1,807
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Atomic scale switches based on solid state ionics

, &
Article: 2065217 | Received 28 Jan 2022, Accepted 06 Apr 2022, Published online: 13 Apr 2022

References

  • Terabe K, Hasegawa T, Nakayama T, et al. Quantum point contact switch realized by solid electrochemical reaction. Riken Rev. 2001;37:7–24.
  • Terabe K, Hasegawa T, Nakayama T, et al. Quantized conductance atomic switch. Nature. 2005;433:47–50.
  • Hasegawa T, Terabe K, Sakamoto T, et al. Nanoionics switching devices: Atomic switches. MRS Bull. 2009;34:929–934.
  • Hino T, Hasegawa T, Terabe K, et al. Atomic switch: atomic-movement-controlled nanodevices for new types of computing. Sci Tech Adv Mater. 2011;12:013003.
  • Hasegawa T, Terabe K, Tsuruoka T, et al. Atomic switch: Atom/ion movement controlled devices for beyond von-Nuemann computers. Adv Mater. 2012;24:252–267.
  • Terabe K, Hasegawa T, Nakayama T, et al. Atomic switch - from invention to practical use and future prospect. In: Invention and development of atomic switch Aono, Masakazu. Switzerland: Springer, 2020. 1–16. 978-3-030-34874-8 doi:10.1007/978-3-030-34875-5.
  • Kudo T, Fueki K. Solid state ionics. Germany: VCH Weinheim; 1990. 978-0895739858.
  • Takahashi T. Solid state ionics - Recent trends and future expectations. Bull. Electrochem. 1995;11:1–33.
  • Knauth P, Tuller HL. Solid-state ionics: Roots, status, and future prospects. J Am Ceram Soc. 2002;85:1654–1680.
  • Terabe K, Hasegawa T, Liang C, et al. Control of local ion transport to create unique functional nanodevices based on ionic conductor. Sci. Tech. Adv. Mater. 2007;8:536–542.
  • Terabe K, Tsuchiya T, Yang R, et al. Nanoionics devices enabling a multitude of new features. Nanoscale. 2016;8:13873–13879.
  • Terabe K, Tsuchiya T, Tsuruoka T. A variety of functional devices realized by ionic nanoarchitectonics, complementing electronics components. Adv Electron Mater. Early view. 2021. Doi: 10.1002/aelm.202100645
  • Eigler DM, Lutz CP, Rudge WE. An atomic switch realized with the scanning tunneling microscope. Nature. 1991;352:600603.
  • Smith DPE. Quantum point contact switches. Science. 1995;269:371–373.
  • Gimzewski JK, Möller R. Transition from the tunneling regime to point contact studied using scanning tunneling microscopy. Phys Rev B. 1987;36:1284–1287.
  • Agraït N, Rodrigo JG, Vieira S. Conductance steps and quantization in atomic-size contacts. Phys Rev B. 1993;47:12345–12348.
  • Krans JM, Muller CJ, Yanson IK, et al. One-atom point contacts. Phys Rev B. 1993;48:14721–14724.
  • Pascual JI, Méndez J, Gómez-Herrero J, et al. Quantum contact in gold nanostructures by scanning tunneling microscopy. Phys Rev Lett. 1993;71:1852–1855.
  • Olesen L, Lægsgaad E, Stensgaad I, et al. Quantized conductance in an atom-sized point contact. Phys Rev Lett. 1994;72:2251–2254.
  • Pascual JI, Méndez J, Gómez-Herrero J, et al. Properties of metallic nanowires: From conductance quantization to localization. Science. 1995;267:1793–1795.
  • Krans JM, van Ruitenbeek JM, Fisun VV, et al. The signature of conductance quaintization in metallic point contacts. Nature. 1995;375:767–769.
  • Ohnishi H, Kondo Y, Takayanagi K. Quantized conductance through individual rows of suspended gold atom. Nature. 1998;395:780–783.
  • van Wees BJ, van Houten H, Beenakker CW, et al. Quantizes conductance of point contacts in a two-dimensional electron gas. Phys Rev Lett. 1998;60:848–850.
  • Wharam DA, Thoronton TJ, Newbury R, et al. One-dimensional transport and the quantisation of the ballistic resistance. J Phys C. 1998;21:L209.
  • Takahashi T, Yamamoto O. Solid state ionics- The electrochemical analog memory cell with solid electrolyte. J Appl Electrochem. 1973;3:129–135.
  • Tada K, Ikeda H. Sanyo’s couliodes and memoriodes, in: applications of Solid Electrolytes. Takahashi T, Kozawa A, Eds. Cleveland: JEC Press, US Office of the Electro-chemical Society of Japan; 1980. p. 40–45.
  • von Ruitenbeek JM, Masis MM, Miranda E. Quantum point contact conduction Ielmini , Daniele, Waser, Rainer. Resistive switching : From Fundamentals of nanoionic redox processes to memristive device applications (Germany: Wiley-VCH). 2016;197–223. 978-3-527-33417-9.
  • Xue W, Gao S, Shang J, et al. Recent advanced of quantum conductance in memristor. Adv Electron Mater. 2019;5:1800854.
  • Hickmott TW. Low-frequency negative resistance in this anodic oxide films. J Appl Phys. 1962;33:2669–2682.
  • Gibbons JF, Beadle WE. Switching properties of thin NiO films. Solid-state Electro. 1964;7:785–797.
  • Hirose Y, Hirose H. Polarity-dependent memory switching and behavior of Ag dendrite in Ag-photodoped amorphous As2S3 films. J Appl Phys. 1976;47:2767–2772.
  • Kozicki MN, Park M, Mitkova M. Nanoscale memory elements based on solid-state electrolytes. IEEE Trans Nanotechnology. 2005;4:331–338.
  • Waser R, Aono M. Nanoionics-based resistive switching memories. Nat Mater. 2007;6:833–840.
  • Sawa A. Resistive switching in transition metal oxides. Mater Today. 2008;11:28–36.
  • Akinaga A, Shima H. Resistive random access memory (ReRAM) based on metal oxide. Proc IEEE. 2010;98:2237–2251.
  • Wong HSP, Lee LH, Yu SM, et al. Metal-oxide RRAM, Proc. IEEE. 2012;100,1951–1966 doi:10.1109/JPROC.2012.2190369.
  • Pan F, Gao S, Chen C, et al. Recent progress in resistive random access memories: Materials, switching mechanism, and performance. Mater Sci Eng. 2014; 83:1–59. R.
  • Wouters DJ, Waser R, Wuttig M. Proc. IEEE. 2015;103:1274–1288.
  • Valov I, Luebben M, Wedig A, et al. Mobile ion, transport and redox processes in memristive devices. ESC Trans. 2016;75:27–39.
  • Kozicki MN, Volov I. Electrochemical metallization memories Ielmini, Daniele, Waser, Rainer. Resistive switching, From fundamentals of nanoionic redox processes to memristive device application. Germany: Wiley-VCH; 2016. p. 483–513.
  • Dash CS, Prabaharan SRS. Nano resistive memory (Re-RAM) devices and their applications. Rev Adv Mater Sci. 2019;58:248–270.
  • Tamura T, Hasegawa T, Terabe K, et al. Switching property of atomic switch controlled by solid electrochemical reaction. Japan J Apply Phys. 2006;45:L364–366.
  • Tamura T, Hasegawa T, Terabe K. Materials dependence of switching speed of atomic switches made from silver sulfide and from copper sulfide. J Phys Conf Ser. 2007;61:1157–1161.
  • Nayak A, Tamura T, Tsuruoka T, et al. Rate-limiting processes determining the switching time in a Ag2S atom switch. J Phys Chem Lett. 2010;1:604–608.
  • Nayak A, Tsuruoka T, Terabe K. Switching kinetics of a Cu2S-based gap-type atomic switch . Nanotechnology. 2011;22:235201.
  • Morales-Masis M, van der Molen SJ, Hasegawa T, et al. Bulk and surface nucleation processes in Ag2S conductance switches. Phys Rev B. 2011;84:115310.
  • Valov I, Sapezanskaia I, Nayak A, et al. Atomically controlled electrochemical nucleation at superionic solid electrolyte surfaces. Nat Mater. 2012;11:530–535.
  • Wedig A, Luebben M, Y CD, et al. Nanoscale cation motion in TaOx, HfOx and TiOx memristive systems. Nature Nanotechnology. 2016;11:67–75.
  • Moors M, K AK, Lu Q, et al. Resistive switching mechanisms on TaOx and SrRuO3 thin-film surfaces probed by scanning tunneling microscopy. ACS Nano. 2016;10:1481–1492.
  • Budevski E, Staikov G, Lorenz WJ. Electrocrystallization: Nucleation and growth phenomena. Electrochim Acta. 2000;45:2559–2579.
  • Milchev A. Electrocrystallization: Fundamentals of nucleation and growth. Russian J. Electrochemistry. 2008;44:619–645.
  • Krishnan K, Muruganathan M, Tsuruoka T, et al. Highly reproducible and regulated conductance quantization in a polymer-based atomic switch. Adv Funct Mater. 2017;27:1605104.
  • Krishnan K, Muruganathan M, Tsuruoka T, et al. Quantized conductance operation near a single-atom point contact in polymer-based atomic switch. Japan J Appl Phys. 2017;56:06GF02.
  • Thygesen KS, Bollinger MV, Jacobsen KW. Conductance calculation with a wavelet bias set. Phys Rev B. 2003;67:115404.
  • Ohno T, Hasegawa T, Tsuruoka T, et al. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat Mater. 2011;10:591–595.
  • Hasegawa T, Ohno T, Terabe K, et al. Learning abilities achieved by a single solid-state atomic switch. Adv Mater. 2010;22:1831–1834.
  • Tsuruoka T, Hasegawa T, Terabe K, et al. Conductance quantization and synaptic behavior in a Ta2O5 based atomic switch. Nanotechnology. 2012;23:435705.
  • Sahu VK, Misra P, K DA, et al. Quantized conductance in Ta2O5 based resistive random access memory device. AIP Conf Proc. 2017;1832:120026.
  • Zhu X, Su W, Liu Y, et al. Observation of conductance quantization in oxide-based resistive switching memory. Adv Mater. 2012;24:3941–3946.
  • Aga FG, Woo J, Song J, et al. Controllable quantized conductance for multilevel data storage application using conductive bridge random access memory. Nanotechnology. 2017;28:115707.
  • Banerjee W, Hwang H. Quantized conduction device with 6-bit storage based on electrically controlled break junction. Adv Electron Mater. 2019;5:1900744.
  • Jameson JR, Gilbert N, Koushan F, et al. Quantized conductance in Ag/GeS2/W conductive-bridge memory cells. IEEE Electron Device Lett. 2012;33:257–259.
  • Nandakumar SR, Minvielle M, Nagar S, et al. A 250 mV Cu/SiO2/W memrister with half-integer quantum conductance states. Nano Lett. 2016;16:1602–1608.
  • Tappertzhofen S, Valov I, Waser R. Quantum conductance and switching kinetics of AgI-based microcrossbar cells. Nanotechnology. 2012;23:145703.
  • Jiang L, Xu L, Chen JW, et al. Conductance quantization in an AgInSbTe-based memristor at nanosecond scale. Appl Phys Lett. 2016;109:153506.
  • Strukov DB, Snider GS, Stewart DR, et al. The missing memristor found. Nature. 2008;453:80–83.
  • Lai Q, Zhang L, Li Z, et al. Ionic/electronic hybrid materials integrated in a synaptic transistor with signal processing and learning function. Adv Mater. 2010;22:2448–2453.
  • Jo SH, Chang T, Ebong I, et al. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 2010;10:1297–1301.
  • Yang R, Terabe K, Liu G, et al. On-demand nanodevice with electrical and neuromorphic multifunction realized by local ion migration. ACS Nano. 2012;6:9515–9521.
  • Edwards AH, Barnaby HJ, Campbell KA, et al. Reconfigurable memristive device technology. Proc. IEEE. 2015;103:1004–1033.
  • Zidan M, Strachan J, Lu W. The future of electronics based on memristive systems. Nature Electron. 2018;1:22–29.
  • Tang J, Yuan F, Shen X, et al. Bridging biological and artificial neural networks with emerging neuromorphic devices: fundamentals, progress, and challenges. Adv Mater. 2019;31:1902761.
  • Li Y, Lu J, Shang D, et al. Oxide-based electrolyte-gated transistors for spatiotemporal information processing. Adv Mater. 2020;32:2003018.
  • Li Y, Xuan Z, Lu J, et al. One transistor one electrolyte-gated transistor based spiking neural network for power-efficient neuromorphic computing system. Adv Funct Mater. 2021;31:2100042.
  • Yin S, Terabe K, Toney MF, et al. Effect of sintering condition on mixed ionic-electronic conducting properties of silver sulfide nanoparticles. J Appl Phys. 2012;111:053530.
  • Bose SK, Lawrence CP, Liu Z, et al. Evolution of a designless nanoparticle network into reconfigurable boolean logic. Nat Nanotechnol. 2015;10:1048–1053.
  • Mallinson JB, Shirai S, Acharya AK, et al. Avalanches and criticality in self-organized nanoscale networks. Sci Adv. 2019;5:eaaw8438.
  • Bose SK, Shirai S, Mallinson JB, et al. Synaptic dynamics in complex self-assembled nanoparticle networks. Faraday Discuss. 2019;213:471–485.
  • Pike MD, Bose SK, Mallinson JB, et al. Atomic scale dynamics drive brain-like avalanches in percolating nanostructured networks. Nano Lett. 2020;20:3935–3942.
  • Avizienis AV, Sillin HO, Martin-Olmos C, et al. Neuromorphic atomic switch networks. PLoS One. 2012;7:e42772.
  • Stieg AZ, Avizienis AV, Silin HO, et al. Emergent criticality in complex turning B-type atomic switch networks. Adv Mater. 2012;24:286–293.
  • Sillin HO, Aguilera R, Shieh HHS, et al. A theoretical and experimental study of neuromorphic atomic switch networks for reservoir computing. Nanotechnology. 2013;24:384004.
  • Milano G, Luebben M, Ma Z, et al. Self-limited single nanowire systems combining all-in-one memristive and neuromorphic functionalities. Nature Commun. 2018;9:5151.
  • Milano G, Boarino L, Ricciardi C. Junction properties of single ZnO nanowires with asymmetrical Pt and Cu contacts. Nanotechnology. 2019;30:244001.
  • Miranda E, Milano G, Ricciardi C. Compact modeling of the I-V characteristics of ZnO nanowires including nonlinear series resistance effects. IEEE Trans Nanotechnology. 2020;19:297–300.
  • Kuncic Z, Nakayama T. Neuromorphic nanowire networks: Principles, progress and future prospects for neuro-inspired information processing. Adv Phys X. 2021;6:1894234.
  • Loeffler A, Zhu R, Hochstetter J, et al. Topological properties of neuromorphic nanowire networks. Frontiers Neurosci. 2020;14:184.
  • Hochstetter J, Zhu R, Loeffler A, et al. Avalanches and edge-of chaos learning in neuromorphic nanowire networks. Nature Commun. 2021;12:4008