5,569
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Properties and applications of quantum dots derived from two-dimensional materials

ORCID Icon & ORCID Icon
Article: 2048966 | Received 28 Nov 2021, Accepted 27 Feb 2022, Published online: 17 Apr 2022

References

  • Lee C, Xiaoding W, Kysar JW, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321:385.
  • Akinwande D, Brennan CJ, Bunch JS, et al. A review on mechanics and mechanical properties of 2D materials—graphene and beyond. Extreme Mech Lett. 2017;13:42.
  • Androulidakis C, Zhang K, Robertson M, et al. Tailoring the mechanical properties of 2D materials and heterostru`ctures. 2D Mater. 2018;5:032005.
  • Balandin AA, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008;8:902.
  • Zheng J-C, Tsuruda K, Lightfoot CB, et al. High thermal conductivity of hexagonal boron nitride laminates. 2D Mater J Med Imaging (Bellingham, Wash). 2016;3:011004.
  • Mortazavi B, Javvaji B, Shojaei F, et al. Exceptional piezoelectricity, high thermal conductivity and stiffness and promising photocatalysis in two-dimensional MoSi2N4 family confirmed by first-principles. Nano Energy. 2021;82:105716.
  • Cao M, Xiong D-B, Yang L, et al. Ultrahigh Electrical conductivity of graphene embedded in metals. Adv Funct Mater. 2019;29:180679.
  • Jiao Y, Hafez AM, Cao D, et al. Metallic MoS2 for high performance energy storage and energy conversion. Small. 2018;14:1800640.
  • Guo Z, Gao L, Xu Z, et al. High electrical conductivity 2D MXene serves as additive of perovskite for efficient solar cells. Small. 2018;14:1802738.
  • Mayorov AS, Gorbachev RV, Morozov SV, et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 2011;11:2396.
  • Mir SH, Yadav VK, Singh JK. Recent advances in the carrier mobility of two-dimensional materials: a theoretical perspective. ACS Omega. 2020;5:14203.
  • Wang QH, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol. 2012;7:699.
  • Weng Q, Li G, Feng X, et al. Electronic and optical properties of 2D materials constructed from light atoms. Adv Mater. 2018;30:1801600.
  • Stoller MD, Park S, Zhu Y, et al. Graphene-based ultracapacitors. Nano Lett. 2008;8:3498.
  • Yang W, Gan L, Li H, et al. Two-dimensional layered nanomaterials for gas-sensing applications. Inorg Chem Front. 2016;3:433.
  • Zhang H. Ultrathin Two-DimensionalNanomaterials. ACS nano. 2015;9:9451.
  • “MatWeb – the online materials information resource”. Archived from the original on 15 December 2013. Retrieved 20 February 2015.
  • Falin A, Cai Q, Santos EJG, et al. Mechanical properties of atomically thin boron nitride and the role of interlayer interactions. Nat Commun. 2017;8.
  • Bertolazzi S, Brivio J, Kis A. Stretching and breaking of ultrathin MoS2. ACS Nano. 2011;5:9703.
  • Lemme MC, Wagner S, Lee K, et al. Nanoelectromechanical sensors based on suspended 2D materials. AAAS Res.Volume 2020; Article ID 8748602; . DOI:10.34133/2020/8748602
  • Yuan C, Li J, et al. Modulating the thermal conductivity in hexagonal boron nitride via controlled boron isotope concentration. Commun Phys. 2019;2:1.
  • Lin Z, Liu C, Chai Y. High thermally conductive and electrically insulating 2D boron nitride nanosheet for efficient heat dissipation of high-power transistors. 2D Mater. 2016;3:041009.
  • Song H, Liu J, Liu B, et al. Two-dimensional materials for thermal management applications. Joule. 2018;2:442.
  • Qiao J, Kong X, Hu Z-X, et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat Commun. 2014;5:4475.
  • Tan C, Cao X, Wu X-J, et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev. 2017;117:6225.
  • Xia FN, Wang H, Xiao D, et al. Two-dimensional material nanophotonics. Nat Photonics. 2014;8:899.
  • Novoselov KS, Mishchenko A, Carvalho A, et al. 2D materials and van der Waals heterostructures. Science. 2016;353:aac9439.
  • Ma Q, Ren G, Xu K, et al. Tunable optical properties of 2D materials and their applications. Adv Opt Mater. 2021;9:2001313.
  • Liao Y, Song C, Xiang Y, et al. Recent advances in spatial self-phase modulation with 2D materials and its applications. Ann Phys (Berlin). 2020;532:2000322.
  • Yao Y, Cheng Z, Dong J, et al. Performance of integrated optical switches based on 2D materials and beyond. Front Optoelectron. 2020;13:129.
  • Shen Y, Harris NC, Skirlo S, et al. Deep learning with coherent nanophotonic circuits. Nat Photonics. 2017;11:441.
  • Qiuab Z, Tang D. Nanostructure-based photoelectrochemical sensing platforms for biomedical applications. J Mater Chem B. 2020;8:2541.
  • Wang J, Liu Z. Recent advances in two-dimensional layered materials for photoelectrochemical sensing. Trends Analyt Chem. 2020;133:1160892.
  • Ramalingam G, Kathirgamanathan P, Manivannan N, et al. Quantum confinement effect of 2D nanomaterials. In: Quantum dots-fundamental and applications. London UK:IntechOpen; 2020
  • Ponomarenko LA, Schedin F, Katsnelson MI, et al. Chaotic dirac billiard in graphene quantum dots. Science. 2008;356. DOI:10.1126/science.1154663.
  • Peng J, Gao W, Gupta BK, et al. Graphene quantum dots derived from carbon fibers. Nano Lett. 2012;12:844.
  • Abdelsalam H, Talaat MH, Lukyanchuk I, et al. Electro-absorption of silicene and bilayer graphene quantum dots. J Appl Phys. 2016;120:014304.
  • Kabel J, Sharma S, Acharya A, et al. Molybdenum disulfide quantum dots: properties, synthesis, and applications. C. 2021;7:45.
  • Prasannachandran R, Vineesh TV, Anil A, et al. Functionalized phosphorene quantum dots as efficient electrocatalyst for oxygen evolution reaction. ACS Nano. 2018;12:11511.
  • Abdelsalam H, Saroka VA, Younis WO. Phosphorene quantum dot electronic properties and gas sensing. Phys E Low Dimens Syst Nanostruct. 2019;107:105.
  • Jin SH, Kim DH, Jun GH, et al. Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups. ACS Nano. 2013;7:1239.
  • Yin W, Bai X, Zhang X, et al. Multicolor light-emitting diodes with MoS2 quantum dots. Part Syst Char. 2019;36:1800362.
  • Nguyen V, Yan L, Zhao N, et al. Tuning photoluminescence of boron nitride quantum dots via surface functionalization by femtosecond laser ablation. J Mol Struct. 2021;1244:130922.
  • Gobi N, Vijayakumar D, Keles O, et al. Infusion of graphene quantum dots to create stronger, tougher, and brighter polymer composites. ACS Omega. 2017;2:4356.
  • Huang D, Zhang B, Tang H, et al. Colloids Surf. A Physicochem Eng Asp. 2018;538.
  • Tao W, Ji X, Xu X, et al. Antimonene Quantum dots: synthesis and application as near infrared photothermal agents for effective cancer therapy. Angew Chem. 2017;129.
  • Xu Y, Wang X, Zhang WL, et al. Recent progress in two-dimensional inorganic quantum dots. Chem Soc Rev. 2018;47:586. DOI:10.1039/c7cs00500h
  • Ouyang J, Feng C, Ji X, et al. 2D monoelemental Germanene quantum dots: synthesis as robust photothermal agents for photonic cancer nanomedicine. Angew Chem. 2019;131:13539.
  • Das S, Ngashangva L, Goswami P. Carbon dots: an emerging smart material for analytical applications. Micromachines. 2021;12:84.
  • Yang H, Zhao Q, Wang X, et al. Facile and highly selective sensing of hypochlorous acid in aqueous solution and living cells by using as-prepared WSe2 quantum dots. Sens Actuators B Chem. 2021;337:129782.
  • Zhu H, Liu A, Xu Y, et al. Graphene quantum dots directly generated from graphite via magnetron sputtering and the application in thin-film transistors. Carbon. 2015;88:225.
  • Mouafo LDN, Godel F, Simon L, et al. 0D/2D heterostructures vertical single electron transistor. Adv Funct Mater. 2021;31:2008255. DOI:10.1002/adfm.202008255.
  • Kufer D, Nikitskiy I, Lasanta T, et al. Hybrid 2D–0D MoS2–PbS quantum dot photodetectors. Adv Mater. 2015;27:176.
  • Mahalingam S, Manap A, Omar A, et al. Functionalized graphene quantum dots for dye-sensitized solar cell: key challenges, recent developments and future prospects, renew. Sustain Energy Rev. 2021;144:110999.
  • Li BL, Setyawati MI, Zou HL, et al. Emerging 0D transition-metal dichalcogenides for sensors. Biomed Clean Energy Small. 2017;13:1700527.
  • Yolaa ML, Atar N. A novel detection approach for serotonin by graphene quantum dots/two-dimensional (2D) hexagonal boron nitride nanosheets with molecularly imprinted polymer. Appl Surf Sci. 2018;458:648.
  • Wang H, Feng H, Li J. Graphene and graphene‐like layered transition metal dichalcogenides in energy conversion and storage. Small. 2014;10:2165.
  • Wang X, Sun G, Li N, et al. Quantum dots derived from two-materials and their applications for catalysis and energy. Chem Soc Rev. 2016;45:2239.
  • Trauzettel B, Bulaev DV, Loss D, et al. Spin qubits in graphene quantum dots. Nat Phys. 2007;3:192.
  • Tong C, Garreis R, Knothe A, et al. Tunable valley splitting and bipolar operation in graphene quantum dots. Nano Lett. 2021;21:1068–46.
  • Hu W, Huang Y, Qin X, et al. Room-temperature magnetism and tunable energy gaps in edge-passivated zigzag graphene quantum dots. npj 2D Mater Appl. 2019;3:17.
  • Abdelsalam H, Yunokic S, Zhang Q. Boosted spintronic properties in triangular Si-based nanoflakes. Phys E. 2021;130:114699.
  • Kevin PM, Ibrahim KH, Yavuz M. Research update: beyond graphene—synthesis of functionalized quantum dots of 2D materials and their applications. APL Mater. 2018;6:120701.
  • Shaari N, Kamarudin SK, Bahru R. Carbon and graphene quantum dots in fuel cell application: an overview. Int J Energy Res. 2021;45:1396–1424.
  • Chen X, Liu Q, Wu Q, et al. Incorporating graphitic carbon nitride (g-C3N4) quantum dots into bulk-heterojunction polymer solar cells leads to efficiency enhancement. Adv Funct Mater. 2016;26:1719.
  • Zheng XT, Ananthanarayanan A, Luo KQ, et al. Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small. 2015;11:1620.
  • Park SJ, Pak SW, Qiu D, et al. Structural and optical characterization of MoS2 quantum dots defined by thermal annealing. J Lumin. 2017;183:62.
  • Yu XH, Cai X, Cui H, et al. Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy. Nanoscale. 2017;9:17859–17864.
  • Qiao W, Yan S, Song X, et al. Luminescent monolayer MoS2 quantum dots produced by multi-exfoliation based on lithium intercalation. Appl Surf Sci. 2015;359:130.
  • Mao H, Gu C, Yan S, et al. MXene quantum dot/polymer hybrid structures with tunable electrical conductance and resistive switching for nonvolatile memory devices. Adv Electron Mater. 2020;6:1900493.
  • Neupane GP, Wang B, Tebyetekerwa M, et al. Highly enhanced light–matter interaction in mxene quantum dots–monolayer WS2 heterostructure. Small. 2021;17:2006309.
  • Qin Y, Wang Z, Liu N, et al. High-yield fabrication of Ti3 C2Tx MXene quantum dots and their electrochemiluminescence behavior. Nanoscale. 2018;10:14000–14004.
  • Alijani H, Rezk AR, Khosravi Farsani MM, et al. Acoustomicrofluidic synthesis of pristine ultrathin Ti3C2Tz MXene nanosheets and quantum dots. ACS Nano. 2021;15:12099.
  • Liu R, Wu D, Feng X, et al. Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology. J Am Chem Soc. 2011;133:15221.
  • Ahmad P, Khandaker MU, Muhammad N, et al. Fabrication of hexagonal boron nitride quantum dots via a facile bottom-up technique. Ceram Int. 2019;45:22765.
  • Ren X, Pang L, Zhang Y, et al. One-step hydrothermal synthesis of monolayer MoS2 quantum dots for highly efficient electrocatalytic hydrogen evolution. J Mater Chem A. 2015;3:10693–10697.
  • Vikraman D, Akbar K, Hussain S, et al. Direct synthesis of thickness-tunable MoS2 quantum dot thin layers: optical, structural and electrical properties and their application to hydrogen evolution. Nano Energy. 2017;35:101.
  • Kaur M, Kaura M, Sharma VK. Nitrogen-doped graphene and graphene quantum dots: a review on synthesis and applications in energy, sensors and environment. Adv Colloid Interface Sci. 2018;259:44.
  • Chen Y, Xu X, Li C, et al. Bottom-up synthesis of hexagonal boron nitride nanoparticles with intensity-stabilized quantum emitters. Small. 2021;17:2008062.
  • Veeramalai CP, Li F, Guoa T, et al. Highly flexible memristive devices based on MoS2 quantum dots sandwiched between PMSSQ layers. Dalton Trans. 2019;48:2422.
  • Wang L, Weitao L, Wu B, et al. Room-temperature synthesis of graphene quantum dots via electron-beam irradiation and their application in cell imaging. Chem Eng J. 2017;309:374.
  • Shao B, Liu Z, Zeng G, et al. Two-dimensional transition metal carbide and nitride (MXene) derived quantum dots (QDs): synthesis, properties, applications and prospects. J Mater Chem A. 2020;8:7508.
  • Sharbirin AS, Akhtar S, Kim JY. Light-emitting MXene quantum dots. Opto-Electron Adv. 2021;4:200077.
  • Cheng H, Ding L-X, Chen G-F, et al. Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions. Adv Mater. 2018;30:e1803694.
  • Miro P, Audiffred M, Heine T. An atlas of two-dimensional materials. Chem Soc Rev. 2014;43:6537.
  • Bhimanapati GR, Lin Z, Meunier V, et al. Recent advances in two-dimensional materials beyond graphene. ACS Nano. 2015;9:11509.
  • Tan C, Cao X, Wu X-J, et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev. 2017;117:6225.
  • Xu Q, Cai W, Li W, et al. Two-dimensional quantum dots: fundamentals, photoluminescence mechanism and their energy and environmental applications. Mater Today Energy. 2018;10:222.
  • Zhai W, Xiong T, He Z, et al. Nanodots Derived from layered materials: synthesis and applications. Adv Mater. 2021;33:2006661.
  • Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306:666.
  • Kang J, Wei ZG, Li J. Graphyne and Its family: recent theoretical advances. ACS Appl Mater Interfaces. 2019;11:3.
  • Xie Z, Meng X, Li X, et al. Two-dimensional borophene: properties, fabrication, and promising applications. Research. 2020;2020:1. DOI:10.34133/2020/2624617
  • Vogt P, De Padova P, Quaresima C, et al. Compelling experimental evidence for graphene like two-dimensional silicon. Phys Rev Lett. 2012;108:155501.
  • Zhu -F-F, Chen W-J, Xu Y, et al. Epitaxial growth of two-dimensional stanene. Nat Mater. 2015;14:1020.
  • Liu H, Neal AT, Zhu Z, et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano. 2014;8:4033.
  • Ji J, Song X, Liu J, et al. Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nat Commun. 2016;7:13352.
  • Zhang K, Feng Y, Wang F, et al. Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications. J Mater Chem C. 2017;5:11992.
  • Zhou W, Zhang S, Cao J, et al. Modulating tunneling width and energy window for high-on-current two-dimensional tunnel field-effect transistors. Nano Energy. 2021;81:105642.
  • Wang Y, Liu L, Ma T, et al. 2D graphitic carbon nitride for energy conversion and storage. Adv Funct Mater. 2021;31:2102540.
  • Chen P, Zhang X-J, Liu B-G. Mechanically-controllable strong 2d ferroelectricity and optical properties of semiconducting BiN monolayer. ACS Appl Nano Mater. 2019;2:58.
  • Manzeli S, Ovchinnikov D, Pasquier D, et al. 2D transition metal dichalcogenides. Nat Rev Mater. 2017;2:17033.
  • Kumbhakar P, Gowda CC, Mahapatra PL, et al. Emerging 2D metal oxides and their applications. Mater Today. 2021;45.
  • Andriotis AN, Richter E, Menon M. Prediction of a new graphene like Si2BN solid. Phys Rev B. 2016;93:081413.
  • Anasori BK, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater. 2017;2:16098.
  • Deng Z, Chen D, Peng B, et al. From bulk metal Bi to two-dimensional well-crystallized BiOX (X = Cl, Br) micro- and nanostructures: synthesis and characterization. Cryst Growth Des. 2008;8:2995.
  • Song J, Xu L, Li J, et al. Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices. Adv Mater. 2016;28:4861.
  • Chen S, Shi G. Two-dimensional materials for halide perovskite-based optoelectronic devices. Adv Mater. 2017;29:1605448.
  • Mounet N, Gibertini M, Schwaller P, et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat Nanotechnol. 2018;13:246.
  • Mounet N, Gibertini M, Schwaller P, et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds (data download). Mater Cloud Arch. 2017; DOI:10.24435/materialscloud:2017.0008/v1.
  • Chung S, Revia RA, Zhang M. Graphene quantum dots and their applications in bioimaging, biosensing, and therapy. Adv Mater. 2021;33:1904362.
  • Li H, Wang Y, Dai X, et al. Tailoring the lateral size of two-dimensional silicon nanomaterials to produce highly stable and efficient deep-blue emissive silicene-like quantum dots. J Mater Chem C. 2021;9:10065.
  • Prasannachandran R, Vineesh TV, Anil A, et al. Functionalized phosphorene quantum dots as efficient electrocatalyst for oxygen evolution reaction. ACS Nano. 2018;12:11511.
  • Tao W, Ji X, Xu X, et al. antimonene quantum dots: synthesis and application as near-infrared photothermal agents for effective cancer therapy. Angew Chem. 2017;129:12058.
  • Devia M, Das P, Boruah PK, et al. Fluorescent graphitic carbon nitride and graphene oxide quantum dots as efficient nanozymes: colorimetric detection of fluoride ion in water by graphitic carbon nitride quantum dots. J Environ Chem Eng. 2021;9:104803.
  • Lin L, Xu Y, Zhang S, et al. Fabrication and luminescence of monolayered boron nitride quantum dots. small. 2014;10:60.
  • Zhang J, Ling C, Zang W, et al. Boosted electrochemical ammonia synthesis by high-percentage metallic transition metal dichalcogenide quantum dots. Nanoscale. 2020;12:10964.
  • Xue Q, Zhang H, Zhu M, et al. Photoluminescent Ti3C2 MXene Quantum dots for multicolor cellular imaging. Adv Mater. 2017;29:1604847.
  • Chang Y-H, Lin J-C, Chen Y-C, et al. Facile synthesis of two-dimensional ruddlesden–popper perovskite quantum dots with fine-tunable optical properties. Nanoscale Res Lett. 2018;13:247.
  • Wang LJ, Cao G, Tu T, et al. A graphene quantum dot with a single electron transistor as an integrated charge sensor. Appl Phys Lett. 2010;97:262113.
  • Harrison P. Quantum wells, wires and dots. Wiley; 2005.
  • Tian P, Tang L, Teng KS, et al. Graphene quantum dots from chemistry to applications. Mater Today Chem. 2018;10:221.
  • Eda G, Lin -Y-Y, Mattevi C, et al. Blue photoluminescence from chemically derived graphene oxide. Adv Mater. 2010;22:505.
  • Ye R, Peng Z, Metzger A, et al. Bandgap engineering of coal-derived graphene quantum dots. ACS Appl Mater Interfaces. 2015;7:7041.
  • Yan Y, Gong J, Chen J, et al. Recent advances on graphene quantum dots: from chemistry and physics to applications. Adv Mater. 2019;31:1808283.
  • Li H, Tay RY, Tsang SH, et al. Controllable synthesis of highly luminescent boron nitride quantum dots. small. 2015;11:6491.
  • Tayyebi A, Ogino N, Hayashi T, et al. Size-controlled MoS2 nanosheet through ball milling exfoliation: parameter optimization, structural characterization and electrocatalytic application. Nanotechnology. 2020;31:075704.
  • Osman W, Abdelsalam H, Ali M, et al. Electronic and magnetic properties of graphene quantum dots doped with alkali metals. J Mater Res Technol. 2021;11. DOI:10.1016/j.jmrt.2021.01.119.
  • Abdelsalam H, Elhaes H, Ibrahim MA. Tuning electronic properties in graphene quantum dots by chemical functionalization: Density functional theory calculations. Chem Phys Lett. 2018;695:138.
  • De Alwis WU, Weerawardene KD, Ellington TL, et al. Electronic structure modification of rectangular phosphorene quantum Dots Via edge passivation. J Phys Chem C. 2021;125:5029.
  • Mahvash F, Eissa S, Bordjiba T, et al. Corrosion resistance of monolayer hexagonal boron nitride on copper. Sci Rep. 2017;7:42139.
  • Abdelsalam H, O. Younis W, Saroka VA, et al. Interaction of hydrated metals with chemically modified hexagonal boron nitride quantum dots: wastewater treatment and water splitting. Phys Chem Chem Phys. 2020;22:2566.
  • Hussain T, Singh D, Gupta SK, et al. Efficient and selective sensing of nitrogen-containing gases by Si2BN nanosheets under pristine and pre-oxidized conditions. Appl Surf Sci. 2019;469:775.
  • Abdelsalam H, Ali M, Teleb NH, et al. Two-dimensional Si2BN nanoflakes for efficient removal of heavy metals. Chem Phys Lett. 2021;772:138568.
  • Liu H, Su Y, Sun T, et al. Engineering the energy gap of black phosphorene quantum dots by surface modification for efficient chemiluminescence. Chem Commun. 2020;56:1891.
  • Saroka VA, Lukyanchuk I, Portnoi ME, et al. Electro-optical properties of phosphorene quantum dots. Phys Rev B. 2017;96:085436.
  • Cao X, Ding C, Zhang C, et al. Transition metal dichalcogenide quantum dots: synthesis, photoluminescence and biological applications. J Mater Chem B. 2018;6:8011.
  • Zhou BT, Taguchi K, Kawaguchi Y, et al. Spin-orbit coupling induced valley Hall effects in transition-metal dichalcogenides. Commun Phys. 2019;2:26.
  • Geim AK, Grigorieva IV. Van der Waals heterostructures. Nature. 2013;499:419.
  • Novoselov KS, Mishchenko A, Carvalho A, et al. 2D materials and van der Waals heterostructures. Science. 2016;353. DOI:10.1126/science.aac9439.
  • Li M-Y, Chen C-H, Shi Y, et al. Heterostructures based on two-dimensional layered materials and their potential applications. Mater Today. 2016;19:322.
  • Hu W, Lin L, Yang C, et al. Edge-modified phosphorene nanoflake heterojunctions as highly efficient solar cells. Nano Lett. 2016;6.
  • Shan H, Yu Y, Zhang R, et al. Electron transfer and cascade relaxation dynamics of graphene quantum dots/MoS2 monolayer mixed-dimensional van der Waals heterostructures. Mater Today. 2019;24:10.
  • Qiao H, Li Z, Huang Z, et al. Self-powered photodetectors based on 0D/2D mixed dimensional heterojunction with black phosphorus quantum dots as hole acceptors. Appl Mater Today. 2020;20:100765.
  • Zhou B-X, Ding -S-S, Wang Y, et al. Type-II/type-II band alignment to boost spatial charge separation: a case study of g-C3N4 quantum dots/a-TiO2/r-TiO2 for highly efficient photocatalytic hydrogen and oxygen evolution. Nanoscale. 2020;12:6037.
  • Han W, Kawakami RK, Gmitra M, et al. Graphene spintronics. Nat Nanotechnol. 2014;9:794.
  • Sepioni M, Nair RR, Rablen S, et al. Limits on intrinsic magnetism in graphene. Phys Rev Lett. 2010;105:207205.
  • Liu Y, Tang N, Wan X, et al. Realization of ferromagnetic graphene oxide with high magnetization by doping graphene oxide with nitrogen. Sci Rep. 2013;3:2566.
  • Li L, Qin R, Li H, et al. Functionalized graphene for high-performance two-dimensional spintronics devices. ACS Nano. 2011;5:2601.
  • Hill EW, Geim A, Novoselov K, et al. Graphene spin valve devices. IEEE Trans Magn. 2006;42:2694.
  • Kim WY, Kim KS. Prediction of very large values of magnetoresistance in a graphene nanoribbon device. Nat Nanotechnol. 2008;3:408.
  • Silva PV, Saraiva-Souza A, Maia DW, et al. High efficiency spin-valve and spin-filter in a doped rhombic graphene quantum dot device. J Magn Magn Mater. 2018;451:532.
  • Hod O, Barone V, Scuseria GE. Half-metallic graphene nanodots. Phys Rev B. 2008;77:035411.
  • Ahin H, Senger RT, Ciraci S. Spintronic properties of zigzag-edged triangular graphene flakes. J Appl Phys. 2010;108:074301.
  • Fernandez-Rossier J, Palacios JJ. Magnetism in graphene nanoislands. Phys Rev Lett. 2007;99:177204.
  • Wang WL, Meng S, Kaxiras E. Graphene nanoflakes with large spin. Nano Lett. 2008;8:241.
  • Abdelsalam H, Saroka VA, Ali M, et al. Stability and electronic properties of edge functionalized silicene quantum dots: a first principles study. Phys E Low Dimens Syst Nanostruct. 2019;108:339.
  • Wang J, Deng S, Liu Z, et al. The rare two-dimensional materials with dirac cones. Natl Sci Rev. 2015;2:22.
  • Viana GED, Silva AM, Barros da FUC, et al. Thermal stability and electronic properties of boron nitride nanoflakes. J Mol Model. 2020;26:100.
  • Lieb EH. Two theorems on the Hubbard model. Phys Rev Lett. 1989;62:1201.
  • Pavliček N, Mistry A, Majzik Z, et al. Synthesis and characterization of triangulene. Nat Nanotechnol. 2017;12:308.
  • Li J, Sanz S, Castro-Esteban J, et al. Uncovering the triplet ground state of triangular graphene nanoflakes engineered with atomic precision on a metal surface. Phys Rev Lett. 2020;124:177201.
  • Su J, Telychko M, Song S, et al. Triangulene series: from precursor design towards on-surface synthesis and characterization. Angew Chem. 2020;59:7658.
  • Liu X, Qin X, Li X, et al. Designing two-dimensional versatile room-temperature ferromagnets via assembling large-scale magnetic quantum dots. Nano Lett. 2021;21:9816.
  • Liu SS, Yuan X, Zou Y, et al. Wafer-scale two-dimensional ferromagnetic Fe3GeTe2 thin films were grown by molecular beam epitaxy. npj 2D Mater Appl. 2017;1:1.
  • Huang B, Clark G, Navarro-Moratalla E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature. 2017;546:270.
  • Bonilla M, Kolekar S, Ma Y, et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat Nanotechnol. 2018;13:289.
  • Kim K, Lim SY, Kim J, et al. Antiferromagnetic ordering in van der Waals two-dimensional magnetic material MnPS3 probed by Raman spectroscopy. 2D Mater. 2019;6:041001.
  • Sears JA, Chern LE, Kim S, et al. Ferromagnetic kitaev interaction and the origin of large magnetic anisotropy in α-RuCl3. Nat Phys. 2020;16:837.
  • Burch KS, Mandrus D, Park J-G. Magnetism in two-dimensional van der Waals materials. Nature. 2018;563:47.
  • Gibertini M, Koperski M, Morpurgo AF, et al. Magnetic 2D materials and heterostructures. Nat Nanotechnol. 2019;14:408.
  • Mak KF, Shan J, Ralph DC. Probing and controlling magnetic states in 2D layered magnetic materials. Nat Rev Phys. 2019;1:646.
  • Jiang X, Liu Q, Xing J, et al. Recent progress on 2D magnets: fundamental mechanism, structural design and modification featured, Appl. Phys Rev. 2021;8:031305.
  • Ling-fei C, Danb X, Ming-xing G, et al. Size and shape effects on curie temperature of ferromagnetic nanoparticles. Trans Nonferrous Met Soc China. 2007;17:1451.
  • Lopez-Dominguez VR, Hernàndez JM, Tejada J, et al. Colossal reduction in curie temperature due to finite-size effects in CoFe2O4 nanoparticles. Chem Mater. 2013;25:6.
  • Chen C, Chen X, Wu C, et al. Air-Stable 2D Cr5Te8 nanosheets with thickness-tunable ferromagnetism. Adv.Mater. 2022;34:2107512.
  • Meng L, Zhou Z, Xu M, et al. Anomalous thickness dependence of curie temperature in air-stable two-dimensional ferromagnetic 1T-CrTe2 grown by chemical vapor deposition. Nat Commun. 2021;12. DOI:10.1038/s41467-021-21072-z.
  • Zhang BY, Liu T, Meng B, et al. Broadband high photoresponse from pure monolayer graphene photodetector. Nat Commun. 2013;4:1811.
  • Tang L, Ji R, Li X, et al. Deep ultraviolet to near-infrared emission and photoresponse in layered N-doped graphene quantum dots. ACS Nano. 2014;8:6312.
  • Li R, Zhang L, Shi L, et al. MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano. 2017;11:3752.
  • Yang S, Niu W, Wang A-L, et al. Ultrathin two-dimensional organic–inorganic hybrid perovskite nanosheets with bright, tunable photoluminescence and high stab ty. Angew Chem Int Ed. 2017;56:4252.
  • Cao Y, Dong H, Pu S, et al. Photoluminescent two-dimensional SiC quantum dots for cellular imaging and transport. Nano Res. 2018;11:4074.
  • Zhou Y, Xu Q, Ge T, et al. Accurate control of VS2 nanosheets for coexisting high photoluminescence and photothermal conversion efficiency. Angew Chem Int Ed. 2020;59:3322.
  • Wang L, Wang Y, Xu T, et al. Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties. Nat Commun. 2014;5:5357.
  • Bertel R, Mora-Ramos ME, Correa JD. Electronic properties and optical response of triangular and hexagonal MoS2 quantum dots. A DFT approach. Phys E. 2019;109:201.
  • Ding Y, He P, Li S, et al. Efficient full-color boron nitride quantum dots for thermostable flexible displays. ACS Nano. 2021;15:14610.
  • Chen S, Ullah N, Wang T, et al. Tuning the optical properties of graphene quantum dots by selective oxidation: a theoretical perspective. J Mater Chem C. 2018;6:6875.
  • Ding Y, He P, Li S, et al. Efficient full-color boron nitride quantum dots for thermostable flexible displays. ACS Nano. 2021; DOI:10.1021/acsnano.1c04321.
  • Feng J, Dong H, Pang B, et al. Tuning the electronic and optical properties of graphene quantum dots by selective boronization. J Mater Chem C. 2019;7:237.
  • Abdelsalam H, Saroka VA, Atta MM, et al. Tunable electro-optical properties of doped chiral graphene nanoribbons. Chem Phys. 2021;544:111116.
  • Kim S, Hwang SW, Kim M-K, et al. Anomalous behaviors of visible luminescence from graphene quantum dots: interplay between size and shape. ACS Nano. 2012;6:8203.
  • Liu Z, Li F, Luo Y, et al. Size effect of graphene quantum dots on photoluminescence. Molecules. 2021;26:3922.
  • Abdelsalam H, Talaat MH, Lukyanchuk I, et al. Electro-absorption of silicene and bilayer graphene quantum dots. J Appl Phys. 2016;120:014304.
  • Kalita D, Deuri JK, Sahu P, et al. Plasmonic nanostructure integrated two-dimensional materials for optoelectronic devices. J Phys D: Appl Phys. 2022;55:243001.
  • Wang W, Apell P, Kinaret J. Edge plasmons in graphene nanostructures. Phys Rev B. 2011;84:085423.
  • Marco Gibertini NM. Emergence of one-dimensional wires of free carriers in transition-metal-dichalcogenide nanostructures. Nano Lett. 2015;15:6229.
  • Neupane GP, Wang B, Tebyetekerwa M, et al. Highly enhanced light–matter interaction in mxene quantum dots–monolayer WS2 heterostructure. Small. 2021;17:2006309.
  • Zeng Z, Yan Y, Chen J, et al. Boosting the photocatalytic ability of cu2o nanowires for CO2 conversion by MXene quantum dots. Adv Funct Mater. 2019;29:180650.
  • Mohanty B, Giri L, Jena BK. MXene-Derived quantum dots for energy conversion and storage applications. Energy Fuels. 2021;35:14304–14324.
  • Yu X, Cai X, Cui H, et al. Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy. Nanoscale. 2017;9:17859. DOI:10.1039/C7NR05997C
  • Xuan J, Wang Z, Chen Y, et al. Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance. Angew Chem Int Ed. 2016;55:14569–14574.
  • Chou SS, Kaehr B, Kim J, et al. Chemically exfoliated mos2 as near-infrared photothermal agents. Chem Int Ed. 2013;52:4160.
  • Robinson JT, Tabakman SM, Liang Y, et al. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J Am Chem Soc. 2011;133:6825.
  • Huang H, Feng W, Chen Y. Two-dimensional biomaterials: material science, biological effect and biomedical engineering applications. Chem Soc Rev. 2021. DOI:10.1039/D0CS01138J
  • Deng D, Novoselov KS, Fu Q, et al. Catalysis with two-dimensional materials and their heterostructures. Nat Nanotechnol. 2016;11:218.
  • Tan C, Luo Z, Chaturvedi A, et al. Preparation of high-percentage 1T-phase transition metal dichalcogenide nanodots for electrochemical hydrogen evolution. Adv Mater. 2018;30:1705509.
  • Nakada K, Fujita M, Dresselhaus G, et al. Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys Rev B. 1996;54:17954.
  • Jaramillo TF, Jørgensen KP, Bonde J, et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science. 2007;317:100.
  • Girit CO, Meyer JC, Erni R, et al. Graphene at the edge: stability and dynamics. Science. 2009;323:1705.
  • Abdelsalam H, Saroka VA, Teleb NH, et al. Electronic and adsorption properties of extended chevron and cove-edged graphene nanoribbons. Phys E Low Dimens Syst Nanostruct. 2021;126:114438.
  • Zhao X, Ma X, Sun J, et al. Enhanced catalytic activities of surfactant-assisted exfoliated WS2 nanodots for hydrogen evolution. ACS Nano. 2016;10:2159.
  • Chen Z, Li Y, Wang K, et al. Scalable production of intrinsic WX2 (X = S, Se, Te) quantum sheets for efficient hydrogen evolution electrocatalysis. Nanotechnology. 2021;32:495701.
  • Wang C, Jin M, Liu D, et al. VSe2 quantum dots with high-density active edges for flexible efficient hydrogen evolution reaction. J Phys D. 2021;54:214006.
  • Chae HK, Siberio-Pérez DY, Kim J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals. Nature. 2004;427:523.
  • Ou G, Fan P, Ke X, et al. Defective molybdenum sulfide quantum dots as highly active hydrogen evolution electrocatalysts. Nano Res. 2018;11:751.
  • Li Y, Zhao Y, Cheng H, et al. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J Am Chem Soc. 2012;134:15.
  • Gong KP, Du F, Xia ZH, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science. 2009;323:760.
  • Wang H, Maiyalagan T, Wang X. Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal. 2012;2:781.
  • Yu L, Pan X, Cao X, et al. Oxygen reduction reaction mechanism on nitrogen-doped graphene: a density functional theory study. J Catal. 2011;282:183–190.
  • Brownson DAC, Munro LJ, Kampouris DK, et al. Electrochemistry of graphene: not such a beneficial electrode material? RSC Adv. 2011;1:978.
  • Mazánek V, Luxa J, Matĕjková S, et al. Ultrapure Graphene is a poor electrocatalyst: definitive proof of the key role of metallic impurities in graphene based electrocatalysis. ACS Nano. 2019;13.
  • Wang X, Sun G, Routh P, et al. Heteroatom-doped graphene materials: syntheses, properties and applications. Chem Soc Rev. 2014;43:7067.
  • Zhang X, Chen A, Chen L, et al. 2D materials bridging experiments and computations for electro/photocatalysis. Adv Energy Mater. 2021;2003841.
  • Zheng Y, Jiao Y, Zhu Y, et al. Hydrogen evolution by a metal-free electrocatalyst. Nat Commun. 2014;5:3783.
  • Feng C, Tang L, Deng Y, et al. Enhancing optical absorption and charge transfer: synthesis of S-doped h-BN with tunable band structures for metal-free visible-light-driven photocatalysis. Appl Catal B. 2019;256:117827.
  • Dai L, Xue Y, Qu L, et al. Metal-free catalysts for oxygen reduction reaction. Chem Rev. 2015;115:4823.
  • Liu X, Dai L. Carbon-based metal-free catalysts. Nat Rev Mater. 2016;1:16064.
  • Zhang P, Xub B, Chen G, et al. Large-scale synthesis of nitrogen doped MoS2 quantum dots for efficient hydrogen evolution reaction. Electrochim Acta. 2018;270:256.
  • Fu Q, Han J, Wang X, et al. 2D transition metal dichalcogenides: design, modulation, and challenges in electrocatalysis. Adv Mater. 2021;33:1907818. DOI:10.1002/adma.201907818
  • Jiao Y, Zheng Y, Davey K, et al. Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene. Nat Energy. 2016;1:16130.
  • Deng J, Li H, Xiao J, et al. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ Sci. 2015;8:1594–1601.
  • Zhang P, Xu B, Chen G, et al. Large-scale synthesis of nitrogen doped MoS2 quantum dots for efficient hydrogen evolution reaction. Electrochim Acta. 2018;270:256.
  • Gao GP, P.O’Mullane A, Du AJ. 2D MXenes: a new family of promising catalysts for the hydrogen evolution reaction. ACS Catal. 2017;7:494.
  • Gao Q, Zhang W, Shi Z, et al. Structural design and electronic modulation of transition-metal-carbide electrocatalysts toward efficient hydrogen evolution. Adv Mater. 2019;31:1802880.
  • Zhu J, Hu L, Zhao P, et al. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem Rev. 2020;120:851.
  • Ito Y, Cong W, Fujita T, et al. High catalytic activity of nitrogen and sulfur co-doped nanoporous graphene in the hydrogen evolution reaction. Angew Chem Int Ed. 2015;54:2131–2136.
  • Tabish TA, Scotton CJ, J Ferguson DC, et al. Biocompatibility and toxicity of graphene quantum dots for potential application in photodynamic therapy. Nanomedicine (Lond). 2018;13:1923–1937.
  • Chen L, Zhang X, Zhao Z, et al. Controllable preparation of boron nitride quantum dots with small size and strong blue photoluminescence. Colloids Surf A. 2021;614:126181.
  • Zhan Y, Liu Z, Liu Q, et al. A facile and one-pot synthesis of fluorescent graphitic carbon nitride quantum dots for bio-imaging applications. New J Chem. 2017;41:3930.
  • Tao W, Ji X, Xu X, et al. Antimonene quantum dots: synthesis and application as near-infrared photothermal agents for effective cancer therapy. Angew Chem. 2017;129:12058.
  • Shang CDA, Shang M, Ma X, et al. Water-soluble VS2 quantum dots with unusual fluorescence for biosensing. Sens Actuators B Chem. 2018;255:926.
  • Yang G, Zhao J, Yi S, et al. Biodegradable and photostable Nb2C MXene quantum dots as promising nanofluorophores for metal ions sensing and fluorescence imaging. sens Actuators B Chem. 2020;309:127735.
  • Iannazzo D, Ziccarelli I, Pistone A. Graphene quantum dots: multifunctional nanoplatforms for anticancer therapy. J Mater Chem B. 2017;5:6471.
  • Qian Z, Ma J, Shan X, et al. Surface functionalization of graphene quantum dots with small organic molecules from photoluminescence modulation to bioimaging applications: an experimental and theoretical investigation. RSC Adv. 2013;3:14571.
  • Iannazzo D, Pistone A, Salamò M, et al. Graphene quantum dots for cancer targeted drug delivery. Int J Pharm. 2017;518:185.
  • Zhao M, Chen A, Huang D, et al. MoS2 quantum dots as new electrochemiluminescence emitters for ultrasensitive bioanalysis of lipopolysaccharide. Anal Chem. 2017;89:8335.
  • Guo Y, Li J. MoS2 quantum dots: synthesis, properties and biological applications. Mater Sci Eng C. 2020;109:110511.
  • Liu T, Wang C, Gu X, et al. Drug delivery with pegylated mos2 nano-sheets for combined photothermal and chemotherapy of cancer. Adv Mater. 2014;26:3433.
  • Liu Y, Duan X, Shin H-J, et al. Promises and prospects of two-dimensional transistors. Nature. 2021;591:43.
  • Stampfer C, Schurtenberger E, Molitor F, et al. Tunable graphene single electron transistor. Appl Phys Lett. 2008;92:012102.
  • Westervelt RM. Graphene nanoelectronics. Science. 2008;320:324.
  • Ray SJ. First-principles study of MoS2, phosphorene and graphene based single electron transistor for gas sensing applications. Sens Actuators B Chem. 2016;222:492.
  • Konstantatos G, Badioli M, Gaudreau L, et al. Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nat Nanotechnol. 2012;7:363.
  • Chen C, Qiao H, Lin S, et al. Highly responsive MoS2 photodetectors enhanced by graphene quantum dots. Sci Rep. 2015;5:11830.
  • Huo N, Konstantatos G. Recent progress and future prospects of 2D-based photodetectors. Adv Mater. 2018;30:1801164.
  • Seo J, Lee JH, Pak J, et al. Ultrasensitive photodetection in MoS2 avalanche phototransistors. Adv Sci. 2021;8:2102437.
  • Sun Q, Wang YA, Li LS, et al. Bright, multicoloured light-emitting diodes based on quantum dots. Nat Photonics. 2007;1:717.
  • Ross JS, Klement P, Jones AM, et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nat Nanotechnol. 2014;9:268.
  • Luo Z, Qi G, Chen K, et al. Microwave-assisted preparation of white fluorescent graphene quantum dots as a novel phosphor for enhanced white-light-emitting diodes. Adv Funct Mater. 2016;26:2739.
  • Jin H, Baek B, Kim D, et al. Effects of direct solvent-quantum dot interaction on the optical properties of colloidal monolayer WS2 quantum dots. Nano Lett. 2017;17:7471.
  • Luo Z, Qi G, Chen K, et al. Microwave-assisted preparation of white fluorescent graphene quantum dots as a novel phosphor for enhanced white-light-emitting diodes. Adv Funct Mater. 2016;26:2739.
  • Nguyen TP, Sohn W, Oh JH, et al. Size-dependent properties of two-dimensional MoS2 and WS2. J Phys Chem C. 2016;120:10078.
  • Xu Q, Yang W, Wen Y, et al. Hydrochromic full-color MXene quantum dots through hydrogen bonding toward ultrahigh-efficiency white light-emitting diodes. Appl Mater Today. 2019;16:90.
  • Zhang X, Xie H, Liu Z, et al. Black phosphorus quantum dots. Angew Chem Int Ed. 2015;54:3653.
  • Han ST, Hu L, Wang X, et al. Black phosphorus quantum dots with tunable memory properties and multilevel resistive switching characteristics. Adv Sci. 2017;4:1600435.
  • Wang D, Ji F, Chen X, et al. Quantum conductance in MoS2 quantum dots-based nonvolatile resistive memory device. Appl Phys Lett. 2017;110:093501.
  • An H, Lee YH, Lee JH, et al. Highly stable and flexible memristive devices based on polyvinylpyrrolidone: WS2 quantum dots. Sci Rep. 2020;10:5793.
  • Joo SS, Kim J, Seok Kang S, et al. Graphene-quantum-dot nonvolatile charge-trap flash memories. Nanotechnology. 2014;25:255203.
  • Wolf SA, Awschalom DD, Buhrman RA, et al. Spintronics: a spin-based electronics vision for the future. Science. 2001;294. DOI:10.1126/science.1065389.
  • Ahn EC. 2D materials for spintronic devices. Npj 2D Mater Appl. 2020;4:17.
  • Pournaghavi N, Esmaeilzadeh M, Abrishamifar A, et al. Extrinsic Rashba spin–orbit coupling effect on silicene spin polarized field effect transistors. J Phys Condens Matter. 2017;29:145501.
  • Yan W, Txoperena O, Llopis R, et al. A two-dimensional spin field-effect switch. Nat Commun. 2016;7:13372.
  • Zhang L, Zhou JN, Li H, et al. Recent progress and challenges in magnetic tunnel junctions with 2D materials for spintronic applications. Appl Phys Rev. 2021;8:021308.
  • Xiao D, Liu G-B, Feng W, et al. Coupled spin and valley physics in monolayers of mos2 and other group-VI dichalcogenides. Phys Rev Lett. 2012;108:196802.
  • Lin L, Xu Y, Zhang S, et al. Fabrication of luminescent monolayered tungsten dichalcogenides quantum dots with giant spin-valley coupling. ACS Nano. 2013;7:8214.
  • Zhang K, Fu L, Zhang W, et al. Ultrasmall and monolayered tungsten dichalcogenide quantum dots with giant spin–valley coupling and purple luminescence. ACS Omega. 2018;3:12188.
  • Loss D, DiVincenzo DP. Quantum computation with quantum dots. Phys Rev A. 1998;57:120.
  • Cerletti V, Coish WA, Gywat O, et al. Recipes for spin-based quantum computing. Nanotechnology. 2005;16:R27.
  • Trauzettel B, Bulaev DV, Loss D, et al. Spin qubits in graphene quantum dots. Nature Phys. 2007;3:192.
  • Trauzettel B, Borhani M, Trif M, et al. Theory of spin qubits in nanostructures. J Phys Soc Jpn. 2008;77:031012.
  • Pawłowski J, Z˙ebrowski D, Bednarek S. Valley qubit in a gated MoS2 monolayer quantum dot. Phys Rev B. 2018;97:155412.
  • Liu X, Hersam MC. 2D materials for quantum information science. Nat Rev Mater. 2019;4:669.
  • Kou L, Huang T, Zheng B, et al. coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat Commun. 2014;5:3754.
  • Shao Y, El-Kady MF, Wang LJ, et al. Graphene-based materials for flexible supercapacitors. Chem Soc Rev. 2015;44:3639.
  • Wang Y, Chen F, Liu Z. A Highly elastic and reversibly stretchable all-polymer supercapacitor, ngew. Chem Int Ed. 2019;58:15707.
  • Liu W, Li M, Jiang G, et al. Graphene quantum dots-based advanced electrode materials: design, synthesis and their applications in electrochemical energy storage and electrocatalysis. Adv Energy Mater. 2020;10:2001275.
  • Liu W, Zhang M, Li M, et al. Advanced electrode materials comprising of structure-engineered quantum dots for high-performance asymmetric micro-supercapacitors. Adv Energy Mater. 2020;10.
  • Zhou X, Qin Y, He X, et al. Ti3C2Tx nanosheets/ Ti3C2Tx quantum dots/RGO (reduced graphene oxide) fibers for an all-solid-state asymmetric supercapacitor with high volume energy density and good flexibility. ACS Appl Mater Interfaces. 2020;12:10.
  • Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin. Science. 2014;343:1210.
  • Horn M, MacLeod J, Liu M, et al. Supercapacitors: a new source of power for electric cars? Econ Anal Policy. 2019;61:93.
  • Simon P, Gogotsi Y. Perspectives for electrochemical capacitors and related devices. Nat Mater. 2020;19:1151.
  • Nakhanivej P, Dou Q, Xiong P, et al. Two-dimensional pseudocapacitive nanomaterials for high-energy- and high-power-oriented applications of supercapacitors, acc. Mater Res. 2021;2:86.
  • Pan Z, Zhi H, Qiu Y, et al. Achieving commercial-level mass loading in ternary-doped holey graphene hydrogel electrodes for ultrahigh energy density supercapacitors. Nano Energy. 2018;46:266.
  • Tsai ML, Wei W-R, Tang L, et al. Si hybrid solar cells with 13% efficiency via concurrent improvement in optical and electrical properties by employing graphene quantum dots. ACS Nano. 2016;10:815.
  • Wang YM, Ding K, Sun BQ, et al. Two-dimensional layered material/silicon heterojunctions for energy and optoelectronic applications. Nano Res. 2016;9:72.
  • Hu W, Lin L, Yang C, et al. Edge-modified phosphorene nanoflake heterojunctions as highly efficient solar cells. Compr Physiol. 2016;6:1675.
  • Chen W, Li K, Wang Y. Black phosphorus quantum dots for hole extraction of typical planar hybrid perovskite solar cells. J Phys Chem Lett. 2017;8:591.
  • Bernardi M, Palummo M, Grossman JC. Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 2013;13:3664.
  • Amani M, Lien D-H, Kiriya D, et al. Near-unity photoluminescence quantum yield in MoS2. Science. 2015;350:1065–1068.
  • Tetsuka H, Nagoya A, Fukusumi T, et al. Molecularly designed, nitrogen-functionalized graphene quantum dots for optoelectronic devices. Adv Mater. 2016;28:4632.
  • Jariwala D, Davoyan AR, Wong J, et al. Van der Waals materials for atomically-thin photovoltaics: promise and outlook. ACS Photonics. 2017;4:2962.
  • Das S, Pandey D, Thomas J, et al. The role of graphene and other 2D materials in solar photovoltaics. Adv Mater. 2019;31:1802722.
  • Chen M, Wang J, Yin F, et al. Strategically integrating quantum dots into organic and perovskite solar cells. J Mater Chem A. 2021;9:4505.
  • Marinova N, Valero S, Delgado JL. Organic and perovskite solar cells: working principles. Mater Interf J Coll Interf Sci. 2017;488:373.
  • Park N-G. Perovskite solar cells: an emerging photovoltaic technology. Mater Today. 2015;18:65.
  • Chen W, Li K, Wang Y, et al. Black phosphorus quantum dots for hole extraction of typical planar hybrid perovskite solar cells. J Phys Chem Lett. 2017;8:591.
  • Kim JK, Park MJ, Kim SJ, et al. Balancing light absorptivity and carrier conductivity of graphene quantum dots for high-efficiency bulk heterojunction solar cells. ACS Nano. 2013;7:7207.
  • Le QV, Nguyen TP, Choi KS, et al. Dual use of tantalum disulfides as hole and electron extraction layers in organic photovoltaic cell. Phys Chem Chem Phys. 2014;16:25468.
  • Ibrahem MA, Lan T-W, Huang JK, et al. High quantity and quality few-layers transition metal disulfide nanosheets from wet-milling exfoliation. RSC Adv. 2013;3:13193.
  • Park KH, Jung S, Kim J, et al. Boosting photovoltaic performance in organic solar cells by manipulating the size of MoS2 quantum dots as a hole-transport material. Nanomaterials. 2021;11:1464.
  • Dai J, Zeng XC. Bilayer phosphorene: effect of stacking order on band gap and its potential applications in thin-film solar cells. J Phys Chem Lett. 2014;5:1289.
  • Huo N, Kang J, Wei Z, et al. Novel and enhanced optoelectronic performances of multilayer MoS2-WS2 heterostructure transistors. Adv Funct Mater. 2014;24:7025.
  • Wu K, Ma H, Gao Y, et al. Highly-efficient heterojunction solar cells based on two-dimensional tellurene and transition metal dichalcogenides. J Mater Chem A. 2019;7:7430. DOI:10.1039/C9TA00280D
  • Abdelsalam H, Atta MM, Osman W, et al. Two-dimensional quantum dots for highly efficient heterojunction solar cells. J Colloid Interface Sci. 2021;603:48.
  • Suen NT, Hung S-F, Quan Q, et al. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev. 2017;46:337.
  • Tahir M, Pan L, Idrees F, et al. Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review. Nano Energy. 2017;37:136–157.
  • Pan J, Tian XL, Zaman S, et al. Recent progress on transition metal oxides as bifunctional catalysts for lithium-air and zinc-air batteries, batter. Supercaps. 2018;2:336.
  • Mohanty B, Ghorbani-Asl M, Kretschmer S, et al. MoS2 quantum dots as efficient catalyst materials for the oxygen evolution reaction. ACS Catal. 2018;8:1683.
  • Li X, Duan X, Han C, et al. Chemical activation of nitrogen and sulfur co-doped graphene as defect-rich carbocatalyst for electrochemical water splitting. Carbon. 2019;148:540.
  • Wang P, Zhao D, Hui X, et al. Bifunctional catalytic activity guided by rich crystal defects in Ti3C2 MXene quantum dot clusters for Li–O2 batteries. Adv Energy Mater. 2021;11:2003069.
  • Zhu D, Xie Y, Liu T. Exploring the synergy of 2D MXene-supported black phosphorus quantum dots in hydrogen and oxygen evolution reactions. J Mater Chem A. 2018;6:21255.
  • Remanan S, Padmavathy N, Ghosh S, et al. Porous graphene-based membranes: preparation and properties of a unique two-dimensional nanomaterial membrane for water purification. Sep Purif Rev. 2021;50:262.
  • Ihsanullah I. Boron nitride-based materials for water purification: progress and outlook. Chemosphere. 2021;263:127970.
  • Cui Y, An X, Zhang S, et al. Emerging graphitic carbon nitride-based membranes for water purification. Water Res. 2021;200:117207.
  • Zhang S, Liao S, Qi F, et al. Direct deposition of two-dimensional MXene nanosheets on commercially available filter for fast and efficient dye removal. J Hazard Mater. 2020;384:121367.
  • Liu Y, Zhao Y, Zhang X, et al. MoS2-based membranes in water treatment and purification. Chem Eng J. 2021;422:130082.
  • Goh PS, Ismail AF. Graphene-based nanomaterial: the state-of-the-art material for cutting edge desalination technology. Desalination. 2015;356:115–128.
  • Mi B. Scaling up nanoporous graphene membranes. Science. 2019;364:1033–1034.
  • Xu G-R, Feng HJ, Das R, et al. Two-dimensional (2D) nanoporous membranes with sub-nanopores in reverse osmosis desalination: latest developments and future directions. Desalination. 2019;451:18.
  • Abdelsalam H, Teleb NH, Yahia IS, et al. First principles study of the adsorption of hydrated heavy metals on graphene quantum dots. J Phys Chem Solids. 2019;130:32.
  • Jacobse PH, McCurdy RD, Jiang J, et al. Bottom-up assembly of nanoporous graphene with emergent electronic states. J Am Chem Soc. 2020;142:13507.
  • Wang D, Lu X, Yang M, et al. On-surface synthesis of variable bandgap nanoporous graphene, ChemRxiv. Cambridge: Cambridge Open Engage; 2021.
  • Nair R, Wu HA, Jayaram PN, et al. Unimpeded permeation of water through helium-leak–tight graphene-based membranes. Science. 2012;335:442.
  • Sun H, Wu L, Wei W, et al. Recent advances in graphene quantum dots for sensing. Mater Today. 2013;16:433.
  • Musselman KP, Ibrahim KH, Yavuz M. Research update: beyond graphene—synthesis of functionalized quantum dots of 2D materials and their applications editors-pick. APL Mater. 2018;6:120701.
  • Kalkal A, Kadian S, Pradhan R, et al. Recent advances in graphene quantum dot-based optical and electrochemical (bio)analytical sensor. Mater Adv. 2021;2:5513.
  • Rohaizad NA, Mayorga-Martinez CC, Fojtů M, et al. Two-dimensional materials in biomedical, biosensing and sensing applications. Chem Soc Rev. 2021;50:619.
  • Zhang KY, Lo KK-W. 8.18 - Chemosensing and diagnostics. Reedijk J, Poeppelmeier K. editors, Comprehensive Inorganic chemistry II Second, Elsevier. 2013. 657–732. DOI:10.1016/B978-0-08-097774-4.00804-4
  • Mansuriya BD, Altintas Z. Applications of graphene quantum dots in biomedical sensors. Sensors. 2020;20:1072.
  • Wang D, Wang L, Dong X, et al. Chemically tailoring graphene oxides into fluorescent nanosheets for Fe3+ ion detection. Carbon. 2012;50:2147.
  • Dong Y, Li G, Zhou N, et al. Graphene quantum dot as a green and facile sensor for free chlorine in drinking water. Anal Chem. 2012;84:8378.
  • Chakraborti H, Sinha S, Ghosh S, et al. Interfacing water soluble nanomaterials with fluorescence chemosensing: graphene quantum dot to detect Hg2+ in 100% aqueous solution. Mater Lett. 2013;97:78.
  • Ou JZ, Chrimes AF, Wang Y, et al. Ion-driven photoluminescence modulation of quasi-two-dimensional MoS 2 nanoflakes for applications in biological systems. Nano Lett. 2014;14:857.
  • Huo B, Liu B, Chen T, et al. One-step synthesis of fluorescent boron nitride quantum dots via a hydrothermal strategy using melamine as nitrogen source for the detection of ferric ions. Langmuir. 2017;33:10673.
  • Yang G, Zhao J, Yi S, et al. Biodegradable and photostable Nb2C MXene quantum dots as promising nanofluorophores for metal ions sensing and fluorescence imaging. Sens Actuators B. 2020;309:127735.
  • Schedin F, Geim AK, Morozov SV, et al. Detection of individual gas molecules adsorbed on graphene. Nat Mater. 2007;6:652.
  • Yue N, Weicheng J, Rongguo W, et al. Hybrid nanostructures combining graphene–MoS2 quantum dots for gas sensing. J Mater Chem A. 2016;4:8198.
  • Arunragsa S, Seekaew Y, Pon-On W, et al. Hydroxyl edge-functionalized graphene quantum dots for gas-sensing applications. Diamond Related Mater. 2020;105:107790.
  • Yadav S, Chaudhary P, Uttam KN, et al. Facile synthesis of molybdenum disulfide (MoS2) quantum dots and its application in humidity sensing. Nanotechnology. 2019;30:295501.
  • Bhati VS, Kumar M, Banerjee R. Gas sensing performance of 2D nanomaterials/metal oxide nanocomposites: a review. J Mater Chem C. 2021;9:8776.
  • Liuab -J-J, Chen Z-T, Tang D-S, et al. Graphene quantum dots-based fluorescent probe for turn-on sensing of ascorbic acid. Sens Actuators B. 2015;212:214.
  • Huang H, Feng Z, Li Y, et al. Highly sensitive detection of bisphenol A in food packaging based on graphene quantum dots and peroxidase. Anal Methods. 2015;7:2928.
  • Wang Y, Ni Y. Molybdenum disulfide quantum dots as a photoluminescence sensing platform for 2,4,6-trinitrophenol detection. Anal Chem. 2014;86:7463.
  • Wang X, Wu Q, Jiang K, et al. One-step synthesis of water-soluble and highly fluorescent MoS2 quantum dots for detection of hydrogen peroxide and glucose. Sens Actuators B Chem. 2017;252:183.
  • Yan F, Sun J, Zang Y, et al. Solvothermal synthesis of nitrogen-doped MXene quantum dots for the detection of alizarin red based on inner filter effect. Dyes Pigm. 2021;195:109720.
  • Faridbod F, Sanati AL. Graphene quantum dots in electrochemical sensors/biosensors. Curr Anal Chem. 2019;15:103.
  • Aswathia R, Sandhya KY. Ultrasensitive and selective electrochemical sensing of Hg(ii) ions in normal and sea water using solvent exfoliated MoS2: affinity matters. J Mater Chem A. 2018;6:14602.
  • Lin D, Su Z, Wei G. Three-dimensional porous reduced graphene oxide decorated with MoS2 quantum dots for electrochemical determination of hydrogen peroxide. Mater Today Chem. 2018;7:76e8377.
  • Valappil MO, Mohamed J, Alwarappan S, et al. Electrochemical transformation of black phosphorous to phosphorene quantum dots: effect of nitrogen doping. Mater Res Express. 2020;7:014005.
  • Savas S, Altintas Z. Graphene quantum dots as nanozymes for electrochemical sensing of Yersinia enterocolitica in milk and human serum. Materials. 2019;12:2189.
  • Ge J, Hu Y, Deng R, et al. Highly sensitive microRNA detection by coupling nicking-enhanced rolling circle amplification with MoS2 quantum dots. Anal Chem. 2020;92:13588.
  • Liu M, He Y, Zhou J, et al. A”naked-eye” colorimetric and ratiometric fluorescence probe for uric acid based on Ti3C2 MXene quantum dots. Anal Chim Acta. 2020;1103:134.
  • Niu Y, Li J, Gao J, et al. Two-dimensional quantum dots for biological applications. Nano Res. 2021;14:3820.
  • Zhu S, Zhang J, Qiao C, et al. Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem Commun. 2011;47:6858.
  • Li L, Wu G, Yang G, et al. Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale. 2013;5:4015.
  • Zhang X, Xie X, Wang H, et al. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J Am Chem Soc. 2013;135:18.
  • Li Y, Liu Z, Hou Y, et al. Multifunctional nanoplatform based on black phosphorus quantum dots for bioimaging and photodynamic/photothermal synergistic cancer therapy. ACS Appl Mater Interfaces. 2017;9:30.
  • Lin H, Wang C, Wu J, et al. Colloidal synthesis of MoS2 quantum dots: size-dependent tunable photoluminescence and bioimaging. New J Chem. 2015;39:8492.
  • Huang M, Gu Z, Zhang J, et al. MXene and black phosphorus based 2D nanomaterials in bioimaging and biosensing: progress and perspectives. J Mater Chem B. 2021;9:5195.
  • Pysz MA, Gambhir SS, Willmann JK. Molecular imaging: current status and emerging strategies. Clin Radiol. 2010;65:500.
  • Shi M, Dong L, Zheng S, et al. “bottom-up” preparation of MoS2 quantum dots for tumor imaging and their in vivo behavior study biochem. Biophys Res Commun. 2019;516:1090–1096.
  • Nurunnabi M, Khatun Z, Reeck GR, et al. Photoluminescent graphene nanoparticles for cancer phototherapy and imaging. ACS Appl Mater Interfaces. 2014;6:15.
  • Wu X, Yang L, Luo L, et al. Engineered g-C3N4 quantum dots for tunable two-photon imaging and photodynamic therapy. ACS Appl Bio Mater. 2019;2:1998–2005.
  • Liu M, Zhu H, Wang Y, et al. Functionalized MoS2 -based nanomaterials for cancer phototherapy and other biomedical applications. ACS Materials Lett. 2021;3:462.
  • Shao J, Zhang J, Jiang C, et al. Biodegradable titanium nitride MXene quantum dots for cancer phototheranostics in NIR-I/II biowindows. Chem Eng Sci. 2020;400:126009.
  • Cheng L, Wang C, Feng L, et al. Functional nanomaterials for phototherapies of cancer. Chem Rev. 2014;114:10869.
  • Zhu H, Ni N, Govindarajan S, et al. Phototherapy with layered materials derived quantum dots. Nanoscale. 2020;12:43.
  • Dai W, Dong H, Zhang X. A Semimetal-like molybdenum carbide quantum dots photoacoustic imaging and photothermal agent with high photothermal conversion efficiency. Materials. 2018;11:1776.