phases by statistical recovery of symmetry. Phys Rev B. 2018;97:205110.
  • Yu S, Piao X, Park N. Machine learning identifies scale-free properties in disordered materials. Nat Commun. 2020;11:4842.
  • Cubuk ED, Schoenholz SS, Rieser JM, et al. Identifying structural flow defects in disordered solids using machine-learning methods. Phys Rev Lett. 2015;114:108001.
  • Fujii K, Nakajima K. Harnessing disordered-ensemble quantum dynamics for machine learning. Phys Rev Appl. 2017;8:024030.
  • Zhao H, Qiao X, Wu T, et al. Non-Hermitian topological light steering. Science. 2019;365:1163–1166.
  • Ota Y, Katsumi R, and Watanabe K, et al. Topological photonic crystal nanocavity laser. Commun Phys. 2018;1:86.
  • Shao ZK, Chen HZ, Wang S, et al. A high-performance topological bulk laser based on band-inversion-induced reflection. Nat Nanotechnol. 2020;15:67–72.
  • Ma J, Xi X, Sun X. Topological photonic integrated circuits based on valley kink states. Laser Photonics Rev. 2019;13:1900087.
  • Wu Y, Li C, Hu X, et al. Applications of topological photonics in integrated photonic devices. Adv Opt Mater. 2017;5:1700357.
  • Leykam D, Angelakis DG. Photonic band structure design using persistent homology. APL Photonics. 2021;6:030802.
  • Coifman RR, Lafon S, Lee AB, et al. Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. Proc Natl Acad Sci. 2005;102:7426–7431.
  • Lustig E, Yair O, Talmon R, et al. Identifying topological phase transitions in experiments using manifold learning. Phys Rev Lett. 2020;125:127401.
  • Long Y, Ren J, Chen H. Unsupervised manifold clustering of topological phononics. Phys Rev Lett. 2020;124:185501.
  • Che Y, Gneiting C, Liu T, et al. Topological quantum phase transitions retrieved through unsupervised machine learning. Phys Rev B. 2020;102:134213.
  • Park S, Hwang Y, and Yang B. Unsupervised learning of topological phase diagram using topological data analysis. arXiv:2107.10468 [cond-mat.mes-hall]. 2021.
  • Gunning D, Stefik M, Choi J, et al. XAI—Explainable artificial intelligence. Sci Robot. 2019;4:eaay7120.
  • Yeung C, Tsai JM, King B, et al. Elucidating the behavior of nanophotonic structures through explainable machine learning algorithms. ACS Photonics. 2020;7:2309–2318.
  • Kailkhura B, Gallagher B, Kim S, et al. Reliable and explainable machine-learning methods for accelerated material discovery. npj Comput Mater. 2019;5:108.