4,714
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Characterization of metal-organic frameworks by transmission electron microscopy

, &
Article: 2046157 | Received 22 Nov 2021, Accepted 21 Feb 2022, Published online: 16 Mar 2022

References

  • Gür TM. Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ Sci. 2018;11:2696.
  • Gray HB. Powering the planet with solar fuel. Nat Chem. 2009;1:7.
  • Lewis NS, Nocera DG. Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci U S A. 2006;103:15729.
  • Jiao Y, Zheng Y, Jaroniec M, et al. Design of electrocatalysts for oxygen-and hydrogen-involving energy conversion reactions. Chem Soc Rev. 2015;44:2060.
  • Cheng N, Ren L, Xu X, et al. Recent development of zeolitic imidazolate frameworks (ZIFs) derived porous carbon based materials as electrocatalysts. Adv Energy Mater. 2018;8:1801257.
  • Li Y, Chen W, Xing G, et al. New synthetic strategies toward covalent organic frameworks. Chem Soc Rev. 2020;49:2852.
  • Li B, Wen H, Cui Y, et al. Emerging multifunctional metal-organic framework materials. Adv Mater. 2016;28:8819.
  • Cheng N, Ren L, Xu X, et al. Application of organic-inorganic hybrids in lithium batteries. Mater Today Phys. 2020;15:100289.
  • Furukawa H, Cordova KE, O’Keeffe M, et al. The chemistry and applications of metal-organic frameworks. Science. 2013;341:1230444.
  • Wu HB, Lou XW. Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: promises and challenges. Sci Adv. 2017;3: eaap9252.
  • Long JR, Yaghi OM. The pervasive chemistry of metal-organic frameworks. Chem Soc Rev. 2009;38:1213.
  • Cao X, Tan C, Sindoro M, et al. Hybrid micro-/nano-structures derived from metal-organic frameworks: preparation and applications in energy storage and conversion. Chem Soc Rev. 2017;46:2660.
  • Dhakshinamoorthy A, García H. Catalysis by metal nanoparticles embedded on metal-organic frameworks. Chem Soc Rev. 2012;41:5262.
  • Ju W, Bagger A, Hao G, et al. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat Commun. 2017;8:944.
  • Li S, Xu Q. Metal-organic frameworks as platforms for clean energy. Energy Environ Sci. 2013;6:1656.
  • Zhao Y, Song Z, Li X, et al. Metal organic frameworks for energy storage and conversion. Energy Stor Mater. 2016;2:35.
  • Ameloot R, Vermoortele F, Hofkens J, et al. Three-dimensional visualization of defects formed during the synthesis of metal-organic frameworks: a fluorescence microscopy study. Angew Chem. 2013;125:419.
  • Schöăeè M, Agger JR, Anderson MW, et al. Crystal form, defects and growth of the metal organic framework HKUST-1 revealed by atomic force microscopy. CrystEngComm. 2008;10:646.
  • Cravillon J, Schröder CA, Nayuk R, et al. Fast nucleation and growth of ZIF-8 nanocrystals monitored by time-resolved in situ small-angle and wide-angel X-ray scattering. Angew Chem Int Ed. 2011;50:8067.
  • Liu J, Zhu D, Guo C, et al. Design strategies toward advanced MOF-derived electrocatalysts for energy-conversion reactions. Adv Energy Mater. 2017;7:1700518.
  • Chen Q, Dwyer C, Sheng G, et al. Imaging beam-sensitive materials by electron microscopy. Adv Mater. 2020;32:1907619.
  • Egerton RF, Li P, Malac M. Radiation damage in the TEM and SEM. Micron. 2004;35:399.
  • Ugurlu O, Haus J, Gunawan AA, et al. Radiolysis to knock-on damage transition in zeolites under electron beam irradiation. Phys Rev B. 2011;83:1127.
  • Mkhoyan KA, Babinec T, Maccagnano SE, et al. Separation of bulk and surface-losses in low-loss EELS measurements in STEM. Ultramicroscopy. 2007;107:345.
  • Jiang N. Electron beam damage in oxides: a review. Rep Prog Phys. 2016;79:016501.
  • Egerton RF. Radiation damage to organic and inorganic specimens in the TEM. Micron. 2019;119:72.
  • Flynn CP. Point Defects and Diffusion. London: Oxford University Press; 1972.
  • Hobbs LW. Transmission electron microscopy of extended defects in alkali halide crystals. London: The Royal Society of Chemistry; 1975.
  • Kabler MN, Williams RT. Vacancy-interstitial pair production via electron-hole recombination in halide crystals. Phys Rev B. 1978;18:1948.
  • Liu Z, Ohsuna T, Terasaki O, et al. The first zeolite with three-dimensional intersecting straight-channel system of 12-membered rings. J Am Chem Soc. 2001;123:5370.
  • Sakamoto Y, Kaneda M, Terasaki O, et al. Direct imaging of the pores and cages of three dimensional mesoporous materials. Nature. 2000;408:449.
  • Cichocka MO, Ångström J, Wang B, et al. High-throughput continuous rotation electron diffraction data acquisition via software automation. J Appl Cryst. 2018;51:1652.
  • Wiktor C, Meledina M, Turner S, et al. Transmission electron microscopy on metal-organic frameworks - a review. J Mater Chem A. 2017;5:14969.
  • Liu L, Zhang D, Zhu Y, et al. Bulk and local structures of metal-organic frameworks unraveled by high-resolution electron microscopy. Commun Chem. 2020;3:99.
  • Gong X, Gnanasekaran K, Chen Z, et al. Insights into the structure and dynamics of metal-organic frameworks via transmission electron microscopy. J Am Chem Soc. 2020;142:17224.
  • Phan A, Doonan CJ, Uribe-Romo FJ, et al. Synthesis, structure, and carbon dioxide capture properties of zeolite imidazolate frameworks. Acc Chem Res. 2010;43:58.
  • Salunkhe RR, Kaneti YV, Kim J, et al. Nanoarchitectures for metal-organic framework-derived nanoporous carbons toward supercapacitor applications. Acc Chem Res. 2016;49:2796.
  • Eddaoudi M, Sava DF, Eubank JF, et al. Zeolite-like metal-organic frameworks (ZMOFs): design, synthesis, and properties. Chem Soc Rev. 2015;44:228.
  • Lee KJ, Lee JH, Jeoung S, et al. Transformation of metal-organic frameworks/coordination polymers into functional nanostructured materials: experimental approaches based on mechanistic insights. Acc Chem Res. 2017;50:2684.
  • Huang Z, Willhammar T, Zou X. Three-dimensional electron diffraction for porous crystalline materials: structural determination and beyond. Chem Sci. 2021;12:1206.
  • Zhu L, Zhang D, Xue N, et al. Direct observations of the MOF (UiO-66) structure by transmission electron microscopy. CrystEngComm. 2013;15:9356.
  • Kolb U, Gorelik T, Kübel C, et al. Towards automated diffraction tomography: part I-Data acquisition. Ultramicroscopy. 2007;107:507.
  • Mugnaioli E, Kolb GU. Ab initio” structure solution from electron diffraction data obtained by a combination of automated diffraction tomography and precession technique. Ultramicroscopy. 2009;109:758.
  • Huang Z, Ge M, Carraro F, et al. Can 3D electron diffraction provide accurate atomic structures of metal-organic frameworks? Faraday Discuss. 2021;225:118.
  • Wan W, Sun J, Su J, et al. Three-dimensional rotation electron diffraction: software RED for automated data collection and data processing. J Appl Cryst. 2013;46:1863.
  • Gemmi M, Mugnaioli E, Gorelik TE, et al. 3D electron diffraction: the nanocrystallography revolution. ACS Cent Sci. 2019;5:1315.
  • Nannenga BL, Shi D, Leslie AGW, et al. High-resolution structure determination by continuous-rotation data collection in MicroED. Nat Methods. 2014;11:927.
  • Nederlof I, van Genderen E, Li Y, et al. A Medipix quantum area detector allows rotation electron diffraction data collection from submicrometre three-dimensional protein crystals. Acta Cryst Sect D: Biol Cryst. 2013;69:1223.
  • Gemmi M, La Placa MGI, Galanis AS, et al. Fast electron diffraction tomography. J Appl Cryst. 2015;48:718.
  • Wang B, Zou X, Smeets S. Automated serial rotation electron diffraction combined with cluster analysis: an efficient multi-crystal workflow for structure determination. IUCrJ. 2019;6:854.
  • Kolb U, Gorelik T, Otten MT. Towards automated diffraction tomography. Part II–Cell parameter determination. Ultramicroscopy. 2008;108:763.
  • Feyand M, Mugnaioli E, Vermoortele F, et al. Automated diffraction tomography for the structure elucidation of twinned, sub-micrometer crystals of a highly porous catalytically active bismuth metal-organic framework. Angew Chem. 2012;124:10519.
  • Banihashemi F, Bu G, Thaker A, et al. Beam sensitive metal-organic framework structure determination by microcrystal electron diffraction. Ultramicroscopy. 2020;216:113048.
  • Feng D, Wang K, Su J, et al. A highly stable zeotype mesoporous zirconium metal-organic framework with ultralarge pores. Angew Chem Int Ed. 2015;54:149.
  • Denysenko D, Grzywa M, Tonigold M, et al. Elucidating gating effects for hydrogen sorption in MFU-4-type triazolate-based metal-organic frameworks featuring different pore sizes. Chem -Eur J. 2011;17:1837.
  • Smolders S, Willhammar T, Krajnc A, et al. A titanium(IV)-based metal-organic framework featuring defect-rich Ti-O sheets as an oxidative desulfurization catalyst. Angew Chem. 2019;131:9258.
  • Cichocka MO, Liang Z, Feng D, et al. A porphyrinic zirconium metal-organic framework for oxygen reduction reaction: tailoring the spacing between active-sites through chain-based inorganic building units. J Am Chem Soc. 2020;142:15386.
  • Wang B, Rhauderwiek T, Inge AK, et al. A porous cobalt tetraphosphonate metal-organic framework: accurate structure and guest molecule location determined by continuous-rotation electorn diffraction. Chem Eur J. 2018;24:17429.
  • Dou J, Arguilla MQ, Luo Y, et al. Atomically precise single-crystal conducting 2D metal-organic frameworks. Nat Mater. 2021;20:222.
  • Yuan S, Qin J, Xu H, et al. [Ti8Zr2O2(COO)16] cluster: an ideal inorganic building unit for photoactive metal-organic frameworks. ACS Cent Sci. 2018;4:105.
  • Roy S, Huang Z, Bhunia A, et al. Electrocatalytic hydrogen evolution from a cobaloxime-based metal-organic framework thin film. J Am Chem Soc. 2019;141:15942.
  • Johnstone DN, Firth FCN, Grey CP, et al. Direct imaging of correlated defect nanodomains in a metal-organic framework. J Am Chem Soc. 2020;142:13081.
  • Zacher D, Schömid R, Wll C, et al. Surface chemistry of metal-organic frameworks at the liquid-solid interface. Angew Chem Int Ed. 2011;50:176.
  • Moh PY, Cubillas P, Anderson MW, et al. Revelation of the molecular assembly of the nanoporous metal organic framework ZIF-8. J Am Chem Soc. 2011;133:13304.
  • Han X, Liu P, Lin F, et al. Structures and structural evolution of sublayer surfaces of metal-organic frameworks. Angew Chem Int Ed. 2020;59:21419.
  • Lynch DF, Moodie AF, A M. n-Beam lattice images. V. The use of the charge-density approximation in the interpretation of lattice images. Acta Crystallogr Sect A. 1975;31:300.
  • Deepak FL, Casillas G. Recent highlights in advanced transmission electron microscopy techniques: applications to nanomaterials. Nanoscience. 2017;4:29.
  • Zhang D, Zhu Y, Liu L, et al. Atomic-resolution transmission electron microscopy of electron beam-sensitive crystalline materials. Science. 2018;359:675.
  • Liu L, Chen Z, Wang J, et al. Imaging defects and their evolution in a metal-organic framework at sub-unit-cell resolution. Nat Chem. 2019;11:622.
  • Scherzer O. The theoretical resolution limit of the electron microscope. J Appl Phys. 1949;20:20.
  • Li C, Zhang Q, Nayoral A. Ten years of aberration corrected electron microscopy for ordered nanoporous materials. ChemcatChem. 2020;12:1248.
  • Cowley JM. Image contrast in a transmission scanning electron microscope. Appl Phys Lett. 1969;15:58.
  • Pennycook SJ. Z-contrast STEM for materials science. Ultramicroscopy. 1989;30:58.
  • Hillyard S, Silcox J. Detector geometry, thermal diffuse scattering and strain effects in ADF-STEM imaging. Ultramicroscopy. 1995;58:6.
  • Tong Y, Zhang Q, Gu L. Scanning transmission electron microscopy: a review of high angle annular dark field and annular bright field imaging and applications in lithium-ion batteries. Chin Phys B. 2018;27(6):006107.
  • Okunishim E, Ishikawa I, Sawada H, et al. Visualization of light elements at ultrahigh resolution by STEM annular bright field microscopy. Microsc Microanal. 2009;15:164.
  • Liu L, Wang N, Zhu C, et al. Direct imaging of atomically dispersed molybdenum that enables location of aluminum in framework of zeolite ZSM-5. Angew Chem Int Ed. 2020;59:819.
  • Shen B, Chen X, Wang H, et al. A single-molecule van der waals compass. Nature. 2021;592:541.
  • Yang H, Pennycook TJ, Nellist PD. Efficient phase contrast imaging in STEM using a pixelated detector. Part II: optimisation of imaging conditions. Ultramicroscopy. 2015;151:232.
  • Shen B, Chen X, Shen K, et al. Imaging the node-linker coordination in the bulk and local structures of metal-organic frameworks. Nat Commun. 2020;11:2692.
  • Pennycook TJ, Lupini AR, Yang H, et al. Efficient phase contrast imaging in STEM using a pixelated detector. Part I: experimental demonstration at atomic resolution. Ultramicroscopy. 2015;151:160.
  • Zhu Y, Ciston J, Zhang B, et al. Unravelling surface and interfacial structures of a metal-organic framework by transmission electron microscopy. Nat Mater. 2017;16:532.
  • Cravillon J, Mnzer S, Lohmeier S-J, et al. Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chem Mater. 2009;21:1410.
  • Hmadeh M, Lu Z, Liu Z, et al. New porous crystals of extended metal-catacholates. Chem Mater. 2012;24:3511.
  • Mayoral A, Ma Y, Terasaki O. Some efforts toward understanding structural features of MOF/COF. Isr J Chem. 2018;58:1157.
  • Shen K, Zhang L, Chen X, et al. Ordered macro-microporous metal-organic framework single crystals. Science. 2018;359:206.
  • Deng H, Grunder S, Cordova KE, et al. Large-pore apertures in a series of metal-organic frameworks. Science. 2012;336:1018.
  • Lebedev OI, Millange F, Serre C, et al. First direct imaging of giant pores of the metal-organic framework MIL-101. Chem Mater. 2005;17:6525.
  • Gong X, Noh H, Gianneschi NC, et al. Interrogating kinetic versus thermodynamic topologies of metal-organic frameworks via combined transmission electron microscopy and X-ray diffraction analysis. J Am Chem Soc. 2019;141:6146.
  • Feng D, Liu T, Su J, et al. Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation. Nat Commun. 2015;6:5979.
  • Yang F, Mu H, Wang C, et al. Morphological map of ZIF-8 crystals with five distinctive shapes: features of filler in mixed-matrix membranes with C3H6/C3H8 separation. Chem Mater. 2018;30:3467.
  • Wiktor C, Turner S, Zacher D, et al. Imaging of intact MOF-5 nanocrystals by advanced TEM at liquid nitrogen temperature. Microporous Mesoporous Mater. 2012;162:131.
  • Ghosh S, Kumar P, Conrad S, et al. Electron-beam-damage in metal organic frameworks in the TEM. Microsc Microanal. 2019;25:1704.
  • Mayoral A, Sanchez-Sanchez M, Alfayate A, et al. Atomic observations of microporous materials highly unstable under the electron beam: the cases of Ti-Doped AlPO4-5 and Zn-MOF-74. ChemCatChem. 2015;7:3719.
  • Bentz KC, Gnanasekaran K, Bailey JB, et al. Inside polyMOFs: layered structures in polymer-based metal-organic frameworks. Chem Sci. 2020;11:10523.
  • Li X, Wang J, Liu X, et al. Direct imaging of tunable crystal surface structures of MOF MIL-101 using high-resolution electron microscopy. J Am Chem Soc. 2019;141:12021.
  • Wu H, Almalki M, Xu X, et al. MXene derived metal-organic framworks. J Am Chem Soc. 2019;141:20037.
  • Zhou Y, Xu X, Carlsson A, et al. Local structure evolvement in MOF single crystals unveiled by scanning transmission electron microscopy. Chem Mater. 2020;32:4966.
  • Mayoral A, Hall RM, Jackowska R, et al. Imaging the atomic position of light cations in a porous network and the europium (III) ion exchange capability by aberration-corrected electron microscopy. Angew Chem Int Ed. 2016;55:16127.
  • Mayoral A, Mahugo R, Sanchez-Sanchez M, et al. Cs-corrected STEM imaging of both pure and Ag-supported metal-organic framework MIL-100 (Fe). Chem Cat Chem. 2017;22:3497.
  • Mahugo R, Mayoral A, Snchez-Snchez M, et al. Observation of Ag nanoparticles in/on Ag@MIL-100(Fe) prepared through different procedures. Front Chem. 2019;7:686.
  • Meledina M, Turner S, Filippousi M, et al. Direct imaging of ALD deposited Pt nanoclusters inside the giant pores of MIL-101. Part Part Syst Charact. 2016;33:382.
  • Turner S, Lebedev OI, Schröder F, et al. Direct imaging of loaded metal-organic framework materials (metal@MOF-5). Chem Mater. 2008;20:5622.
  • Hermannsdörfer J, Kempe R. Selective palladium-loaded MIL-101 catalysts. Chem Eur J. 2011;17:8071.
  • Leus K, Dendooven J, Tahir N, et al. Atomic layer deposition of Pt nanoparticles within the cages of MIL-101: a mild and recyclable hydrogenation catalyst. Nanomaterials. 2016;6:45.
  • Esken D, Turner S, Wiktor C, et al. GaN@ZIF-8: selective formation of gallium nitride quantum dots inside a zinc methylimidazolate framework. J Am Chem Soc. 2011;133:16370.
  • Khaletskaya K, Turner S, Tu M, et al. Self-directed localization of ZIF-8 thin film formation by conversion of ZnO nanolayers. Adv Funct Mater. 2014;24:4804.
  • Denny MS Jr., Parent LR, Patterson JP, et al. Transmission electron microscopy reveals deposition of metal oxide coatings onto metal-organic frameworks. J Am Chem Soc. 2018;140:1348.
  • Rösler C, Esken D, Wiktor C, et al. Encapsulation of bimetallic nanoparticles into a metal-organic framework: preparation and microstructure characterization of Pd/Au@ZIF-8. Eur J Inorg Chem. 2014;2014:5514.
  • Rösler C, Aijaz A, Turner S, et al. Hollow Zn/Co zeolitic imidazolate framework (ZIF) and yolk-shell metal@Zn/Co ZIF nanostructures. Chem -Eur J. 2016;22:3304.
  • Schröder F, Esken D, Cokoja M, et al. Ruthenium nanoparticles inside porous [Zn4O(bdc)3] by hydrogenolysis of adsorbed [Ru(cod)(cot)]: a solid state reference system for surfactant stabilized ruthenium colloids. J Am Chem Soc. 2008;130:6119.
  • Müller M, Turner S, Lebedev OI, et al. Au@MOF-5 and Au/MOx@MOF-5 (M = Zn, Ti; x = 1, 2): preparation and microstructural characterization. Eur J Inorg Chem. 2011;2011:1876.
  • Aulakh D, Liu L, Varghese JR, et al. Direct imaging of isolated single-molecule magnets in metal-organic frameworks. J Am Chem Soc. 2019;141:2997.
  • Li Y, Wang K, Zhou W, et al. Cryo-EM structures of atomic surfaces and host-guest chemistry in metal-organic frameworks. Matter. 2019;1:428.
  • Serre C, Millange F, Thouvenot C, et al. Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or CrIII(OH)·{O2C-C6H4-CO2}·{HO2C-C6H4-CO2H}x·H2Oy. J Am Chem Soc. 2002;124:13519.
  • Férey G, Serre C. Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. Chem Soc Rev. 2009;38:1380.
  • Venna SR, Jasinski JB, Carreon MA. Structural evolution of zeolitic imidazolate framework-8. J Am Chem Soc. 2020;132:18030.
  • Terban MW, Banerjee D, Ghose S, et al. Early stage structural development of prototypical zeolitic imidazolate framework (ZIF) in solution. Nanoscale. 2018;10:4291.
  • Wu Y, Henke S, Kieslich G, et al. Time-resolved in situ X-ray diffraction reveals metal-dependent metal-organic framework formation. Angew Chem Int Ed. 2016;55:14081.
  • Vleet MHV, Weng T, Li X, et al. In situ, time-resolved, and mechanistic studies of metal-organic framework nucleation and growth. Chem Rev. 2018;118:3681.
  • Saha S, Springer S, Schweinefuß ME, et al. Insight into fast nucleation and growth of zeolitic imidazolate framework-71 by in situ time-resolved light and X-ray scattering experiments. Cryst Growth Des. 2016;16:2002.
  • Wu Y, Moorhouse SJ, O’Hare D. Time-resolved in situ diffraction reveals a solid-state rearrangement during solvothermal MOF synthesis. Chem Mater. 2015;27:7236.
  • Cubillas P, Anderson MW, Attfield MP. Influence of isomorphous substituting cobalt ions on the crystal growth of the MOF-5 framework determined by atomic force microscopy of growing core-shell crystals. Cryst Growth Des. 2013;13:4526.
  • Friščić T, Halasz I, Beldon PJ, et al. Real-time and in situ monitoring of mechanochemical milling reactions. Nat Chem. 2013;5:66.
  • Katsenis AD, Puškarić A, Štrukil V, et al. In-situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal-organic framework. Nat Commun. 2015;6:6662.
  • Summerfield A, Cebula I, Schröder M, et al. Nucleation and early stages of layer-by-layer growth of metal organic frameworks on surfaces. J Phys Chem C. 2015;119:23544.
  • Millange F, Serre C, Guillou N, et al. Structural effects of solvents on the breathing of metal-organic frameworks: an in situ diffraction study. Angew Chem. 2008;120:4168.
  • Wu J, Shan H, Chen W, et al. In-situ environmental TEM in imaging gas and liquid phase chemical reactions for materials research. Adv Mater. 2016;28:9686.
  • Xu T, Sun L. Investigation on material behaviour in liquid by in situ TEM. Superlattices Microstruct. 2016;99:24.
  • Liao H, Zheng H. Liquid cell transmission electron microscopy. Annu Rev Phys Chem. 2016;67:719.
  • Parent LR, Bakalis E, Proetto M, et al. Tackling the challenges of dynamic experiments using liquid-cell transmission electron microscopy. Acc Chem Res. 2018;51:3.
  • Pu S, Gong C, Robertson AW. Liquid cell transmission electron microscopy and its application. R Soc Open Sci. 2020;7:191204.
  • Patterson JP, Abellan P, Denny MS, et al. Observing the growth of metal-organic frameworks by in situ liquid cell transmission electron microscopy. J Am Chem Soc. 2015;137:7322.
  • Vailonis KM, Gnanasekaran K, Powers XB, et al. Elucidating the growth of metal-organic nanotubes combining isoreticular synthesis with liquid-cell transmission electron microscopy. J Am Chem Soc. 2019;141:10177.
  • Lyu J, Gong X, Lee S-J, et al. Phase transitions in metal-organic frameworks directly monitored through in situ variable temperature liquid-cell transmission electron microscopy and in situ X-ray diffraction. J Am Chem Soc. 2020;142:4609.
  • Gnanasekaran K, Vailonis KM, Jenkins DM, et al. In situ monitoring of the seeding and growth of silver metal-organic nanotubes by liquid cell transmission electron microscopy. ACS Nano. 2020;14:8735.
  • Xing J, Schweighauser L, Okada S, et al. Atomistic structures and dynamics of prenucleation clusters in MOF-2 and MOF-5 syntheses. Nat Commun. 2019;10:3608.
  • Parent LR, Pham CH, Patterson JP, et al. Pore breathing of metal-organic frameworks by environmental transmission electron microscopy. J Am Chem Soc. 2017;139:13973.
  • Wang W, Yan H, Anand U, et al. Visualizing the conversion of metal-organic framework nanoparticles into hollow layered double hydroxide nanocages. J Am Chem Soc. 2021;143:1854.
  • Xu D, Zhang D, Zou H, et al. Guidance from an in situ hot stage in TEM to synthesize magnetic metal nanoparticles from a MOF. Chem Commun. 2016;52:10513.
  • Xu D, Pan Y, Chen M, et al. Synthesis and application of a MOF-derived Ni@C catalyst by the guidance from an in situ hot stage in TEM. RSC Adv. 2017;7:26377.
  • Hussain MZ, Bahri M, Heinz WR, et al. An in situ investigation of the thermal decomposition of metal-organic framework NH2-MIL-125 (Ti). Microporous Mesoporous Mater. 2021;316:110957.
  • Wang Z, Ke X, Zhou K, et al. Engineering the structure of ZIF-derived catalysts by revealing the critical role of temperature for enhanced oxygen reduction reaction. J Mater Chem A. 2021;9:18515.
  • Dai S, Gao W, Zhang S, et al. Transmission electron microscopy with atomic resolution under atmospheric pressures. MRS Commun. 2017;7:798.