4,569
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Berry phase in quantum oscillations of topological materials

&
Article: 2064230 | Received 25 Jan 2022, Accepted 06 Apr 2022, Published online: 20 Apr 2022

References

  • Berry MV. Quantal phase factors accompanying adiabatic changes, proceedings of the royal society of London. A Math Phys Sci. 1984;392:45–27.
  • Zak J. Berry’s phase for energy bands in solids. Phys Rev Lett. 1989;62:2747.
  • Mikitik G, Sharlai YV. Manifestation of Berry’s phase in metal physics. Phys Rev Lett. 1999;82:2147.
  • Shubnikov L, de Haas W. Leiden Commun. 207a (1930). Proc Netherlands R Acad Sci. 1930;33:130–163.
  • De Haas W, Van Alphen P. The dependence of the susceptibility of diamagnetic metals upon the field, Proc. Netherlands Roy Acad Sci. 1930;33:1106–1118.
  • Shoenberg D. Magnetic oscillations in metals. New York: Cambridge University Press; 2009.
  • Pippard AB, Pippard PAB. Magnetoresistance in metals. Cambridge: Cambridge University Press; 1989.
  • Kane CL, Mele EJ. Quantum spin Hall effect in graphene. Phys Rev Lett. 2005;95:226801.
  • Fu L, Kane CL, Mele EJ. Topological insulators in three dimensions. Phys Rev Lett. 2007;98:106803.
  • Moore JE, Balents L. Topological invariants of time-reversal-invariant band structures. Phys Rev B. 2007;75:121306.
  • Fu L, Kane CL. Topological insulators with inversion symmetry. Phys Rev B. 2007;76:045302.
  • Teo JCY, Fu L, Kane CL. Surface states and topological invariants in three-dimensional topological insulators: application to Bi1-xSbx. Phys Rev B. 2008;78. 10.1103/PhysRevB.78.045426
  • Xia Y, Qian D, Hsieh D, et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat Phys. 2009;5:398–402.
  • Hsieh D, Xia Y, Qian D, et al. Observation of time-reversal-protected single-dirac-cone topological-insulator states in Bi2Te3 and Sb2Te3. Phys Rev Lett. 2009;103:146401.
  • Fu L. Topological crystalline insulators. Phys Rev Lett. 2011;106:106802.
  • Hsieh TH, Lin H, Liu J, et al. Topological crystalline insulators in the SnTe material class. Nat Commun. 2012;3:1–7.
  • Tanaka Y, Ren Z, Sato T, et al. Experimental realization of a topological crystalline insulator in SnTe. Nat Phys. 2012;8:800–803.
  • Dziawa P, Kowalski B, Dybko K, et al. Topological crystalline insulator states in Pb1−xSnxSe. Nat Mater. 2012;11:1023–1027.
  • Wang Z, Alexandradinata A, Cava RJ, et al. Hourglass fermions. Nature. 2016;532:189–194.
  • Ma J, Yi C, Lv B, et al. Experimental evidence of hourglass fermion in the candidate nonsymmorphic topological insulator KHgSb. Sci Adv. 2017;3:e1602415.
  • Wieder BJ, Bradlyn B, Wang Z, et al. Wallpaper fermions and the nonsymmorphic Dirac insulator. Science. 2018;361:246–251.
  • Wan X, Turner AM, Vishwanath A, et al. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys Rev B. 2011;83:205101.
  • Xu G, Weng H, Wang Z, et al. Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4. Phys Rev Lett. 2011;107:186806.
  • Wang Z, Sun Y, Chen X-Q, et al. Dirac semimetal and topological phase transitions in A3Bi (A= Na, K, Rb). Phys Rev B. 2012;85:195320.
  • Wang Z, Weng H, Wu Q, et al. Three-dimensional Dirac semimetal and quantum transport in Cd3As2. Phys Rev B. 2013;88:125427.
  • Liu Z, Zhou B, Zhang Y, et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science. 2014;343:864–867.
  • Liu Z, Jiang J, Zhou B, et al. A stable three-dimensional topological Dirac semimetal Cd3As2. Nat Mater. 2014;13:677–681.
  • Weng H, Fang C, Fang Z, et al. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys Rev X. 2015;5:011029.
  • Lv B, Weng H, Fu B, et al. Experimental discovery of Weyl semimetal TaAs. Phys Rev X. 2015;5:031013.
  • Lv B, Xu N, Weng H, et al. Observation of Weyl nodes in TaAs. Nat Phys. 2015;11:724–727.
  • Lv B, Muff S, Qian T, et al. Observation of Fermi-arc spin texture in TaAs. Phys Rev Lett. 2015;115:217601.
  • Soluyanov AA, Gresch D, Wang Z, et al. Type-II Weyl semimetals. Nature. 2015;527:495–498.
  • Deng K, Wan G, Deng P, et al. Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2. Nat Phys. 2016;12:1105–1110.
  • Weng H, Dai X, Fang Z. Topological semimetals predicted from first-principles calculations. J Phys. 2016;28:303001.
  • Wieder BJ, Kim Y, Rappe A, et al. Double Dirac semimetals in three dimensions. Phys Rev Lett. 2016;116:186402.
  • Bradlyn B, Cano J, Wang Z, et al. Beyond Dirac and Weyl fermions: unconventional quasiparticles in conventional crystals. Science. 2016;353:aaf5037.
  • Weng H, Fang C, Fang Z, et al. Topological semimetals with triply degenerate nodal points in θ-phase tantalum nitride. Phys Rev B. 2016;93:241202.
  • Zhu Z, Winkler GW, Wu Q, et al. Triple point topological metals. Phys Rev X. 2016;6:031003.
  • Weng H, Fang C, Fang Z, et al. Coexistence of Weyl fermion and massless triply degenerate nodal points. Phys Rev B. 2016;94:165201.
  • Huang H, Liu J, Vanderbilt D, et al. Topological nodal-line semimetals in alkaline-earth stannides, germanides, and silicides. Phys Rev B. 2016;93:201114.
  • Hosen MM, Dimitri K, Belopolski I, et al. Tunability of the topological nodal-line semimetal phase in ZrSi X-type materials (X= S, Se, Te). Phys Rev B. 2017;95:161101.
  • Xu Q, Yu R, Fang Z, et al. Topological nodal line semimetals in the CaP3 family of materials. Phys Rev B. 2017;95:045136.
  • Yu R, Fang Z, Dai X, et al. Topological nodal line semimetals predicted from first-principles calculations. Front Phys. 2017;12:127202.
  • Wang J-T, Chen C, Kawazoe Y. Topological nodal line semimetal in an orthorhombic graphene network structure. Phys Rev B. 2018;97:245147.
  • Gu C, Hu J, Chen X, et al. Experimental evidence of crystal symmetry protection for the topological nodal line semimetal state in ZrSiS. Phys Rev B. 2019;100:205124.
  • Emmanouilidou E, Shen B, Deng X, et al. Magnetotransport properties of the single-crystalline nodal-line semimetal candidates CaTX (T= Ag, Cd; X= As, Ge). Phys Rev B. 2017;95:245113.
  • Hu J, Tang Z, Liu J, et al. Evidence of topological nodal-line fermions in ZrSiSe and ZrSiTe. Phys Rev Lett. 2016;117:016602.
  • Bian G, Chang T-R, Sankar R, et al. Topological nodal-line fermions in spin-orbit metal PbTaSe2. Nat Commun. 2016;7:1–8.
  • Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306:666–669.
  • Luk’yanchuk IA, Kopelevich Y. Phase analysis of quantum oscillations in graphite. Phys Rev Lett. 2004;93:166402.
  • Zhang YB, Tan YW, Stormer HL, et al. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature. 2005;438:201–204.
  • Fang Z, Nagaosa N, Takahashi KS, et al. The anomalous Hall effect and magnetic monopoles in momentum space. Science. 2003;302:92–95.
  • Ando T, Nakanishi T, Saito R. Berry’s phase and absence of back scattering in carbon nanotubes. J Phys Soc Jpn. 1998;67:2857–2862.
  • McEuen PL, Bockrath M, Cobden DH, et al. Disorder, pseudospins, and backscattering in carbon nanotubes. Phys Rev Lett. 1999;83:5098.
  • Novoselov KS, Geim AK, Morozov SV, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature. 2005;438:197–200.
  • Ren Y-N, Zhang M-H, Yan C, et al. Local measurements of tunneling magneto-conductance oscillations in monolayer, Bernal-stacked bilayer, and ABC-stacked trilayer graphene. Sci China Phys Mech Astron. 2021;64:1–6.
  • Dutreix C, Gonzalez-Herrero H, Brihuega I, et al. Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations. Nature. 2019;574:219–222.
  • Zhang Y, Su Y, He L. Local berry phase signatures of bilayer graphene in intervalley quantum interference. Phys Rev Lett. 2020;125:116804.
  • Mesaros A, Sadri D, Zaanen J. Berry phase of dislocations in graphene and valley conserving decoherence. Phys Rev B. 2009;79:155111.
  • Wright AR, McKenzie RH. Quantum oscillations and Berry’s phase in topological insulator surface states with broken particle-hole symmetry. Phys Rev B. 2013;87:085411.
  • Bennaceur K, Guillemette J, Levesque PL, et al. Measurement of topological Berry phase in highly disordered graphene. Phys Rev B. 2015;92:125410.
  • Kuntsevich AY, Shupletsov AV, Minkov GM. Simple mechanisms that impede the Berry phase identification from magneto-oscillations. Phys Rev B. 2018;97:195431.
  • Datta B, Adak PC, Shi LK, et al. Nontrivial quantum oscillation geometric phase shift in a trivial band. Sci Adv. 2019;5:eaax6550.
  • Zhang H, Liu C-X, Qi X-L, et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat Phys. 2009;5:438–442.
  • Chen Y, Analytis JG, Chu J-H, et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science. 2009;325:178–181.
  • Xiong J, Luo Y, Khoo Y, et al. High-field Shubnikov–de Haas oscillations in the topological insulator Bi2Te2Se. Phys Rev B. 2012;86:045314.
  • Xiang F-X, Wang X-L, Veldhorst M, et al. Observation of topological transition of Fermi surface from a spindle torus to a torus in bulk Rashba spin-split BiTeCl. Phys Rev B. 2015;92:035123.
  • Zhao W, Cortie D, Chen L, et al. Quantum oscillations in iron-doped single crystals of the topological insulator Sb2Te3. Phys Rev B. 2019;99:165133.
  • Qu D-X, Hor YS, Xiong J, et al. Quantum oscillations and Hall anomaly of surface states in the topological insulator Bi2Te3. Science. 2010;329:821–824.
  • Almoalem A, Silber I, Sandik S, et al. Link between superconductivity and a Lifshitz transition in intercalated Bi2Se3. Phys Rev B. 2021;103:174518.
  • Liu Z, Yao X, Shao J, et al. Superconductivity with topological surface state in SrxBi2Se3. J Am Chem Soc. 2015;137:10512–10515.
  • Kuntsevich AY, Shupletsov A, Minkov G. Simple mechanisms that impede the Berry phase identification from magneto-oscillations. Phys Rev B. 2018;97:195431. 10.1103/PhysRevB.97.195431.
  • Busch M, Chiatti O, Pezzini S, et al. High-temperature quantum oscillations of the Hall resistance in bulk Bi2Se3. Sci Rep. 2018;8:1–8.
  • Taskin A, Ando Y. Berry phase of nonideal Dirac fermions in topological insulators. Phys Rev B. 2011;84:035301.
  • Ren Z, Taskin A, Sasaki S, et al. Large bulk resistivity and surface quantum oscillations in the topological insulator Bi2Te2Se. Phys Rev B. 2010;82:241306.
  • Xu S-Y, Neupane M, Liu C, et al. Hedgehog spin texture and Berry’s phase tuning in a magnetic topological insulator. Nat Phys. 2012;8:616–622.
  • Lu H-Z, Shi J, Shen S-Q. Competition between weak localization and antilocalization in topological surface states. Phys Rev Lett. 2011;107:076801.
  • Zhao W, Chen L, Yue Z, et al. Quantum oscillations of robust topological surface states up to 50 K in thick bulk-insulating topological insulator. Npj Quant Mater. 2019;4:1–6.
  • Zhao W, Trang CX, Li Q, et al. Massive Dirac fermions and strong Shubnikov–de Haas oscillations in single crystals of the topological insulator Bi2Se5 doped with Sm and Fe. Phys Rev B. 2021;104:085153.
  • Chang C-Z, Zhang J, Feng X, et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science. 2013;340:167–170.
  • Essin AM, Moore JE, Vanderbilt D. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Phys Rev Lett. 2009;102:146805.
  • Hor Y, Roushan P, Beidenkopf H, et al. Development of ferromagnetism in the doped topological insulator Bi2−xMnxTe3. Phys Rev B. 2010;81:195203.
  • Checkelsky JG, Ye J, Onose Y, et al. Dirac-fermion-mediated ferromagnetism in a topological insulator. Nat Phys. 2012;8:729–733.
  • Wang Z, Segawa K, Sasaki S, et al. Ferromagnetism in Cr-doped topological insulator TlSbTe2. APL Mater. 2015;3:083302.
  • Haazen P, Laloë J-B, Nummy T, et al. Ferromagnetism in thin-film Cr-doped topological insulator Bi2Se3. Appl Phys Lett. 2012;100:082404.
  • He L, Hong X, Dong J, et al. Quantum transport evidence for the three-dimensional Dirac semimetal phase in Cd3As2. Phys Rev Lett. 2014;113:246402.
  • Murakawa H, Bahramy MS, Tokunaga M, et al. Detection of Berry’s Phase in a Bulk Rashba Semiconductor. Science. 2013;342:1490–1493.
  • Huang SM, Xu SY, Belopolski I, et al. A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nat Commun. 2015;6:1–6.
  • Huang XC, Zhao LX, Long YJ, et al. Observation of the Chiral-Anomaly-Induced Negative Magnetoresistance in 3D Weyl Semimetal TaAs. Phys Rev X. 2015;5:031023.
  • Lv BQ, Weng HM, Fu BB, et al. Experimental discovery of Weyl Semimetal TaAs. Phys Rev X. 2015;5:031013. 10.1103/PhysRevX.5.031013.
  • Weng HM, Fang C, Fang Z, et al. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys Rev X. 2015;5:011029. 10.1103/PhysRevX.5.011029.
  • Xu SY, Belopolski I, Alidoust N, et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science. 2015;349:613–617.
  • Lv BQ, Xu N, Weng HM, et al. Observation of Weyl nodes in TaAs. Nat Phys. 2015;11:724–727. 10.1038/nphys3426.
  • Yang LX, Liu ZK, Sun Y, et al. Weyl semimetal phase in the non-centrosymmetric compound TaAs. Nat Phys. 2015;11:728–732.
  • Soluyanov AA, Gresch D, Wang ZJ, et al. Type-II Weyl semimetals. Nature. 2015;527:495–498. 10.1038/nature15768.
  • Wu Y, Jo NH, Ochi M, et al. Temperature-Induced Lifshitz Transition in WTe2. Phys Rev Lett. 2015;115:166602.
  • Li SH, Gu GX, Liu EK, et al. Epitaxial growth and transport properties of magnetic weyl semimetal Co3Sn2S2 thin films. ACS Appl Electron Mater. 2020;2:126–133.
  • Shama RKG, Singh Y, Singh Y. Observation of planar Hall effect in the ferromagnetic Weyl semimetal Co3Sn2S2. J Magn Magn Mater. 2020;502:166547.
  • Xu YS, Zhao JZ, Yi CJ, et al. Electronic correlations and flattened band in magnetic Weyl semimetal candidate Co3Sn2S2. Nat Commun. 2020;11:1–11.
  • Xu QN, Liu EK, Shi WJ, et al. Topological surface Fermi arcs in the magnetic Weyl semimetal Co3Sn2S2. Phys Rev B. 2018;97:235416.
  • Yang R, Zhang T, Zhou LQ, et al. Magnetization-Induced Band Shift in Ferromagnetic Weyl Semimetal Co3Sn2S2. Phys Rev Lett. 2020;124:077403.
  • Morali N, Batabyal R, Nag PK, et al. Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2. Science. 2019;365:1286–1291.
  • Liu C, Yi CJ, Wang XY, et al., Anisotropic magnetoelastic response in the magnetic Weyl semimetal Co3Sn2S2. Science China ‒ Physics Mechanics & Astronomy. 2021. 64:1–9.
  • Sakai A, Mizuta YP, Nugroho AA, et al. Giant anomalous Nernst effect and quantum-critical scaling in a ferromagnetic semimetal. Nat Phys. 2018;14:1119–1124.
  • Guin SN, Manna K, Noky J, et al. Anomalous Nernst effect beyond the magnetization scaling relation in the ferromagnetic Heusler compound Co2MnGa. Npg Asia Mater. 2019;11:1–9.
  • Markou A, Kriegner D, Gayles J, et al. Thickness dependence of the anomalous Hall effect in thin films of the topological semimetal Co2MnGa. Phys Rev B. 2019;100:054422.
  • Xu LC, Li XK, Ding LC, et al. Anomalous transverse response of Co2MnGa and universality of the room-temperature ratio alpha(A)(ij)/sigma(A)(ij) across topological magnets. Phys Rev B. 2020;101:180404.
  • Belopolski I, Manna K, Sanchez DS, et al. Discovery of topological Weyl fermion lines and drumhead surface states in a room temperature magnet. Science. 2019;365:1278–1281.
  • Ding L, Koo J, Yi C, et al. Quantum oscillations, magnetic breakdown and thermal Hall effect in Co3Sn2S2. J Phys D Appl Phys. 2021;54:454003.
  • Klemenz S, Lei SM, Schoop LM. Topological semimetals in square-net materials. In: Clarke DR, editor. Annual review of materials research. 2019;49: 185–206.
  • Kumar N, Manna K, Qi YP, et al. Unusual magnetotransport from Si-square nets in topological semimetal HfSiS. Phys Rev B. 2017;95:121109.
  • Muechler L, Topp A, Queiroz R, et al. Modular arithmetic with nodal lines: drumhead surface states in ZrSiTe. Phys Rev X. 2020;10:011026.
  • Guo L, Chen TW, Chen C, et al. Electronic transport evidence for topological nodal-line semimetals of ZrGeSe single crystals. ACS Appl Electron Mater. 2019;1:869–876.
  • Cheng ZW, Zhang ZY, Sun HG, et al. Visualizing Dirac nodal-line band structure of topological semimetal ZrGeSe by ARPES. APL Mater. 2019;7:051105.
  • Singha R, Pariari AK, Satpati B, et al., Large nonsaturating magnetoresistance and signature of nondegenerate Dirac nodes in ZrSiS, Proceedings of the National Academy of Sciences U.S.A., 114 (2017) 2468–2473.
  • Liu J, Hu J, Zhang Q, et al. A magnetic topological semimetal Sr1−yMn1−zSb2 (y, z < 0.1). Nat Mater. 2017;16:905–910.
  • Wu F, Guo C, Smidman M, et al. Anomalous quantum oscillations and evidence for a non-trivial Berry phase in SmSb. Npj Quant Mater. 2019;4:1–6.
  • Fang Y, Tang F, Ruan YR, et al. Magnetic-field-induced nontrivial electronic state in the Kondo-lattice semimetal CeSb. Phys Rev B. 2020;101:094424.