4,394
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Quantum transport in topological nodal-line semimetals

ORCID Icon, &
Article: 2065216 | Received 14 Nov 2021, Accepted 02 Apr 2022, Published online: 02 May 2022

References

  • Hasan MZ, Kane CL, Armenta S. Headspace-liquid phase microextraction for attenuated total reflection infrared determination of volatile organic compounds at trace levels. Analytical Chemistry. 2010;82:3045.
  • Qi X-L, Zhang S-C. Topological insulators and superconductors. Rev Mod Phys. 2011;83:1057.
  • Lv B, Qian T, Ding H. Experimental perspective on three-dimensional topological semimetals. Rev Mod Phys. 2021;93:025002.
  • Burkov A. Topological semimetals. Nat Mater. 2016;15:1145.
  • Armitage N, Mele E, Vishwanath A. Weyl and Dirac semimetals in three-dimensional solids. Rev Mod Phys. 2018;90:015001.
  • Murakami S. Phase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phase. New J Phys. 2007;9:356.
  • Wan X, Turner AM, Vishwanath A, et al. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys Rev B. 2011;83:205101.
  • Wang Z, Sun Y, Chen X-Q, et al. Dirac semimetal and topological phase transitions in A 3 Bi (A=N, K, Rb). Phys Rev B. 2012;85:195320.
  • Burkov A, Hook M, Balents L. Topological nodal semimetals. Phys Rev B. 2011;84:235126.
  • Young SM, Zaheer S, Teo JC, et al. Dirac semimetal in three dimensions. Phys Rev Lett. 2012;108:140405.
  • Manes JL. Existence of bulk chiral fermions and crystal symmetry. Phys Rev B. 2012;85:155118.
  • Wang Z, Weng H, Wu Q, et al. Three-dimensional Dirac semimetal and quantum transport in Cd 3 As 2. Phys Rev B. 2013;88:125427.
  • Huang S-M, S-Y, Belopolski I, et al. Nat Commun. 2015;6:7373.
  • Weng H, Fang C, Fang Z, et al. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys Rev X. 2015;5:011029.
  • Burkov A, Balents L. Physical review letters. Physical Review Letters. 2011;107:127205.
  • Bzdušek T, Wu Q, Rüegg A, et al. Nodal-chain metals. Nature. 2016;538:75.
  • Chen W, Lu H-Z, Hou J-M. Topological semimetals with a double-helix nodal link. Phys Rev B. 2017;96:041102.
  • Yan Z, Bi R, Shen H, et al. Nodal-link semimetals. Phys Rev B. 2017;96:041103.
  • Chan Y-H, Chiu C-K, Chou M, et al. Ca 3 P 2 and other topological semimetals with line nodes and drumhead surface states. Phys Rev B. 2016;93:205132.
  • Chiu C-K, Teo JC, Schnyder AP, et al. Classification of topological quantum matter with symmetries. Rev Mod Phys. 2016;88:035005.
  • Xu G, Weng H, Wang Z, et al. Chern semimetal and the quantized anomalous hall effect in HgCr 2 Se 4. Phys Rev Lett. 2011;107:186806.
  • Weng H, Liang Y, Xu Q, et al. Topological node-line semimetal in three-dimensional graphene networks. Phys Rev B. 2015;92:045108.
  • Yu R, Weng H, Fang Z. Topological Node-Line Semimetal and Dirac Semimetal State in Antiperovskite Cu3PdN . Phys Rev Lett. 2015;115:036807.
  • Kim Y, Wieder BJ, Kane C, et al. Dirac line nodes in inversion-symmetric crystals. Phys Rev Lett. 2015;115:036806.
  • Fang C, Chen Y, Kee H-Y, et al. Topological nodal line semimetals with and without spin-orbital coupling. Phys Rev B. 2015;92:081201.
  • Chen Y, Lu Y-M, Kee H-Y. Nat Commun. 2015;6:6593.
  • Bian G, Chang T-R, Zheng H, et al. Drumhead surface states and topological nodal-line fermions in TlTaSe 2. Phys Rev B. 2016;93:121113.
  • Xie LS, Schoop LM, Seibel EM, et al. A new form of Ca 3 P 2 with a ring of Dirac nodes. APL Mater. 2015;3:083602.
  • Du Y, Tang F, Wang D, et al. CaTe: a new topological node-line and Dirac semimetal. Npj Quant Mater. 2017;2. doi:10.1038/s41535-016-0005-4
  • Zhao J, Yu R, Weng H, et al. Topological node-line semimetal in compressed black phosphorus. Phys Rev B. 2016;94:195104.
  • Yamakage A, Yamakawa Y, Tanaka Y, et al. Line-Node Dirac semimetal and topological insulating phase in noncentrosymmetric pnictides CaAg X (X = P, As). J Phys Soc Jpn. 2016;85:013708.
  • Xu Q, Yu R, Fang Z, et al. Topological nodal line semimetals in the CaP 3 family of materials. Phys Rev B. 2017;95:045136.
  • Jin Y-J, Wang R, Zhao J-Z, et al. The prediction of a family group of two-dimensional node-line semimetals. Nanoscale. 2017;9:13112.
  • Zhu Z, Li M, Li J. Topological semimetal to insulator quantum phase transition in the Zintl compounds Ba2X(X = Si,Ge). Phys Rev B. 2016;94:155121.
  • Liang Q-F, Zhou J, Yu R, et al. Node-surface and node-line fermions from nonsymmorphic lattice symmetries. Phys Rev B. 2016;93:085427.
  • Zeng M, Fang C, Chang G, et al., arXiv preprint arX-iv:1504.03492 (2015).
  • Hirayama M, Okugawa R, Miyake T, et al. Topological Dirac nodal lines and surface charges in fcc alkaline earth metals. Nat Commun. 2017;8. doi:10.1038/ncomms14022
  • Huang H, Liu J, Vanderbilt D, et al. Topological nodal-line semimetals in alkaline-earth stannides, germanides, and silicides. Phys Rev B. 2016;93:201114.
  • Li R, Ma H, Cheng X, et al. Dirac node lines in pure alkali earth metals. Phys Rev Lett. 2016;117:096401.
  • Wang J-T, Weng H, Nie S, et al. Body-Centered orthorhombic C16: a novel topological node-line semimetal. Phys Rev Lett. 2016;116:195501.
  • Sun Y, Zhang Y, Liu C-X, et al. Dirac nodal lines and induced spin Hall effect in metallic rutile oxides. Phys Rev B. 2017;95:235104.
  • Bian G, Chang T-R, Sankar R, et al. Nat Commun. 2016;7:10556.
  • Schoop LM, Ali MN, Straßer C, et al. Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS. Nat Commun. 2016;7. doi:10.1038/ncomms11696
  • Neupane M, Belopolski I, Hosen MM, et al. Observation of topological nodal fermion semimetal phase in ZrSiS. Phys Rev B. 2016;93:201104.
  • Yang Y, Xing H, Tang G, et al. Anisotropic Berry phase in the Dirac nodal-line semimetal ZrSiS: the effect of spin-orbit coupling. Phys Rev B. 2021;103:125160.
  • Novak M, Zhang S, Orbanić F, et al. Highly anisotropic interlayer magnetoresitance in ZrSiS nodal-line Dirac semimetal. Phys Rev B. 2019;100:085137.
  • VanGennep D, Paul T, Yerger C, et al. Possible pressure-induced topological quantum phase transition in the nodal line semimetal ZrSiS. Phys Rev B. 2019;99:085204.
  • Topp A, Lippmann JM, Varykhalov A, et al. Non-symmorphic band degeneracy at the Fermi level in ZrSiTe. New J Phys. 2016;18:125014.
  • Wu Y, Wang -L-L, Mun E, et al. Dirac node arcs in PtSn4. Nat Phys. 2016;12:667.
  • Wang S, Lin B-C, Wang A-Q, et al. Quantum transport in Dirac and Weyl semimetals: a review., Adv Phys X. 2017;2:518.
  • Ryu S, Hatsugai Y. Physical review letters. Physical Review Letters. 2002;89:077002.
  • Hirayama M, Okugawa R, Miyake T, et al. Topological Dirac nodal lines and surface charges in fcc alkaline earth metals. Nat Commun. 2017;8:14022 .
  • Lee PA, Ramakrishnan TV. DisordeDisordered electronic systemsred electronic systems. Rev Mod Phys. 1985;57:287.
  • Chen W, Lu H-Z, Zilberberg O. Weak localization and antilocalization in nodal-line semimetals: dimensionality and topological effects. Phys Rev Lett. 2019;122:196603.
  • Dyson FJ. Statistical theory of the energy levels of complex systems. I. 1962;J Math Phy. 3:140.
  • Hikami S, Larkin AI, Nagaoka Y. Spin-Orbit Interaction and magnetoresistance in the two dimensional random system. Prog Theoretical Phys. 1980;63:707.
  • Syzranov S, Skinner B. Electron transport in nodal-line semimetals. Phys Rev B. 2017;96:161105.
  • McCann E, Kechedzhi K, Falko VI, et al. Weak-localization magnetoresistance and valley symmetry in graphene. Phys Rev Lett. 2006;97:146805.
  • Chalaev O, Loss D. Spin-Hall conductivity due to rashba spin-orbit interaction in disordered systems. Phys Rev B. 2005;71:245318.
  • Akkermans E, Montambaux G. Mesoscopic physics of electrons and photons. Technion-Israel Institute of Technology, Haifa, Gilles Montambaux, Université Paris-Sud XI: Cambridge university press; 2007.
  • Zhou T, Tong M, Xie X, et al. Quantum transport signatures of a close candidate for a type II nodal-line semimetal. J Phys Chem Lett. 2020;11:6475.
  • Sasmal S, Mondal R, Kulkarni R, et al. Magnetotransport properties of noncentrosymmetric CaAgBi single crystal. J Phys. 2020;32:335701.
  • Kittel C, McEuen P. Kittel’s introduction to solid state physics. Hoboken, New Jersey, U.S.: John Wiley & Sons; 2018.
  • Shoenberg D. Magnetic oscillations in metals. Cambridge, England: Cambridge university press; 2009.
  • Mikitik GP, Sharlai YV. Manifestation of berry’s phase in metal physics. Phys Rev Lett. 1999;82:2147.
  • Li C, Wang C, Wan B, et al. Rules for phase shifts of quantum oscillations in topological nodal-line semimetals. Phys Rev Lett. 2018;120:146602.
  • Yang H, Moessner R, Lim L-K. Quantum oscillations in nodal line systems. Phys Rev B. 2018;97:165118.
  • Oroszlány L, Dóra B, Cserti J, et al. Topological and trivial magnetic oscillations in nodal loop semimetals. Phys Rev B. 2018;97:205107.
  • Hu J, Tang Z, Liu J, et al. Evidence of topological nodal-line fermions in ZrSiSe and ZrSiTe. Phys Rev Lett. 2016;117:016602.
  • Kumar N, Manna K, Qi Y, et al. Unusual magnetotransport from Si-square nets in topological semimetal HfSiS. Phys Rev B. 2017;95:121109.
  • Murakawa H, Bahramy M, Tokunaga M, et al. Detection of berry’s phase in a bulk rashba semiconductor. Science. 2013;342:1490.
  • He L, Hong X, Dong J, et al. Quantum transport evidence for the three-dimensional Dirac semimetal phase in Cd 3 As 2. Phys Rev Lett. 2014;113:246402.
  • Novak M, Sasaki S, Segawa K, et al. Large linear magnetoresistance in the Dirac semimetal TlBiSSe. Phys Rev B. 2015;91:041203.
  • Zhao Y, Liu H, Zhang C, et al. Anisotropic Fermi Surface and Quantum Limit Transport in High Mobility Three-Dimensional Dirac Semimetal Cd3As2. Phys Rev X. 2015;5:031037.
  • Du J, Wang H, Chen Q, et al. Large unsaturated positive and negative magnetoresistance in Weyl semimetal TaP. Sci China Phys Mech Astron. 2016;59:657406.
  • Xiong J, Kushwaha SK, Liang T, et al. Evidence for the chiral anomaly in the Dirac semimetal Na3Bi. Science. 2015;350:413.
  • Cao J, Liang S, Zhang C, et al. Nat Commun. 2015;6:7779.
  • Zhang C-L, Xu S-Y, Wang C, et al. Magnetic-tunnelling-induced Weyl node annihilation in TaP. Nat Phys. 2017;13:979.
  • Narayanan A, Watson M, Blake S, et al. Linear magnetoresistance caused by mobility fluctuations in n-Doped Cd 3 As 2. Phys Rev Lett. 2015;114:117201.
  • Park J, Lee G, Wolff-Fabris F, et al. Anisotropic Dirac fermions in a Bi square Net of SrMnBi 2. Phys Rev Lett. 2011;107:126402.
  • Xiang F-X, Wang X-L, Veldhorst M, et al. Observation of topological transition of Fermi surface from a spindle torus to a torus in bulk Rashba spin-split BiTeCl. Phys Rev B. 2015;92:035123.
  • Tafti F, Gibson Q, Kushwaha S, et al. Resistivity plateau and extreme magnetoresistance in LaSb. Nat Phys. 2016;12:272.
  • Luo Y, Ghimire NJ, Wartenbe M, et al. Electron-hole compensation effect between topologically trivial electrons and nontrivial holes in NbAs. Phys Rev B. 2015;92:205134.
  • Singha R, Pariari AK, Satpati B. Large nonsaturating magnetoresistance and signature of nondegenerate Dirac nodes in ZrSiS. Proceedings of the National Academy of Sciences. 114, 2468 (2017).
  • Ali MN, Schoop LM, Garg C, et al. Butterfly magnetoresistance, quasi-2D Dirac Fermi surface and topological phase transition in ZrSiS. Sci Adv. 2016;2:e1601742.
  • Hu J, Zhu Y, Graf D, et al. Quantum oscillation studies of the topological semimetal candidate ZrGeM(M = S,Se,Te). Phys Rev B. 2017;95:205134.
  • Wang X, Pan X, Gao M, et al. Evidence of both surface and bulk Dirac bands and anisotropic nonsaturating magnetoresistance in ZrSiS. Adv Electron Mater. 2016;2:1600228.
  • Lv -Y-Y, Zhang -B-B, Li X, et al. Extremely large and significantly anisotropic magnetoresistance in ZrSiS single crystals. Appl Phys Lett. 2016;108:244101.
  • Hu J, Tang Z, Liu J, et al. Nearly massless Dirac fermions and strong Zeeman splitting in the nodal-line semimetal ZrSiS probed by de Haas–van Alphen quantum oscillations. Phys Rev B. 2017;96:045127.
  • Pan H, Tong B, Yu J, et al. Three-Dimensional Anisotropic Magnetoresistance in the Dirac Node-Line Material ZrSiSe. . Sci Rep. 2018;8:9340.
  • Hu J, Zhu Y, Graf D, et al. Quantum oscillation studies of the topological semimetal candidate ZrGe M(M = S,Se,Te). Phys Rev B. 2017;95:205134.
  • Onsager L. Interpretation of the de Haas-van Alphen effect. 1952;Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 43:1006.
  • Mikitik G, Sharlai YV. Manifestation of Berry's Phase in Metal Physics. Physical review letters. 1999;82:2147.
  • Xiao D, Chang M-C, Niu Q. Berry phase effects on electronic properties. Rev Mod Phys. 2010;82:1959.
  • Lifshitz I. Anomalies of Electron Characteristics of a Metal in the High Pressure Region. Sov Phys JETP. 1960;11:1130.
  • Zhang X, Fu B, Jin L, et al. Topological nodal line electrides: realization of an ideal nodal line state nearly immune from Spin–Orbit coupling. J Phys Chem C. 2019;123:25871.
  • Yang M-X, Geng H, Luo W, et al. Sign reversal of magnetoresistivity in massive nodal-line semimetals due to the Lifshitz transition of the Fermi surface. Phys Rev B. 2021;104:165149.
  • Chang M-C, Niu Q. Berry phase, hyperorbits, and the Hofstadter spectrum: semiclassical dynamics in magnetic Bloch bands. Phys Rev B. 1996;53:7010.
  • Dai X, Du Z, Lu H-Z. Negative Magnetoresistance without chiral anomaly in topological insulators. Phys Rev Lett. 2017;119:166601.
  • Son D, Spivak B. Chiral anomaly and classical negative magnetoresistance of Weyl metals. Phys Rev B. 2013;88:104412.
  • Luo W, Chen W, Xing D. Anomalous Andreev reflection on a torus-shaped Fermi surface. Sci China Phys Mech Astron. 2021;64:267262.
  • Beenakker C. Specular Andreev reflection in graphene. Physical Review Letters. 2006;97:067007.
  • Chen W, Jiang L, Shen R, et al. Specular Andreev reflection in inversion-symmetric Weyl semimetals. EPL. 2013;103:27006.
  • Efetov DK, Wang L, Handschin C, et al. Specular interband Andreev reflections at van der Waals interfaces between graphene and NbSe2. Nat Phys. 2016;12:328.
  • Chen W, Luo K, Li L, et al. Proposal for detecting nodal-line semimetal surface states with resonant Spin-flipped reflection. Phys Rev Lett. 2018;121:166802.
  • Takahashi S, Maekawa S. Spin current in metals and superconductors. J Phys Soc Jpn. 2008;77:031009.
  • Valenzuela SO, Tinkham M. Direct electronic measurement of the spin Hall effect. Nature. 2006;442:176.
  • Saitoh E, Ueda M, Miyajima H, et al. Conversion of spin current into charge current at room temperature: inverse spin-Hall effect. Appl Phys Lett. 2006;88:182509.
  • Liu J, Balents L. Correlation effects and quantum oscillations in topological nodal-loop semimetals. Physical Review B. 2017;95:075426.
  • Chen W, Lado JL. Interaction-driven surface Chern insulator in nodal line semimetals. Phys Rev Lett. 2019;122:016803.
  • Takane D, Wang Z, Souma S, et al. Dirac-node arc in the topological line-node semimetal HfSiS. Phys Rev B. 2016;94:121108.
  • Takane D, Nakayama K, Souma S, et al. Observation of Dirac-like energy band and ring-torus Fermi surface associated with the nodal line in topological insulator CaAgAs. . npj quantum materials. 2018;1.
  • Song Y, Wang G, Li S, et al. Photoemission spectroscopic evidence for the dirac nodal line in the monoclinic semimetal SrAs 3. Phys Rev Lett. 2020;124:056402.
  • Ekahana SA, Wu S-C, Jiang J, et al. Observation of nodal line in non-symmorphic topological semimetal InBi. New J Phys. 2017;19:065007.
  • Feng B, Fu B, Kasamatsu S, et al. Experimental realization of two-dimensional Dirac nodal line fermions in monolayer Cu2Si. Nat Commun. 2017;8:1007.
  • Wang Y, Qian Y, Yang M, et al. Spectroscopic evidence for the realization of a genuine topological nodal-line semimetal in LaSbTe. Phys Rev B. 2021;103:125131.
  • Xu L, Xia Y, Liu S, et al. Evidence of a topological edge state in a superconducting nonsymmorphic nodal-line semimetal. Phys Rev B. 2021;103:L201109.
  • Cheng Z, Zhang Z, Sun H, et al. Visualizing Dirac nodal-line band structure of topological semimetal ZrGeSe by ARPES. APL Mater. 2019;7:051105.
  • Liu J, Liu P, Gordon K, et al. Nontrivial topology in the layered Dirac nodal-line semimetal candidate SrZnSb2 with distorted Sb square nets. Phys Rev B. 2019;100:195123.
  • Yang M, Qian Y, Yan D, et al. Magnetic and electronic properties of a topological nodal line semimetal candidate: hoSbTe. Phys Rev Mater. 2020;4:094203.
  • Qian H, Zhang X, Liu C, et al. Layer-locked spin states revealed in the centrosymmetric nodal-line semimetal HfSiS. Phys Rev B. 2021;104:035145.
  • Lou R, Guo P, Li M, et al. Experimental observation of bulk nodal lines and electronic surface states in ZrB2. npj Quantum Materials. 2018;1:43.
  • Liu Z, Lou R, Guo P. Type-II nodal line semimetal . Phys Rev X. 2018;8:031044.
  • Laha A, Malick S, Singha R, et al. Magnetotransport properties of the correlated topological nodal-line semimetal YbCdGe. Phys Rev B. 2019;99:241102.
  • An L, Zhu X, Gao W, et al. Chiral anomaly and nontrivial Berry phase in the topological nodal-line semimetal SrAs 3. Phys Rev B. 2019;99:045143.
  • Bannies J, Razzoli E, Michiardi M, et al. Extremely large magnetoresistance from electron-hole compensation in the nodal-loop semimetal ZrP2. Phys Rev B. 2021;103:155144.
  • Zhou P, Ma Z, Sun L. Coexistence of open and closed type nodal line topological semimetals in two dimensional B 2C. J Mater Chem C. 2018;6:1206.
  • Wang L, Zhang X, Meng W, et al. A topological quantum catalyst: the case of two-dimensional traversing nodal line states associated with high catalytic performance for the hydrogen evolution reaction. J Mater Chem A. 2021;9:22453.
  • Jin L, Zhang X, Liu Y, et al. Theoretical realization of two-dimensional half-metallicity and fully spin-polarized multiple nodal-line fermions in monolayer PrOBr. Phys Rev B. 2022;105:075414.
  • Kato R, Suzumura Y. A tight-binding model of an ambient-pressure molecular Dirac electron system with open nodal lines. J Phys Soc Jpn. 2020;89:044713.
  • Huang H, Jiang W, Jin K-H, et al., Tunable topological semimetal states with ultraflat nodal rings in strained YN. 2018;Phys RevB. 98:045131.
  • Emmanouilidou E, Shen B, Deng X, et al. Magnetotransport properties of the single-crystalline nodal-line semimetal candidates Ca TX(T = Ag,Cd;X = As,Ge). Phys Rev B. 2017;95:245113.
  • Hirose HT, Terashima T, Wada T, et al. Real spin and pseudospin topologies in the noncentrosymmetric topological nodal-line semimetal CaAgAs. Phys Rev B. 2020;101:245104.
  • Kwan YH, Reiss P, Han Y, et al., Quantum oscillations probe the Fermi surface topology of the nodal-line semimetal CaAgAs. 2020;Phys Rev Research. 2:012055.
  • Li S, Yu Z-M, Liu Y, et al. Type-II nodal loops: theory and material realization. Phys Rev B. 2017;96:081106.
  • Zhang X, Jin L, Dai X, et al. Topological Type-II nodal line semimetal and Dirac semimetal state in stable kagome compound Mg3 Bi2. J Phys Chem Lett. 2017;8:4814.
  • Hyart T, Heikkilä T. Momentum-space structure of surface states in a topological semimetal with a nexus point of Dirac lines. Phys Rev B. 2016;93:235147.
  • Xu Y, Zhang F, Zhang C. Structured Weyl points in Spin-Orbit coupled fermionic superfluids. Phys Rev Lett. 2015;115:265304.
  • He J, Kong X, Wang W, et al. Type-II nodal line semimetal. New J Phys. 2018;20:053019.
  • Soluyanov AA, Gresch D, Wang Z, et al. Type-II Weyl semimetals. Nature. 2015;527:495.
  • Chang G, Xu S-Y, Zhou X, et al. Topological Hopf and chain link semimetal states and their application to Co2 MnGa. Phys Rev Lett. 2017;119:156401.
  • Belopolski I, Chang G, Cochran TA, et al., arXiv preprint arXiv:2112.14722 (2021).