2,751
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Intrusion and extrusion of liquids in highly confining media: bridging fundamental research to applications

, , , , ORCID Icon, , ORCID Icon, & show all
Article: 2052353 | Received 15 Oct 2021, Accepted 07 Mar 2022, Published online: 27 Apr 2022

References

  • Kota AK, Kwon G, Choi W, et al. Hygro-Responsive membranes for effective oil–water separation. Nat Commun. 2012;3:1–54.
  • Yang H-C, Hou J, Chen V, et al. Janus Membranes: exploring duality for advanced separation. Angewandte Chemie International Edition. 2016;55:13398–13407.
  • Bakalyar SR, Bradley MPT, Honganen R. The role of dissolved gases in high-performance liquid chromatography. J Chromatogr A. 1978;158:277–293.
  • Gritti F, Brousmiche D, Gilar M, et al. Kinetic mechanism of water dewetting from hydrophobic stationary phases utilized in liquid chromatography. J Chromatogr A. 2019;1596:41–53.
  • Eroshenko V, Regis R-C, Soulard M, et al. Energetics: a new field of applications for hydrophobic zeolites. J Am Chem Soc. 2001;123:8129–8130.
  • Grosu Y, Mierzwa M, Eroshenko VA, et al. Mechanical, thermal, and electrical energy storage in a single working body: electrification and thermal effects upon pressure-induced water intrusion-extrusion in nanoporous solids. ACS Appl Mater Interfaces. 2017;9:7044–7049.
  • Helmy R, Kazakevich Y, Ni C, et al. Wetting in hydrophobic nanochannels: a challenge of classical capillarity. J Am Chem Soc. 2005;127:12446–12447.
  • Coasne B, Galarneau A, Di Renzo F, et al. Intrusion and retraction of fluids in nanopores: effect of morphological heterogeneity. J Phys Chem C. 2009;113:1953–1962.
  • Tinti A, Giacomello A, Grosu Y, et al. Intrusion and extrusion of water in hydrophobic nanopores. Proc Natl Acad Sci. 2017;114:E10266–E10273.
  • Roth R, Gillespie D, Nonner W, et al. Bubbles, gating, and anesthetics in ion channels. Biophys J. 2008;94:4282–4298.
  • Tortora M, Meloni S, Tan BH, et al. The Interplay among gas, liquid and solid interactions determines the stability of surface nanobubbles. Nanoscale. 2020;12:22698–22709.
  • Giacomello A, Roth R. Bubble formation in nanopores: a matter of hydrophobicity, geometry, and size. Adv Phys X. 2020;5:1817780.
  • Gußmann F, Roth R. Bubble gating in biological ion channels: a density functional theory study. Phys Rev E. 2017;95:062407.
  • Tolman RC. The effect of droplet size on surface tension. J Chem Phys. 2004;17:333.
  • Rowlinson JS, Widom B. Molecular theory of capillarity. Oxford: Dover Publications.; Clarendon Press; 1982.
  • Tröster A, Oettel M, Block B, et al. Numerical approaches to determine the interface tension of curved interfaces from free energy calculations. J Chem Phys. 2012;136:064709.
  • An Lei, ⊥,‡ Y, Bykov, †,‡ T, Yoo, ‡ S, et al. The Tolman length:  is it positive or negative? J Am Chem Soc. 2005;127:15346–15347.
  • Toshev BV, Platikanov D, Scheludko A. Line tension in three-phase equilibrium systems. Langmuir. 1988;4:489–499.
  • Domb C, Lebowitz JL. Phase transitions and critical phenomena. 1st ed. Vol. 18, London: Academic Press; 1988.
  • Ebner C, Saam WF. New phase-transition phenomena in thin argon films. Phys Rev Lett. 1977;38:1486.
  • Cahn JW. Critical point wetting. J Chem Phys. 2008;66:3667.
  • Evans R, Marconi UMB, Tarazona P. Fluids in narrow pores: adsorption, capillary condensation, and critical points. J Chem Phys. 1998;84:2376.
  • Rascón C, Parry AO. Geometry-dominated fluid adsorption on sculpted solid substrates. Nat. 2000 4076807. 2000;407:986–989.
  • Skripov VP . Metastable liquids. New York, (NY, USA): John Wiley & Sons; 1974.
  • Debenedetti PG. Metastable liquids : concepts and principles. Princeton (NJ, USA): Princeton University Press; 1997.
  • Kelton K, Greer AL. Nucleation in condensed matter: applications in materials and biology. Amsterdam (NL): Elsevier; 2010.
  • Giacomello A, Casciola CM, Grosu Y, et al. Liquid intrusion in and extrusion from non-wettable nanopores for technological applications. Eur Phys J B. 2021;94:163.
  • Giacomello A, Chinappi M, Meloni S, et al. Metastable wetting on superhydrophobic surfaces: continuum and atomistic views of the Cassie-Baxter–Wenzel transition. Phys Rev Lett. 2012;109:226102.
  • Sharma S, Debenedetti PG. Evaporation rate of water in hydrophobic confinement. Proc Natl Acad Sci. 2012;109:4365–4370.
  • Blander M, Katz JL. Bubble nucleation in liquids. AIChE J. 1975;21:833–848.
  • Giacomello A, Chinappi M, Meloni S, et al. Geometry as a catalyst: how vapor cavities nucleate from defects. Langmuir. 2013;29:14873–14884.
  • Lisi E, Amabili M, Meloni S, et al. Self-recovery superhydrophobic surfaces: modular design. ACS Nano. 2018;12:359–367.
  • Amabili M, Giacomello A, Meloni S, et al. Intrusion and extrusion of a liquid on nanostructured surfaces. J Phys Condens Matter. 2016;29:014003.
  • Amabili M, Giacomello A, Meloni S, et al. Unraveling the salvinia paradox: design principles for submerged superhydrophobicity. Adv Mater Interfaces. 2015;2:1500248.
  • Amabili M, Grosu Y, Giacomello A, et al. Pore morphology determines spontaneous liquid extrusion from nanopores. ACS Nano. 2019;13:1728–1738.
  • Lefevre B, Saugey A, Barrat JL, et al. Intrusion and extrusion of water in hydrophobic mesopores. J Chem Phys. 2004;120:4927–4938.
  • Dhattarwal HS, Remsing RC, Kashyap HK. How flexibility of the nanoscale solvophobic confining material promotes capillary evaporation of ionic liquids. J Phys Chem C. 2020;124:4899–4906.
  • Altabet YE, Haji-Akbari A, Debenedetti PG. Effect of material flexibility on the thermodynamics and kinetics of hydrophobically induced evaporation of water. Proc Natl Acad Sci. 2017;114:E2548–E2555.
  • Tinti A, Giacomello A, Casciola CM. Vapor nucleation paths in lyophobic nanopores. Eur Phys J E. 2018;41:52.
  • Amabili M, Giacomello A, Meloni S, et al. Collapse of superhydrophobicity on nanopillared surfaces. Phys Rev Fluids. 2017;2:034202.
  • Amabili M, Meloni S, Giacomello A, et al. Activated wetting of nanostructured surfaces: reaction coordinates, finite size effects, and simulation pitfalls. J Phys Chem B. 2017;122:200–212.
  • Panter JR, Gizaw Y, Kusumaatmaja H. Multifaceted design optimization for superomniphobic surfaces. Sci Adv. 2019;5. doi:10.1126/SCIADV.AAV7328.
  • Panter JR, Kusumaatmaja H. The impact of surface geometry, cavitation, and condensation on wetting transitions: posts and reentrant structures. J Phys Condens Matter. 2017;29:084001.
  • Remsing RC, Xi E, Vembanur S, et al. Pathways to dewetting in hydrophobic confinement. Proc Natl Acad Sci. 2015;112:8181–8186.
  • Giacomello A, Meloni S, Müller M, et al. Mechanism of the Cassie-Wenzel transition via the atomistic and continuum string methods. J Chem Phys. 2015;142:104701.
  • Weinan E, Ren W, Vanden-Eijnden E. Simplified and improved string method for computing the minimum energy paths in barrier-crossing events. J Chem Phys. 2007;126:164103.
  • Smeets RMM, Keyser UF, Wu MY, et al. Nanobubbles in solid-state nanopores. Physical Review Letters. 2006;97:088101.
  • Smeets RMM, Keyser UF, Dekker NH, et al. Noise in solid-state nanopores. Proc Natl Acad Sci. 2008;105:417–421.
  • Gritti F, Gilar M, Walter TH, et al. Retention loss of reversed-phase chromatographic columns using 100% aqueous mobile phases from fundamental insights to best practice. J Chromatogr A. 2020;1612:460662.
  • König P-M, Roth R, Mecke KR. Morphological thermodynamics of fluids: shape dependence of free energies. Phys Rev Lett. 2004;93:160601.
  • Roth R, Kroll KM. Capillary evaporation in pores. J Phys Condens Matter. 2006;18:6517.
  • Weil KGJSR, Widom B. Molecular theory of capillarity, clarendon press, oxford 1982. 327 seiten, preis: £ 30,–. Berichte der Bunsengesellschaft für Phys Chemie. 1984;88:586.
  • Menzl G, Gonzalez MA, Geiger P, et al. Molecular mechanism for cavitation in water under tension. Proc Natl Acad Sci. 2016;113:13582–13587.
  • Law BM, McBride SP, Wang JY, et al. Line tension and its influence on droplets and particles at surfaces. Prog Surf Sci. 2017;92:1–39.
  • Schimmele L, Napiórkowski M, Dietrich S. Conceptual aspects of line tensions. J Chem Phys. 2007;127:164715.
  • Drelich J. The Significance and magnitude of the line tension in three-phase (solid-liquid-fluid) systems. Colloids Surf A Physicochem Eng Asp. 1996;116:43–54.
  • Guillemot L, Biben T, Galarneau A, et al. Activated drying in hydrophobic nanopores and the line tension of water. Proc Natl Acad Sci. 2012;109:19557–19562.
  • Bey R, Coasne B, Picard C. Carbon dioxide as a line active agent: its impact on line tension and nucleation rate. Proc Natl Acad Sci. 2021;118. doi:10.1073/PNAS.2102449118.
  • Kanduč M, Eixeres L, Liese S, et al. Generalized line tension of water nanodroplets. Phys Rev E. 2018;98:032804.
  • Dhattarwal HS, Remsing RC, Kashyap HK. Intercalation–deintercalation of water-in-salt electrolytes in nanoscale hydrophobic confinement. Nanoscale. 2021;13:4195–4205.
  • Sprik M, Ciccotti G. Free energy from constrained molecular dynamics. J Chem Phys. 1998;109:7737.
  • Carter EA, Ciccotti G, Hynes JT, et al. Constrained reaction coordinate dynamics for the simulation of rare events. Chem Phys Lett. 1989;156:472–477.
  • Bonella S, Meloni S, Ciccotti G. Theory and methods for rare events. Eur Phys J B. 2012;85:1–19.
  • Chandler D. Statistical mechanics of isomerization dynamics in liquids and the transition state approximation. J Chem Phys. 2008;68:2959.
  • Chandler D. Roles of classical dynamics and quantum dynamics on activated processes occurring in liquids. J Stat Phys. 1986;42:49–67.
  • Meloni S, Giacomello A, Casciola CM. focus article: theoretical aspects of vapor/gas nucleation at structured surfaces. J Chem Phys. 2016;145:211802.
  • Maragliano L, Vanden-Eijnden E. A temperature accelerated method for sampling free energy and determining reaction pathways in rare events simulations. Chem Phys Lett. 2006;426:168–175.
  • Giacomello A, Meloni S, Chinappi M, et al. Cassie–Baxter and Wenzel states on a nanostructured surface: phase diagram, metastabilities, and transition mechanism by atomistic free energy calculations. Langmuir. 2012;28:10764–10772.
  • Bolhuis PG, Chandler D, Dellago C, et al. transition path sampling: throwing ropes over rough mountain passes, in the dark. Annu Rev Phys Chem. 2002;53:291–318.
  • Vanden-Eijnden E. Transition path theory. In: Computer simulations in condensed matter systems: from materials to chemical biology. Vol. 1. Heidelberg (GE): Springer; 2006. p. 453–493.
  • Maragliano L, Fischer A, Vanden-Eijnden E, et al. String method in collective variables: minimum free energy paths and isocommittor surfaces. J Chem Phys. 2006;125:24106.
  • Zhang Y, Ren W. Numerical study of the effects of surface topography and chemistry on the wetting transition using the string method. J Chem Phys. 2014;141:244705.
  • Patel AJ, Varilly P, Chandler D. Fluctuations of water near extended hydrophobic and hydrophilic surfaces. J Phys Chem B. 2010;114:1632–1637.
  • Patel AJ, Varilly P, Chandler D, et al. QUantifying density fluctuations in volumes of all shapes and sizes using indirect umbrella sampling. J Stat Phys. 2011;145:265–275.
  • Remsing RC, Patel AJ. Water density fluctuations relevant to hydrophobic hydration are unaltered by attractions. J Chem Phys. 2015;142:024502.
  • Jiang Z, Remsing RC, Rego NB, et al. characterizing solvent density fluctuations in dynamical observation volumes. J Phys Chem B. 2019;123:1650–1661.
  • Dhabal D, Jiang Z, Pallath A, et al. Characterizing the interplay between polymer solvation and conformation. J Phys Chem B. 2021;125:5434–5442.
  • Kelkar AS, Dallin BC, Lehn RCV. predicting hydrophobicity by learning spatiotemporal features of interfacial water structure: combining molecular dynamics simulations with convolutional neural networks. J Phys Chem B. 2020;124:9103–9114.
  • Wu E, Garde S. Understanding N-octane behavior near graphene with scaled solvent–solute attractions. J Phys Chem B. 2016;120:2033–2042.
  • Remsing RC, Xi E, Patel AJ. protein hydration thermodynamics: the influence of flexibility and salt on hydrophobin ii hydration. J Phys Chem B. 2018;122:3635–3646.
  • Xi E, Venkateshwaran V, Li L, et al. Hydrophobicity of proteins and nanostructured solutes is governed by topographical and chemical context. Proc Natl Acad Sci. 2017;114:13345–13350.
  • Rego NB, Xi E, Patel AJ. protein hydration waters are susceptible to unfavorable perturbations. J Am Chem Soc. 2019;141:2080–2086.
  • Rego NB, Xi E, Patel AJ. identifying hydrophobic protein patches to inform protein interaction interfaces. Proc Natl Acad Sci. 2021;118. doi:10.1073/PNAS.2018234118.
  • Rego NB, Patel AJ. understanding hydrophobic effects: insights from water density fluctuations. Annu. Rev. Condens. Matter Phys. 2021;13:303–324.
  • Remsing RC, Weeks JD. Dissecting hydrophobic hydration and association. J Phys Chem B. 2013;117:15479–15491.
  • Prakash S, Xi E, Patel AJ. Spontaneous recovery of superhydrophobicity on nanotextured surfaces. Proc Natl Acad Sci. 2016;113:5508–5513.
  • Mehrani R, Sharma S. Behavior of water confined between hydrophobic surfaces with grafted segments. Colloid Interface Sci Commun. 2021;40:100355.
  • Shrivastav G, Remsing RC, Kashyap HK. Capillary evaporation of the ionic liquid [emim][bf4] in nanoscale solvophobic confinement. J Chem Phys. 2018;148:193810.
  • Allen RJ, Valeriani C, Wolde PRT, et al. Forward flux sampling for rare event simulations. J Phys Condens Matter. 2009;21:463102.
  • Marchio S, Meloni S, Giacomello A, et al. Wetting and recovery of nano-patterned surfaces beyond the classical picture. Nanoscale. 2019;11:21458–21470.
  • Altabet YE, Debenedetti PG. The role of material flexibility on the drying transition of water between hydrophobic objects: a thermodynamic analysis. J Chem Phys. 2014;141:18C531.
  • Altabet YE, Debenedetti PG. Communication: relationship between local structure and the stability of water in hydrophobic confinement. J Chem Phys. 2017;147:241102.
  • Thompson AP, Aktulga HM, Berger R, et al. LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput Phys Commun. 2022;271:108171.
  • Bonomi M, Bussi G, Camilloni C, et al. Promoting Transparency and reproducibility in enhanced molecular simulations. Nat Methods. 2019;16:670–673.
  • Tribello GA, Bonomi M, Branduardi D, et al. PLUMED 2: new feathers for an old bird. Comput Phys Commun. 2014;185:604–613.
  • Bonomi M, Branduardi D, Bussi G, et al. PLUMED: a portable plugin for free-energy calculations with molecular dynamics. Comput Phys Commun. 2009;180:1961–1972.
  • Fiorin G, Klein ML, Hénin J. using collective variables to drive molecular dynamics simulations. Mol. Phys. 2013;111:3345–3362.
  • Frenkel DSB, Smit B. DSB, Ed. Understanding molecular simulation. London (UK): Academic Press; 2002. doi:10.1016/B978-0-12-267351-1.X5000-7.
  • Meloni S, Rosati M, Colombo L. Efficient particle labeling in atomistic simulations. J Chem Phys. 2007;126:121102.
  • Sidky H, Colón YJ, Helfferich J, et al. SSAGES: software suite for advanced general ensemble simulations. J Chem Phys. 2018;148:044104.
  • Swenson DWH, Prinz JH, Noe F, et al. OpenPathSampling: a python framework for path sampling simulations. 1. basics. J Chem Theory Comput. 2018;15:813–836.
  • Abraham MJ, Murtola T, Schulz R, et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;12:19–25.
  • Eastman P, Swails J, Chodera JD, et al. OpenMM 7: rapid development of high performance algorithms for molecular dynamics. PLOS Comput Biol. 2017;13:e1005659.
  • Evans R. the nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids. Adv Phys. 1978;28:143–200.
  • Evans R, Parry AO. Liquids at interfaces: what can a theorist contribute? J Phys Condens Matter. 1990. 2: SA15. doi:10.1088/0953-8984/2/S/003.
  • Evans R. fluids adsorbed in narrow pores: phase equilibria and structure. J Phys Condens Matter. 1990;2:8989.
  • Roth R, Parry AO. Drying in a capped capillary. Mol. Phys. 2011;109:1159–1167.
  • Roland R, Andrew OP. Geometrical aspects of drying in a capped capillary: a dft study. J. Phys. Soc. Jpn. 2012;81:SA009.
  • Stopper D, Schröder-Turk GE, Mecke K, Roth R, et al. Phase behaviour of a simple fluid confined in a periodic porous material. Mol. Phys. 2021;119:e1906968.
  • Fernández EM, Chacón E, Tarazona P, et al. intrinsic fluid interfaces and nonlocality. Phys Rev Lett. 2013;111:096104.
  • Mecke KR, Dietrich S. effective Hamiltonian for liquid-vapor interfaces. Phys Rev E. 1999;59:6766.
  • Stephan S, Liu J, Langenbach K, et al. Vapor−liquid interface of the Lennard-Jones truncated and shifted fluid: comparison of molecular simulation, density gradient theory, and density functional theory. J Phys Chem C. 2018;122:24705–24715.
  • Camisasca G, Tinti A, Giacomello A. Gas-induced drying of nanopores. J Phys Chem Lett. 2020;11:9171–9177.
  • Tinti A, Camisasca G, Giacomello A. Structure and dynamics of water confined in cylindrical nanopores with varying hydrophobicity. Philos Trans R Soc A. 2021;379:20200403.
  • Grosu Y, Giacomello A, Meloni S, et al. Viscosity at the nanoscale: confined liquid dynamics and thermal effects in self-recovering nanobumpers. J Phys Chem C. 2018;122:14248–14256.
  • Washburn EW. on a method of determining the distribution of pore sizes in a porous material. Proc Natl Acad Sci. 1921;7. doi:10.1073/pnas.7.4.115.
  • Fraux G, Coudert F-X, Boutin A, et al. forced intrusion of water and aqueous solutions in microporous materials: from fundamental thermodynamics to energy storage devices. Chem Soc Rev. 2017;46:7421–7437.
  • Grosu Y, Ievtushenko O, Eroshenko V, et al. Water intrusion/extrusion in hydrophobized mesoporous silica gel in a wide temperature range: capillarity, bubble nucleation and line tension effects. Colloids Surf A Physicochem Eng Asp. 2014;441. DOI:10.1016/j.colsurfa.2013.10.022
  • Grosu Y, Renaudin G, Eroshenko V, et al. Synergetic effect of temperature and pressure on energetic and structural characteristics of {zif-8 + water} molecular spring. Nanoscale. 2015;7:8803–8810.
  • Grosu Y, Eroshenko V, Nedelec JM, et al. A new working mode for molecular springs: water intrusion induced by cooling and associated isobaric heat capacity change of a {zif-8 + water} system. Phys Chem Chem Phys. 2015;17:1572–1574.
  • Karbowiak T, Saada MA, Rigolet S, et al. New Insights in the formation of silanol defects in silicalite-1 by water intrusion under high pressure. Phys Chem Chem Phys. 2010;12:11454–11466.
  • Coiffard L, Eroshenko VA, Grolier JPE. Thermomechanics of the variation of interfaces in heterogeneous lyophobic systems. AIChE J. 2005;51:1246–1257.
  • Grosu Y, Li M, Peng YL, et al. A highly stable nonhysteretic {cu2(tebpz) mof+water} molecular spring. ChemPhysChem. 2016;17:3359–3364.
  • Lowe AR, Wong WSY, Tsyrin N, et al. The effect of surface entropy on the heat of non-wetting liquid intrusion into nanopores. Langmuir. 2021;37:4827–4835.
  • Randzio SL. Scanning Transitiometry. Chem Soc Rev. 1996;25:383.
  • Lowe A, Tsyrin N, Chorażewski M, et al. Effect of flexibility and nanotriboelectrification on the dynamic reversibility of water intrusion into nanopores: pressure-transmitting fluid with frequency-dependent dissipation capability. ACS Appl Mater Interfaces. 2019;11:40842–40849.
  • Arletti R, Ronchi L, Quartieri S, et al. Intrusion-extrusion experiments of mgcl2 aqueous solution in pure silica ferrierite: evidence of the nature of intruded liquid by in situ high pressure synchrotron x-ray powder diffraction. Microporous Mesoporous Mater. 2016;235. DOI:10.1016/j.micromeso.2016.08.024
  • Confalonieri G, Ryzhikov A, Arletti R, et al. Intrusion-extrusion of electrolyte aqueous solutions in pure silica chabazite by in situ high pressure synchrotron x-ray powder diffraction. J Phys Chem C. 2018;122:28001–28012.
  • Chorążewski M, Zajdel P, Feng T, et al. Compact thermal actuation by water and flexible hydrophobic nanopore. ACS Nano. 2021;15:9048–9056.
  • Tortora M, Zajdel Pawełand Lowe AR, Chorażewski M, et al. others. giant negative compressibility by liquid intrusion into superhydrophobic flexible nanoporous frameworks. Nano Lett. 2021;21:2848.
  • Zajdel P, Chorążewski M, Leão JB, et al. Inflation negative compressibility during intrusion-extrusion of a non-wetting liquid into a flexible nanoporous framework. J Phys Chem Lett. 2021;12:4951–4957.
  • Suciu CV, Yaguchi K. Endurance tests on a colloidal damper destined to vehicle suspension. Exp Mech. 2009;49:383–393.
  • Eroshenko VA, Piatiletov I, Coiffard L, et al. A new paradigm of mechanical energy dissipation. part 2: experimental investigation and effectiveness of a novel car damper. Proc Inst Mech Eng Part D J Automob Eng. 2007;221:301–312.
  • Trzpit M, Rigolet S, Paillaud JL, et al. Pure silica chabazite molecular spring: a structural study on water intrusion-extrusion processes. J Phys Chem B. 2008;112:7257–7266.
  • Grosu Y, Faik A, Nedelec J-M, et al. Reversible wetting in nanopores for thermal expansivity control: from extreme dilatation to unprecedented negative thermal expansion. J Phys Chem C. 2017;121:21.
  • Eroshenko V, Grosu Y, Tsyrin N, et al. Exceptionally large and controlled effect of negative thermal expansion in porous heterogeneous lyophobic systems. J Phys Chem C. 2015;119:19.
  • Grosu YG, Eroshenko VA, Ievtushenko OV, et al. Anomalous negative thermal expansion in a condensed heterogeneous lyophobic system. Ukr J Phys. 2014;59:69–78.
  • Fadeev AY, Eroshenko VA. Study of penetration of water into hydrophobized porous silicas. J Colloid Interface Sci. 1997;187:275–282.
  • Guillemot L, Galarneau A, Vigier G, et al. New device to measure dynamic intrusion/extrusion cycles of lyophobic heterogeneous systems. Rev Sci Instrum. 2012;83:105105.
  • Gokulakrishnan N, Karbowiak T, Bellat JP, et al. Improved hydrophobicity of inorganic-organic hybrid mesoporous silica with cage-like pores. Colloids Surf A Physicochem Eng Asp. 2013;421:34–43.
  • Gokulakrishnan N, Parmentier J, Trzpit M, et al. Intrusion/extrusion of water into organic grafted SBA-15 silica materials for energy storage. J Nanosci Nanotechnol. 2013;13:2847–2852.
  • Ortiz G, Nouali H, Marichal C, et al. Energetic performances of ‘zif-71-aqueous solution’ systems: a perfect shock-absorber with water. J Phys Chem C. 2014;118:21316–21322.
  • Zhou GY, Sun LZ. Smart colloidal dampers with on-demand controllable damping capability. Smart Mater Struct. 2008;17:055023.
  • Han A, Lu W, Punyamurtula VK, et al. Effective viscosity of glycerin in a nanoporous silica gel. J Appl Phys. 2008;104:124908.
  • Zhang Y, Li N, Luo R, et al. Experimental study on thermal effect on infiltration mechanisms of glycerol into zsm-5 zeolite under cyclic loadings. J Phys D Appl Phys. 2015;49:025303.
  • Guillemot L. Institut National des Sciences Appliquées de Lyon; 2010. https://tel.archives-ouvertes.fr/tel-00696340v1
  • Suciu CV. Ride-comfort of an automobile equipped with colloidal dampers at its frontal suspensions. In Proceedings of ISMA 2010 - International Conference on Noise and Vibration Engineering, including USD 2010, Leuven (BE); 2010; p 4233.
  • Suciu CV, Buma S On the Structural Simplification, Compact and Light Design of a Vehicle Suspension, Achieved by Using a Colloidal Cylinder with a Dual Function of Absorber and Compression-Spring. In FISITA 2012 World Automotive Congress, Beijing; 2013.
  • Eroshenko VA. A new paradigm of mechanical energy dissipation. part 1: theoretical aspects and practical solutions. Proc Inst Mech Eng Part D J Automob Eng. 2007;221:285–300.
  • Fernandes D, Pitié F, Cáceres G, et al. Thermal energy storage: ‘how previous findings determine current research priorities’. Energy. 2012;39:246–257.
  • Zhang H, Baeyens J, Cáceres G, et al. Thermal energy storage: recent developments and practical aspects. Prog Energy Combust Sci. 2016;53:1–40.
  • Berrada A, Loudiyi K. Operation, sizing, and economic evaluation of storage for solar and wind power plants. Renew Sust Energ Rev. 2016;59:1117–1129.
  • Khay I, Tzanis L, Daou TJ, et al. Energetic behavior of the pure silica ITQ-12 (ITW) zeolite under high pressure water intrusion. Phys Chem Chem Phys. 2013;15:20320–20325.
  • Han A, Qiao Y. Infiltration pressure of a nanoporous liquid spring modified by an electrolyte. J Mater Res. 2007;22:644–648.
  • Ryzhikov A, Khay I, Nouali H, et al. Energetic performances of pure silica stf and mtt-type zeolites under high pressure water intrusion. RSC Adv. 2014;4:37655–37661.
  • Iversen P, Lacks DJ. A life of its own: the tenuous connection between Thales of Miletus and the study of electrostatic charging. J Electrostat. 2012;70:309–311.
  • Lacks DJ, Shinbrot T. Long-standing and unresolved issues in triboelectric charging. Nat Rev Chem. 2019;3:465–476.
  • Xu B, Qiao Y, Park T, et al. A conceptual thermal actuation system driven by interface tension of nanofluids. Energy Environ Sci. 2011;4:3632.
  • Eroshenko VA, G TS. The effect of hyperdilatometry of one complex thermodynamic system (in Russian). Ukr J Phys. 1993;12:1789–1792.
  • Eroshenko VA. Thermomolecular energy. Ind Heat Eng. 1992;13:22–25.
  • Egorov VS, Portyanoy AG, Sorokin AP, et al. Thermal sensitivity of the starting device. 2138086, 1996.
  • Li M, Zhan C, Lu W. A thermoresponsive liquid with unique two-way volume memory function. Smart Mater Struct. 2021. DOI:10.1088/1361-665x/abf41e
  • Cairns AB, Goodwin AL Negative linear compressibility. Phys. Chem. Chem. Phys. 2015;17:20449–20465.
  • Lakes R, Wojciechowski KW. Negative compressibility, negative poisson’s ratio, and stability. Phys. Status Solidi B. 2008;245:545–551.
  • Baughman RH, Stafström S, Cui C, et al. Materials with negative compressibilities in one or more dimensions. Science. 1998;279:5356.
  • Baughman RH. Auxetic materials: avoiding the shrink. Nature. 2003;425:667.
  • Xi D, Xu J, Ambati M, et al. Ultrasonic metamaterials with negative modulus. Nat Mater. 2006;5:452–456.
  • Greve BK, Martin KL, Lee PL, et al. Pronounced negative thermal expansion from a simple structure: cubic ScF 3. J Am Chem Soc. 2010;132:15496–15498.
  • Rebello A, Neumeier JJ, Gao Z, et al. Giant negative thermal expansion in la-doped cafe 2As 2. Phys Rev B - Condens Matter Mater Phys. 2012;86. doi:10.1103/PhysRevB.86.104303.
  • Takenaka K, Okamoto Y, Shinoda T, et al. Colossal negative thermal expansion in reduced layered ruthenate. Nat Commun. 2017;8. doi:10.1038/ncomms14102.
  • Neue UD HPLC Columns: Theory, Technology, and Practice. London (UK): Wiley. 1997.
  • Walter TH, Iraneta P, Capparella M. Mechanism of retention loss when c8 and c18 hplc columns are used with highly aqueous mobile phases. J Chromatogr A. 2005;1075:177–183.
  • Cavazzini A, Marchetti N, Pasti L, et al. A new method to investigate the intrusion of water into porous hydrophobic structures under dynamic conditions. Anal Chem. 2012;85:19–22.
  • Dembek M, Bocian S. Pure water as a mobile phase in liquid chromatography techniques. TrAC Trends Anal Chem. 2020;123:115793.
  • Sun Y, Rogge SM, Lamaire A, et al. High-rate nanofluidic energy absorption in porous zeolitic frameworks. Nat Mater. 2021;20:1015–1023.
  • Laouir A, Luo L, Tondeur D, et al. Thermal machines based on surface energy of wetting: thermodynamic analysis. AIChE J. 2003;49:764–781.
  • Jouhara H, Żabnieńska-Góra A, Khordehgah N, et al. Latent thermal energy storage technologies and applications: a review. Int J Thermofluids. 2020;5–6. DOI:10.1016/j.ijft.2020.100039
  • Jensen M, Jogini V, Borhani DW, et al. Mechanism of voltage gating in potassium channels. science (80-.). Science (New York, N.Y.). 2012;336:229–233.
  • Aryal P, Sansom MSP, Tucker SJ. Hydrophobic gating in ion channels. J Mol Biol. 2015;427:121–130.
  • Jia Z, Yazdani M, Zhang G, et al. Hydrophobic gating in bk channels. Nat Commun. 2018;9:1–8.
  • Zhu F, Hummer G. Drying transition in the hydrophobic gate of the glic channel blocks ion conduction. Biophys J. 2012;103:219.
  • Anishkin A, Sukharev S. Water dynamics and dewetting transitions in the small mechanosensitive channel mscS. Biophys J. 2004;86:2883.
  • Jensen M, Borhani DW, Lindorff-Larsen K, et al. Principles of conduction and hydrophobic gating in k+ channels. Proc Natl Acad Sci. 2010;107:5833–5838.
  • Yamashita M, Yeung PSW, Ing CE, et al. STIM1 activates crac channels through rotation of the pore helix to open a hydrophobic gate. Nat Commun. 2017;8. doi:10.1038/NCOMMS14512.
  • Guardiani C, Sun D, Giacomello A. Unveiling the gating mechanism of CRAC channel: a computational study. Front Mol Biosci. 2021;8. doi:10.3389/FMOLB.2021.773388.
  • Sun Y, Li Y, Tan JC. Liquid intrusion into zeolitic imidazolate framework-7 nanocrystals: exposing the roles of phase transition and gate opening to enable energy absorption applications. ACS Appl Mater Interfaces. 2018;10:41831–41838.
  • Bushuev YG, Sastre G. Atomistic simulation of water intrusion-extrusion in itq-4 (IFR) and zsm-22 (ton): the role of silanol defects. J Phys Chem C. 2011;115:21942–21953.
  • Grosu Y, Gomes S, Renaudin G, et al. Stability of zeolitic imidazolate frameworks: effect of forced water intrusion and framework flexibility dynamics. RSC Adv. 2015;5:89498–89502.
  • Chapman KW, Halder GJ, Chupas PJ. Pressure-induced amorphization and porosity modification in a metal-organic framework. J Am Chem Soc. 2009;131:17546–17547.
  • Hu Y, Kazemian H, Rohani S, et al. In situ high pressure study of ZIF-8 by FTIR spectroscopy. Chem Commun. 2011;47:12694.
  • Pan Y, Liu Y, Zeng G, et al. Rapid synthesis of zeolitic imidazolate framework-8 (zif-8) nanocrystals in an aqueous system. Chem Commun. 2011;47. doi:10.1039/c0cc05002d.
  • Mortada B, Chaplais G, Nouali H, et al. Phase transformations of metal-organic frameworks MAF-6 and ZIF-71 during intrusion-extrusion experiments. J Phys Chem C. 2019;123:4319–4328.
  • Khay I, Daou TJ, Nouali H, et al. High pressure intrusion-extrusion of LiCl aqueous solutions in silicalite-1 zeolite: influence on energetic performances. J Phys Chem C. 2014;118:3935–3941.
  • Tzanis L, Nouali H, Daou TJ, et al. Influence of the aqueous medium on the energetic performances of silicalite-1. Mater Lett. 2014;115:229–232.
  • Ryzhikov A, Khay I, Nouali H, et al. High pressure intrusion-extrusion of electrolyte solutions in aluminosilicate fau and *bea-type zeolites. Microporous Mesoporous Mater. 2016;221:1–7.
  • Cailliez F, Trzpit M, Soulard M, et al. Thermodynamics of water intrusion in nanoporous hydrophobic solids. Phys Chem Chem Phys. 2008;10:4817.
  • Ko TW, Finkler JA, Goedecker S, et al. A fourth-generation high-dimensional neural network potential with accurate electrostatics including non-local charge transfer. Nat Commun. 2021;12:1–11.
  • Behler J, Parrinello M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys Rev Lett. 2007;98:146401.