3,523
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Electromagnetically induced transparency quantum memory for non-classical states of light

, , , , ORCID Icon & ORCID Icon

References

  • Yin J, Cao Y, Li YH, et al. Satellite-based entanglement distribution over 1200 kilometers. Science. 2017;356:1140–27.
  • Huo MR, Qin JL, Cheng JL, et al. Deterministic quantum teleportation through fiber channels. Sci Adv. 2018;4:eaas9401.
  • Su XL, Wang M, Yan ZH, et al. Quantum network based on non-classical light. Sci China Inf Sci. 2020;63:1–12.
  • Hosseini M, Sparkes BM, Campbell G, et al. High efficiency coherent optical memory with warm rubidium vapour. Nat commun. 2011;2:1–5.
  • Parigi V, Ambrosio V, Arnold C, et al. Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory. Nat Commun. 2015;6:7706.
  • Yan ZH, Jia XJ. Quantum manipulation and enhancement of deterministic entanglement between atomic ensemble and light via coherent feedback control. Quantum Sci. Technol. 2017; 2:024003.
  • Pu YF, Jiang N, Chang W, et al. Experimental realization of a multiplexed quantum memory with 225 individually accessible memory cells. Nat Commun. 2017;8:15359.
  • Colangelo G, Ciurana FM, Bianchet LC, et al. Simultaneous tracking of spin angle and amplitude beyond classical limits. Nature. 2017;543:525–528.
  • Specht HP, Nölleke C, Reiserer A, et al. A single-atom quantum memory. Nature. 2011;473:190–193.
  • Facon A, Dietsche EK, Grosso D, et al. A sensitive electrometer based on a Rydberg atom in a Schrödinger-cat state. Nature. 2016;535:262–265.
  • Stute A, Casabone B, Schindler P, et al. Tunable ion–photon entanglement in an optical cavity. Nature. 2012;485:482–485.
  • Hucul D, Inlek IV, Vittorini G, et al. Modular entanglement of atomic qubits using photons and phonons. Nat Phys. 2015;11:37–42.
  • Flurin E, Roch N, Pillet JD, et al. Superconducting quantum node for entanglement and storage of microwave radiation. Phys Rev Lett. 2015;114:090503.
  • Fiore V, Yang Y, Kuzyk MC, et al. Storing optical information as a mechanical excitation in a silica optomechanical resonator. Phys Rev Lett. 2011;107:133601.
  • Lee H, Suh MG, Chen T, et al. Spiral resonators for on-chip laser frequency stabilization. Nat commun. 2013;4:1–6.
  • Riedinger R, Hong S, Norte RA, et al. Non-classical correlations between single photons and phonons from a mechanical oscillator. Nature. 2016;530:313–316.
  • Kiesewetter S, Teh RY, Drummond PD, et al. Pulsed entanglement of two optomechanical oscillators and furry’s hypothesis. Phys Rev Lett. 2017;119:023601.
  • Saglamyurek E, Sinclair N, Jin J, et al. Broadband waveguide quantum memory for entangled photons. Nature. 2011;469:512–515.
  • Zhong M, Hedges MP, Ahlefeldt RL, et al. Optically addressable nuclear spins in a solid with a six-hour coherence time. Nature. 2015;517:177–180.
  • Duan LM, Lukin MD, Cirac JI, et al. Long-distance quantum communication with atomic ensembles and linear optics. Nature. 2001;414:413–418.
  • Daiss S, Langenfeld S, Welte S, et al. A quantum-logic gate between distant quantum-network modules. Science. 2021;371:614–617.
  • Bao H, Duan J, Jin S, et al. Spin squeezing of 1011 atoms by prediction and retrodiction measurements. Nature. 2020;581:159–163.
  • Fleischhauer M, Imamoglu A, Marangos JP. Electromagnetically induced transparency: optics in coherent media. Rev Mod Phys. 2005;77:633.
  • Phillips DF, Fleischhauer A, Mair A, et al. Storage of light in atomic vapor. Phys Rev Lett. 2001;86:783.
  • Fleischhauer M, Lukin MD. Quantum memory for photons: dark-state polaritons. Phys Rev A. 2002;65:022314.
  • Julsgaard B, Sherson J, Cirac JI, et al. Experimental demonstration of quantum memory for light. Nature. 2004;432:482–486.
  • Hétet G, Longdell JJ, Sellars MJ, et al. Multimodal properties and dynamics of gradient echo quantum memory. Phys Rev Lett. 2008;101:203601.
  • Moiseev SA, Kröll S. Complete reconstruction of the quantum state of a single-photon wave packet absorbed by a doppler-broadened transition. Phys Rev Lett. 2001;87:173601.
  • Afzelius M, Gisin N, De-riedmatten H, et al. A solid-state light–matter interface at the single-photon level. Nature. 2008;456:773–777.
  • Yuan ZS, Chen YA, Zhao B, et al. Experimental demonstration of a BDCZ quantum repeater node. Nature. 2008;454:1098–1101.
  • Heller L, Farrera P, Heinze G, et al. Cold-atom temporally multiplexed quantum memory with cavity-enhanced noise suppression. Phys Rev Lett. 2020;124:210504.
  • Fleischhauer M, Lukin MD. Dark-state polaritons in electromagnetically induced transparency. Phys Rev Lett. 2000;84:5094.
  • Cviklinski J, Ortalo J, Laurat J, et al. Reversible quantum interface for tunable single-sideband modulation. Phys Rev Lett. 2008;101:133601.
  • Katz O, Firstenberg O. Light storage for one second in room-temperature alkali vapor. Nat commun. 2018;9:1–6.
  • Novikova I, Gorshkov AV, Phillips DF, et al. Optimal control of light pulse storage and retrieval. Phys Rev Lett. 2007;98:243602.
  • Hsiao YF, Tsai PJ, Chen HS, et al. Highly efficient coherent optical memory based on electromagnetically induced transparency. Phys Rev Lett. 2018;120:183602.
  • Vernaz-Gris P, Huang K, Cao M, et al. Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble. Nat commun. 2018;9:1–6.
  • Schraft D, Hain M, Lorenz N, et al. Stopped Light at High Storage Efficiency in a Pr 3 + Y 2 SiO 5 Crystal. Phys Rev Lett. 2016;116:073602.
  • Wang YF, Li JF, Zhang SC, et al. Efficient quantum memory for single-photon polarization qubits. Nat Photon. 2019;13:346.
  • Pan JW, Chen ZB, Lu CY, et al. Multiphoton entanglement and interferometry. Rev Mod Phys. 2012;84:777.
  • Braunstein SL, Van-Loock P. Quantum information with continuous variables. Rev Mod Phys. 2005;77:513.
  • Yan Z-H, Qin J-L, Qin -Z-Z, et al. Generation of non-classical states of light and their application in deterministic quantum teleportation. Fundamental Res. 2021; 1: 43–49.
  • Wu LA, Kimble HJ, Hall JL, et al. Generation of squeezed states by parametric down conversion. Phys Rev Lett. 1986;57:2520.
  • Ou ZY, Pereira SF, Kimble HJ, et al. Realization of the Einstein-Podolsky-Rosen paradox for continuous variables. Phys Rev Lett. 1992;68:3663.
  • Cai XD, Wu D, Su ZE, et al. Entanglement-based machine learning on a quantum computer. Phys Rev Lett. 2015;114:110504.
  • Su XL, Hao SH, Deng XW, et al. Gate sequence for continuous variable one-way quantum computation. Nat Commun. 2013;4:1–9.
  • Chen YA, Zhang AN, Zhao Z, et al. Experimental quantum secret sharing and third-man quantum cryptography. Phys Rev Lett. 2005;95:200502.
  • Lance AM, Symul T, Bowen WP, et al. Tripartite quantum state sharing. Phys Rev Lett. 2004;92:177903.
  • Zhou YY, Yu J, Yan ZH, et al. Quantum secret sharing among four players using multipartite bound entanglement of an optical field. Phys Rev Lett. 2018;121:150502.
  • Bouwmeester D, Pan JW, Mattle K, et al. Experimental quantum teleportation. Nature. 1997;390:575–579.
  • Furusawa A, Sørensen JL, Braunstein SL, et al. Unconditional quantum teleportation. Science. 1998;282:706–709.
  • Pan JW, Bouwmeester D, Weinfurter H, et al. Experimental entanglement swapping:entangling photons that never interacted. Phys Rev Lett. 1998;80:3891.
  • Jia XJ, Su XL, Pan Q, et al. Experimental demonstration of unconditional entanglement swapping for continuous variables. Phys Rev Lett. 2004;93:250503.
  • Zuo XJ, Yan ZH, Feng YN, et al. Quantum interferometer combining squeezing and parametric amplification. Phys Rev Lett. 2020;124:173602.
  • Iskhakov TS, Agafonov IN, Chekhova MV, et al. Polarization-Entangled light pulses of 10 5 photons. Phys Rev Lett. 2012;109:150502.
  • Jensen K, Wasilewski W, Krauter H, et al. Quantum memory for entangled continuous-variable states. Nat Phys. 2011;7:13–16.
  • Appel J, Figueroa E, Korystov D, et al. Quantum memory for squeezed light. Phys Rev Lett. 2008;100:093602.
  • Honda K, Akamatsu D, Arikawa M, et al. Storage and retrieval of a squeezed vacuum. Phys Rev Lett. 2008;100:093601.
  • Choi KS, Deng H, Laurat J, et al. Mapping photonic entanglement into and out of a quantum memory. Nature. 2008;452:67–71.
  • Ladd TD, Jelezko F, Laflamme R, et al. Quantum computers. Nature. 2010;464:45–53.
  • Sangouard N, Simon C, De Riedmatten H, et al. Quantum repeaters based on atomic ensembles and linear optics. Rev Mod Phys. 2011;83:33.
  • Kimble HJ. The quantum internet. Nature. 2008;453:1023–1030.
  • Yan ZH, Wu L, Jia XJ, et al. Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles. Nat Commun. 2017;8:1–8.
  • Yan ZH, Wu L, Jia XJ, et al. Quantum entanglement among multiple memories for continuous variables. Adv Quantum Technol. 2021;4:2100071.
  • Lukin MD. Colloquium:trapping and manipulating photon states in atomic ensembles. Rev Mod Phys. 2003;75:457.
  • Boller KJ, Imamoğlu A, Harris SE. Observation of electromagnetically induced transparency. Phys Rev Lett. 1991;66:2593.
  • Moseley RR, Sinclair BD, Dunn MH. Local field effect in the three-level atom. Opt Commun. 1994;108:247–252.
  • Harris SE, Field JE, Kasapi A. Dispersive properties of electromagnetically induced transparency. Phys Rev A. 1992;46:R29.
  • Kasapi A, Jain M, Yin GY, et al. Electromagnetically induced transparency:propagation dynamics. Phys Rev Lett. 1995;74:2447.
  • Hau L, Harris S, Dutton Z, et al. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature. 1999;397:594–598.
  • Kash MM, Sautenkov VA, Zibrov AS, et al. Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas. Phys Rev Lett. 1999;82:5229.
  • Budker D, Kimball DF, Rochester SM, et al. Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation. Phys Rev Lett. 1999;83:1767.
  • Gorshkov AV, André A, Fleischhauer M, et al. Universal approach to optimal photon storage in atomic media. Phys Rev Lett. 2007;98:123601.
  • Zhang Q, Huang G. Suppression of quantum noise by two-mode squeezed states for photon propagation under conditions of electromagnetically induced transparency and four-wave mixing. Phys Rev A. 2020;101:033806.
  • Zhang R, Wang X-B. Storage efficiency of probe pulses in an electromagnetically-induced-transparency medium. Phys Rev A. 2016;94:063856.
  • Zhang Q, Huang G. Quantum memory of single-photon polarization qubits via double electromagnetically induced transparency. Phys Rev A. 2021;104:033714.
  • Maxwell D, Szwer DJ, Paredes-Barato D, et al. Storage and control of optical photons using rydberg polaritons. Phys Rev Lett. 2013;110:103001.
  • Li L, Kuzmich A. Quantum memory with strong and controllable Rydberg-level interactions. Nature Communications. 2016;7:1–5.
  • Tian XD, Liu YM, Bao QQ, et al. Nonclassical storage and retrieval of a multiphoton pulse in cold rydberg atoms. Phys Rev A. 2018;97:043811.
  • Bai Z, Li W, Huang G. Stable single light bullets and vortices and their active control in cold Rydberg gases. Optica. 2019;6:309–317.
  • Shou C, Zhang Q, Luo W, et al. Photon storage and routing in quantum dots with spin-orbit coupling. Opt Express. 2021;29:9772–9785.
  • Chen Y, Bai Z, Huang G. Ultraslow optical solitons and their storage and retrieval in an ultracold ladder-type atomic system. Phys Rev A. 2014;89:023835.
  • Chen Y, Chen Z, Huang G. Storage and retrieval of vector optical solitons via double electromagnetically induced transparency. Phys Rev A. 2015;91:023820.
  • Shou C, Huang G. Storage and retrieval of slow-light dark solitons. Opt Lett. 2020;45:6787–6790.
  • Su J, Xu D, Huang G. Storage and retrieval of surface polaritons. ACS Photonics. 2018;5:2496–2502.
  • Phillips NB, Gorshkov AV, Novikova I. Optimal light storage in atomic vapor. Phys Rev A. 2008;78:023801.
  • Novikova I, Phillips NB, Gorshkov AV. Optimal light storage with full pulse-shape control. Phys Rev A. 2008;78:021802.
  • Chen YH, Lee MJ, Wang IC, et al. Coherent optical memory with high storage efficiency and large fractional delay. Phys Rev Lett. 2013;110:083601.
  • Xu ZX, Wu YL, Tian L, et al. Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy. Phys Rev Lett. 2013;111:240503.
  • Lauk N, O’Brien C, Fleischhauer M. Fidelity of photon propagation in electromagnetically induced transparency in the presence of four-wave mixing. Phys Rev A. 2013;88:013823.
  • Hedges MP, Longdell JJ, Li YM, et al. Efficient quantum memory for light. Nature. 2010;465:1052–1056.
  • Zhou ZQ, Lin WB, Yang M, et al. Realization of reliable solid-state quantum memory for photonic polarization qubit. Phys Rev Lett. 2012;108:190505.
  • Saglamyurek E, Puigibert MG, Zhou Q, et al. A multiplexed light-matter interface for fibre-based quantum networks. Nat commun. 2016;7:1–7.
  • Heinze G, Hubrich C, Halfmann T. Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute. Phys Rev Lett. 2013;111:033601.
  • Knill E, Laflamme RM, J G. A scheme for efficient quantum computation with linear optics. Nature. 2001;409:46–52.
  • Zhang S, Chen JF, Liu C, et al. A dark-line two-dimensional magneto-optical trap of 85 Rb atoms with high optical depth. Rev Sci Instrum. 2012;83:073102.
  • Geng J, Campbell GT, Bernu J, et al. Electromagnetically induced transparency and four-wave mixing in a cold atomic ensemble with large optical depth. New J Phys. 2014;16:113053.
  • Kolchin P, Belthangady C, Du S, et al. Electro-optic modulation of single photons. Phys Rev Lett. 2008;101:103601.
  • Chen JF, Zhang S, Yan H, et al. Shaping biphoton temporal waveforms with modulated classical fields. Phys Rev Lett. 2010;104:183604.
  • Appel J, Hoffman D, Figueroa E, et al. Electronic noise in optical homodyne tomography. Phys Rev A. 2007;75:035802.
  • Arikawa M, Honda K, Akamatsu D, et al. Observation of electromagnetically induced transparency for a squeezed vacuum with the time domain method. Opt Express. 2007;15:11849–11854.
  • Hansen H, Aichele T, Hettich C, et al. Ultrasensitive pulsed, balanced homodyne detector: application to time-domain quantum measurements. Opt Lett. 2001;26:1714–1716.
  • Neergaard-Nielsen JS, Nielsen BM, Hettich C, et al. Generation of a superposition of odd photon number states for quantum information networks. Phys Rev Lett. 2006;97:083604.
  • Takei N, Lee N, Moriyama D, et al. Time-gated Einstein-Podolsky-Rosen correlation. Phys Rev A. 2006;74:060101.
  • Tan SM, Walls DF, Collett MJ. Nonlocality of a single photon. Phys Rev Lett. 1991;66:252–255.
  • Hessmo B, Usachev P, Hoshang H, et al. Experimental demonstration of single photon nonlocality. Phys Rev Lett. 2004;92:180401.
  • Jacques V, Wu E, Grosshans F, et al. Experimental realization of wheeler’s delayed-choice gedanken experiment. Science. 2007;315:966–968.
  • Laurat J, Chou CW, Deng H, et al. Towards experimental entanglement connection with atomic ensembles in the single excitation regime. New J Phys. 2007;9:207–220.
  • Van Loock P, Furusawa A. Detecting genuine multipartite continuous variable entanglement. Phys Rev A. 2003;67:052315.
  • Wu L, Yan ZH, Liu YH, et al. Experimental generation of tripartite polarization entangled states of bright optical beams. Appl Phys Lett. 2016;108:161102.
  • Ou ZY. Efficient conversion between photons and between photon and atom by stimulated emission. Phys Rev A. 2008;78:023819.
  • He QY, Reid MD, Giacobino E, et al. Dynamical oscillator-cavity model for quantum memories. Phys Rev A. 2009;79:022310.
  • Yang SJ, Wang XJ, Bao XH, et al. An efficient quantum light–matter interface with sub-second lifetime. Nat Photon. 2016;10:381–384.
  • Saunders DJ, Munns JHD, Champion TFM, et al. Cavity-enhanced room-temperature broadband raman memory. Phys Rev Lett. 2016;116:090501.
  • Awschalom D, Berggren KK, Bernien H, et al. Development of quantum interconnects (quics) for next-generation information technologies. PRX Quantum. 2021; 2: 017002.
  • Hedges MP, Longdell JJ, Li Y, et al. Efficient quantum memory for light. Nature. 2010;465:1052–1056.