5,281
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Recent advances on time-stretch dispersive Fourier transform and its applications

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2067487 | Received 02 Mar 2022, Accepted 14 Apr 2022, Published online: 11 May 2022

References

  • Dudley JM, Taylor JR. Supercontinuum generation in optical fibers. Cambridge: Cambridge University Press; 2010.
  • Boyd RW. Nonlinear Optics. Burlington: MA, Elsevier Science; 2013.
  • Weiner A. Ultrafast Optics. Hoboken: NJ: Wiley Publishing; 2009.
  • Pasquazi A, Peccianti M, Razzari L, et al. Micro-Combs: a novel generation of optical sources. Phys Rep. 2018;729:1.
  • Reimer C, Kues M, Caspani L, et al. Cross-Polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip. Nat Commun. 2015;6:8236.
  • Kues M, Reimer C, Roztocki P, et al. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature. 2017;546:622.
  • Zipfel WR, Williams RM, Webb WW. Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol. 2003;21:1369.
  • Camp CH Jr, Cicerone MT. Chemically sensitive bioimaging with coherent raman scattering. Nat Photonics. 2015;9:295.
  • Agrawal GP. Nonlinear fiber optics, Nonlinear Science at the Dawn of the 21st Century. Vol. 542:195, Berlin: Springer; 2000.
  • Walmsley IA, Dorrer C. Characterization of ultrashort electromagnetic pulses. Adv Opt Photonics. 2009;1:308.
  • Trebino R. Frequency-resolved optical gating: the measurement of ultrashort laser pulses. Springer, US. 2000.
  • O’Shea P, Kimmel M, Gu X, et al. Highly simplified device for ultrashort-pulse measurement. Opt Lett. 2001;26:932.
  • Cormack IG, Sibbett W, Reid DT. Rapid measurement of ultrashort-pulse amplitude and phase from a two-photon absorption sonogram trace. JOSA B. 2001;18:1377.
  • Wong TC, Rhodes M, Trebino R. Single-shot measurement of the complete temporal intensity and phase of supercontinuum. Optica. 2014;1:119.
  • Iaconis C, Walmsley IA. Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses. Opt Lett. 1998;23:792.
  • Messager V, Louradour F, Froehly C, et al. Coherent measurement of short laser pulses based on spectral interferometry resolved in time. Opt Lett. 2003;28:743.
  • Pasquazi A, Peccianti M, Park Y, et al. Sub-picosecond phase-sensitive optical pulse characterization on a chip. Nat Photonics. 2011;5:10.
  • Pasquazi A, Peccianti M, Azaña J, et al. FLEA: Fresnel-limited extraction algorithm applied to spectral phase interferometry for direct field reconstruction (SPIDER). Opt Express. 2013;21:5743.
  • Bhushan AS, Coppinger F, Jalali B. Time-stretched analogue-to-digital conversion. Electron Lett. 1998;34:839.
  • Jannson T. Real-time Fourier transformation in dispersive optical fibers. Opt Lett. 1983;8:232.
  • Akhmanov SA, Vysloukh VA, Chirkin AS. Self-action of wave packets in a nonlinear medium and femtosecond laser pulse generation. Sov Phys Uspekhi. 1986;29:642.
  • Tong YC, Chan LY, Tsang HK. Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope. Electron Lett. 1997;33:983.
  • Solli DR, Ropers C, Koonath P, et al. Optical Rogue Waves. Nature. 2007;450:7172.
  • Wetzel B, Stefani A, Larger L, et al. Real-time full bandwidth measurement of spectral noise in supercontinuum generation. Sci Rep. 2012;2:882.
  • Godin T, Wetzel B, Dudley JM, et al. Ultrafast single-shot measurements in modulation instability and supercontinuum. Opt. Photonics News. 2013;24:55.
  • Wang X, Bigourd D, Kudlinski A, et al. Correlation between multiple modulation instability side lobes in dispersion oscillating fiber. Opt Lett. 2014;39:1881.
  • Dudley JM, Dias F, Erkintalo M, et al. Instabilities, breathers and rogue waves in optics. Nat Photonics. 2014;8:10.
  • Goda K, Jalali B. Dispersive Fourier transformation for fast continuous single-shot measurements. Nat Photonics. 2013;7. DOI:10.1038/nphoton.2012.359
  • Mahjoubfar A, Churkin DV, Barland S, et al. Time stretch and its applications. Nat Photonics. 2017;11:6.
  • Mahjoubfar A, Goda K, Ayazi A, et al. High-speed nanometer-resolved imaging vibrometer and velocimeter. Appl Phys Lett. 2011;98:101107.
  • Mance JG, Lone BML, Dolan DH, et al. Time-stretched photonic Doppler velocimetry. Opt Express. 2019;27:25022.
  • Solli DR, Chou J, Jalali B. Amplified wavelength–time transformation for real-time spectroscopy. Nat Photonics. 2008;2:48–30.
  • DeVore PTS, Buckley BW, Asghari MH, et al. Coherent time-stretch transform for near-field spectroscopy. IEEE Photonics J. 2014;6:1.
  • Dobner S, Fallnich C. Dispersive Fourier transformation femtosecond stimulated Raman scattering. Appl Phys B. 2016;122:278.
  • Saltarelli F, Kumar V, Viola D, et al. Broadband stimulated Raman scattering spectroscopy by a photonic time stretcher. Opt Express. 2016;24:21264.
  • Ryczkowski P, Amiot CG, Dudley JM, et al. Experimental demonstration of spectral domain computational ghost imaging. Sci Rep. 2021;11. DOI:10.1038/s41598-021-87355-z
  • Kawai A, Hashimoto K, Dougakiuchi T, et al. Time-Stretch infrared spectroscopy. Commun Phys. 2020;3. DOI:10.1038/s42005-020-00420-3
  • Goda K, Tsia KK, Jalali B. Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena. Nature. 2009;458:7242.
  • Jiang Y, Karpf S, Jalali B. Time-Stretch LiDAR as a spectrally scanned time-of-flight ranging camera. Nat Photonics. 2020;14:14–18.
  • Wong TTW, Lau AKS, Wong KKY, et al. Optical time-stretch confocal microscopy at 1µm. Opt Lett. 2012;37:3330.
  • Lau AKS, Tang AHL, Xu J, et al. Optical time stretch for high-speed and high-throughput imaging—from single-cell to tissue-wide scales. IEEE J Sel Top Quantum Electron. 2016;22:89.
  • Lei C, Wu Y, Sankaranarayanan AC, et al. GHz optical time-stretch microscopy by compressive sensing. IEEE Photonics J. 2017;9:1.
  • Dong X, Zhou X, Kang J, et al. Ultrafast time-stretch microscopy based on dual-comb asynchronous optical sampling. Opt Lett. 2018;43:2118.
  • Tan S, Wei X, Li B, et al. Ultrafast optical imaging at 2.0μm through second-harmonic-generation-based time-stretch at 1.0μm. Opt Lett. 2018;43:3822.
  • Duffieux PM. The Fourier transform and its applications to optics. Hoboken: NJ: Wiley; 1983.
  • Goodman JW. Introduction to Fourier optics. New York City: McGraw-Hill; 1968.
  • Gaskill JD. Linear systems, Fourier transforms, and optics. Hoboken: NJ: Wiley; 1978.
  • Born M, Wolf E. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. 7th ed. Cambridge: Cambridge University Press; 1999.
  • Lei C, Guo B, Cheng Z, et al. Optical time-stretch imaging: principles and applications. Appl Phys Rev. 2016;3:011102.
  • Grigoryan GV, Lima JIT, Yu T, et al., Using color to understand light transmission. Opt Photonics News. 2000;11:44.
  • Azaña J, Chen LR. General Temporal Self-Imaging Phenomena. JOSA B. 2003;20:1447.
  • Fernández-Pousa CR. A dispersion-balanced discrete Fourier transform of repetitive pulse sequences using temporal Talbot effect. Opt Commun. 2017;402:97.
  • Konatham SR, de Chatellus HG, Azaña J. Photonics-based real-time spectrogram analysis of broadband waveforms. J Light Technol. 2020;38:5356.
  • Cortés LR, Onori D, de Chatellus HG, et al. Towards on-chip photonic-assisted radio-frequency spectral measurement and monitoring. Optica. 2020;7:434.
  • Goda K, Solli DR, Tsia KK, et al. Theory of amplified dispersive Fourier transformation. Phys Rev A. 2009;80:043821.
  • Sørensen ST, Bang O, Wetzel B, et al. Describing supercontinuum noise and rogue wave statistics using higher-order moments. Opt Commun. 2012;285:2451.
  • Solli DR, Herink G, Jalali B, et al. Fluctuations and correlations in modulation instability. Nat Photonics. 2012;6:463–468.
  • Nguyen DM, Godin T, Toenger S, et al. Incoherent resonant seeding of modulation instability in optical fiber. Opt Lett. 2013;38:5338.
  • Wabnitz S, Wetzel B. Instability and noise-induced thermalization of fermi–pasta–ulam recurrence in the nonlinear schrödinger equation. Phys Lett A. 2014;378:2750.
  • Sugavanam S, Sorokina M, Churkin DV. Spectral correlations in a random distributed feedback fibre laser. Nat Commun. 2017;8. DOI:10.1038/ncomms15514
  • Robert P, Fourcade-Dutin C, Fourcade-Dutin C, et al. Spectral correlation of four-wave mixing generated in a photonic crystal fiber pumped by a chirped pulse. Opt Lett. 2020;45:4148.
  • Godin T, Wetzel B, Sylvestre T, et al. Real time noise and wavelength correlations in octave-spanning supercontinuum generation. Opt Express. 2013;21:18452.
  • Lei L, Huh J, Cortés LR, et al. Observation of spectral self-imaging by nonlinear parabolic cross-phase modulation. Opt Lett. 2015;40:5403.
  • Fernández MP, Fernández MP, Fernández MP, et al. Nonlinear time-lens with improved power efficiency through a discrete multilevel pump. Opt Lett. 2020;45:3557.
  • Asghari MH, Jalali B. Anamorphic transformation and its application to time-bandwidth compression. Appl Opt. 2013;52:6735.
  • Jalali B, Chan J, Asghari MH. Time-Bandwidth engineering. Optica. 2014;1:23.
  • Närhi M, Salmela L, Toivonen J, et al. Machine learning analysis of extreme events in optical fibre modulation instability. Nat Commun. 2018;9. DOI:10.1038/s41467-018-07355-y
  • Dudley JM, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber. Rev Mod Phys. 2006;78:1135.
  • Salmela L, Lapre C, Dudley JM, et al. Machine learning analysis of rogue solitons in supercontinuum generation. Sci Rep. 2020;10. DOI:10.1038/s41598-020-66308-y
  • Toenger S, Godin T, Billet C, et al. Emergent rogue wave structures and statistics in spontaneous modulation instability. Sci Rep. 2015;5. DOI:10.1038/srep10380
  • Wetzel B, Bongiovanni D, Kues M, et al. Experimental generation of Riemann waves in optics: a route to shock wave control. Phys Rev Lett. 2016;117:073902.
  • Bongiovanni D, Bongiovanni D, Wetzel B, et al. Third-order Riemann pulses in optical fibers. Opt Express. 2020;28:39827.
  • Närhi M, Wetzel B, Billet C, et al. Real-time measurements of spontaneous breathers and rogue wave events in optical fibre modulation instability. Nat Commun. 2016;7:13675.
  • Suret P, Koussaifi RE, Tikan A, et al. Single-shot observation of optical rogue waves in integrable turbulence using time microscopy. Nat Commun. 2016;7. DOI:10.1038/ncomms13136
  • Randoux S, Gustave F, Suret P, et al. Optical random Riemann waves in integrable turbulence. Phys Rev Lett. 2017;118:233901.
  • Kolner BH. Space-time duality and the theory of temporal imaging. IEEE J Quantum Electron. 1994;30:1951.
  • Salem R, Foster MA, Turner AC, et al. Optical time lens based on four-wave mixing on a silicon chip. Opt Lett. 2008;33:1047.
  • Foster MA, Salem R, Geraghty DF, et al. Silicon-chip-based ultrafast optical oscilloscope. Nature. 2008;456:7218.
  • Salem R, Foster MA, Turner-Foster AC, et al. High-speed optical sampling using a silicon-chip temporal magnifier. Opt Express. 2009;17:4324.
  • Pasquazi A, Park Y, Chu ST, et al. Time-lens measurement of subpicosecond optical pulses in CMOS compatible high-index glass waveguides. IEEE J Sel Top Quantum Electron. 2012;18:629.
  • Bessin F, Copie F, Conforti M, et al. Real-time characterization of period-doubling dynamics in uniform and dispersion oscillating fiber ring cavities. Phys Rev X. 2019;9:041030.
  • Ryczkowski P, Närhi M, Billet C, et al. Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser. Nat Photonics. 2018;12:221–227.
  • Dorrer C. Single-shot measurement of the electric field of optical waveforms by use of time magnification and heterodyning. Opt Lett. 2006;31:540.
  • Tikan A, Bielawski S, Szwaj C, et al. Single-shot measurement of phase and amplitude by using a heterodyne time-lens system and ultrafast digital time-holography. Nat Photonics. 2018;12:228–234.
  • Lebel A, Tikan A, Tikan A, et al. Single-shot observation of breathers from noise-induced modulation instability using heterodyne temporal imaging. Opt Lett. 2021;46:298.
  • Crockett B, Romero Cortés L, Konatham SR, et al. Full recovery of ultrafast waveforms lost under noise. Nat Commun. 2021;12. DOI:10.1038/s41467-021-22716-w
  • Herink G, Jalali B, Ropers C, et al. Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate. Nat Photonics. 2016;10:321–326.
  • Peng J, Sorokina M, Sugavanam S, et al. Real-time observation of dissipative soliton formation in nonlinear polarization rotation mode-locked fibre lasers. Commun Phys. 2018;1. DOI:10.1038/s42005-018-0022-7
  • Liu X, Popa D, Akhmediev N. Revealing the transition dynamics from Q switching to mode locking in a soliton laser. Phys Rev Lett. 2019;123:093901.
  • Meng F, Lapre C, Billet C, et al. Intracavity incoherent supercontinuum dynamics and rogue waves in a broadband dissipative soliton laser. Nat Commun. 2021;12:5567.
  • Lapre C, Billet C, Meng F, et al. Real-time characterization of spectral instabilities in a mode-locked fibre laser exhibiting soliton-similariton dynamics. Sci Rep. 2019;9. DOI:10.1038/s41598-019-50022-5
  • Liu X, Yao X, Cui Y. Real-time observation of the buildup of soliton molecules. Phys Rev Lett. 2018;121:023905.
  • Runge AFJ, Aguergaray C, Broderick NGR, et al. Coherence and shot-to-shot spectral fluctuations in noise-like ultrafast fiber lasers. Opt Lett. 2013;38:4327.
  • Runge AFJ, Broderick NGR, Erkintalo M. Observation of soliton explosions in a passively mode-locked fiber laser. Optica. 2015;2(36):36.
  • Grelu P, Akhmediev N. Dissipative solitons for mode-locked lasers. Nat Photonics. 2012;6:84–92.
  • Herink G, Kurtz F, Jalali B, et al. Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules. Science. 2017;356:50.
  • Krupa K, Nithyanandan K, Andral U, et al. Real-time observation of internal motion within ultrafast dissipative optical soliton molecules. Phys Rev Lett. 2017;118:243901.
  • Sugavanam S, Fabbri S, Le ST, et al. Real-time high-resolution heterodyne-based measurements of spectral dynamics in fibre lasers. Sci Rep. 2016;6. DOI:10.1038/srep23152
  • Peng J, Boscolo S, Zhao Z, et al. Breathing dissipative solitons in mode-locked fiber lasers. Sci Adv. n.d.;5:eaax1110.
  • Krupa K, Nithyanandan K, Grelu P. Vector dynamics of incoherent dissipative optical solitons. Optica. 2017;4:1239.
  • Kurtz F, Ropers C, Herink G. Resonant excitation and all-optical switching of femtosecond soliton molecules. Nat Photonics. 2020;14:9–13.
  • Runge AFJ, Aguergaray C, Broderick NGR, et al. Raman rogue waves in a partially mode-locked fiber laser. Opt Lett. 2014;39:319.
  • Chernysheva M, Sugavanam S, Turitsyn S. Real-time observation of the optical Sagnac effect in ultrafast bidirectional fibre lasers. APL Photonics. 2020;5:016104.
  • Descloux D, Laporte C, Dherbecourt J-B, et al. Spectrotemporal dynamics of a picosecond OPO based on chirped quasi-phase-matching. Opt Lett. 2015;40:280.
  • Ivanauskienė K, Stasevičius I, Vengris M, et al. Pulse-to-pulse instabilities in synchronously pumped femtosecond optical parametric oscillator. JOSA B. 2019;36:131.
  • Chen X, Yang S, Ding S, et al. Instantaneous dynamics of a fiber optical parametric oscillator within its initiating process. IEEE Photonics Technol Lett. 2019;31:1088.
  • Touil M, Becheker R, Godin T, et al. Spectral Correlations in a Fiber-Optical Parametric Oscillator. Phys Rev A. 2021;103:043503.
  • Bao H, Cooper A, Rowley M, et al. Laser cavity-soliton microcombs. Nat Photonics. 2019;13:384.
  • Hanzard PH, Rowley M, Cutrona A, et al., Real-time study of coexisting states in laser cavity solitons, in conference on lasers and electro-optics (2021), Paper FM4H.7 San Jose, California, United States (Optical Society of America), p. FM4H.7.
  • Liang J, Wang LV. Single-Shot ultrafast optical imaging. Optica. 2018;5:1113.
  • Qi D, Zhang S, Yang C, et al. Single-shot compressed ultrafast photography: a review. Adv Photonics. 2020;2:014003.
  • Touil M, Idlahcen S, Becheker R, et al. Acousto-optically driven lensless single-shot ultrafast optical imaging. Light Sci. Appl. 2022;11. DOI:10.1038/s41377-022-00759-y
  • Hanzard P-H, Godin T, Idlahcen S, et al. Real-time tracking of single shockwaves via amplified time-stretch imaging. Appl Phys Lett. 2018;112:161106.
  • Kolenderska SM, Kolenderska SM, Vanholsbeeck F, et al. Quantum-Inspired detection for spectral domain optical coherence tomography. Opt Lett. 2020;45:3443.
  • Avenhaus M, Eckstein A, Mosley PJ, et al. Fiber-Assisted single-photon spectrograph. Opt Lett. 2009;34:2873.
  • Eckstein A, Boucher G, Lemaître A, et al. High-resolution spectral characterization of two photon states via classical measurements. Laser Photonics Rev. 2014;8:L76.
  • Khodadad Kashi A, Sader L, Haldar R, et al. Frequency-to-time mapping technique for direct spectral characterization of biphoton states from pulsed spontaneous parametric processes. Front. Photonics. 2022;3:834065.
  • Johnsen KD, Kolenderski P, Scarcella C, et al. Time and spectrum-resolving multiphoton correlator for 300–900 nm. J Appl Phys. 2014;116:143101.
  • Kaneda F, Oikawa J, Yabuno M, et al. Spectral characterization of photon-pair sources via classical sum-frequency generation. Opt Express. 2020;28:38993.
  • Krupa K, Tonello A, Barthélémy A, et al. Multimode nonlinear fiber optics, a spatiotemporal avenue. APL Photonics. 2019;4:110901.
  • Wei X, Shen Y, Jing JC, et al. Real-time frequency-encoded spatiotemporal focusing through scattering media using a programmable 2D ultrafine optical frequency comb. Sci Adv. 2020;6:eaay1192.
  • Xu X, Tan M, Corcoran B, et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature. 2021;589:7840.
  • Wetzel B, Kues M, Roztocki P, et al. Customizing supercontinuum generation via on-chip adaptive temporal pulse-splitting. Nat Commun. 2018;9. DOI:10.1038/s41467-018-07141-w
  • Genty G, Salmela L, Dudley JM, et al. Machine learning and applications in ultrafast photonics. Nat Photonics. 2020;15:91.