2,150
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Inelastic thermoelectric transport and fluctuations in mesoscopic systems

, , &
Article: 2082317 | Received 07 Dec 2021, Accepted 15 May 2022, Published online: 22 Jun 2022

References

  • Harman TC, Honig JM. Thermoelectric and thermomagnetic effects and applications. NewYork: McGraw-Hill; 1967.
  • Imry Y. Introduction to mesoscopic Physics. London: Oxford University Press; 1997.
  • Brandner K. Coherent transport in periodically driven mesoscopic conductors: from scattering amplitudes to quantum thermodynamics. Z Naturforsch A. 2020;75:483–60.
  • Brandner K, Bauer M, Seifert U. Universal coherence-induced power losses of quantum heat engines in linear response. Phys Rev Lett. 2017;119:170602.
  • Sánchez R, Gorini C, Fleury G. Extrinsic thermoelectric response of coherent conductors. Phys Rev B. 2021;104:115430.
  • Potanina E, Flindt C, Moskalets M, et al. Thermodynamic bounds on coherent transport in periodically driven conductors. Phys Rev X. 2021;11:021013.
  • Leggett AJ, Chakravarty S, Dorsey AT, et al. Dynamics of the dissipative two-state system. Rev Mod Phys. 1987;59:1–85.
  • Proesmans K, Cleuren B, Van den Broeck C. Power-efficiency-dissipation relations in linear thermodynamics. Phys Rev Lett. 2016;116:220601.
  • Onsager L. Reciprocal relations in irreversible processes. i. Phys Rev. 1931;37:405–426.
  • Onsager L. Reciprocal relations in irreversible processes. ii. Phys Rev. 1931;38:2265–2279.
  • Callen HB. The application of onsager’s reciprocal relations to thermoelectric, thermo- magnetic, and galvanomagnetic effects. Phys Rev. 1948;73:1349–1358.
  • Saito K, Benenti G, Casati G, et al. Thermopower with broken time-reversal symmetry. Phys Rev B. 2011;84:201306.
  • Benenti G, Saito K, Casati G. Thermodynamic bounds on efficiency for systems with broken time-reversal symmetry. Phys Rev Lett. 2011;106:230602.
  • Jiang J-H. Thermodynamic bounds and general properties of optimal efficiency and power in linear responses. Phys Rev E. 2014;90:042126.
  • Haug H, Jauho AP. Quantum kinetics in transport and optics of semiconductors. Berlin Heidelberg: Springer-Verlag; 2008.
  • Büttiker M. Coherent and sequential tunneling in series barriers. IBM J Res Dev. 1988;32:63–75.
  • Büttiker M. Four-terminal phase-coherent conductance. Phys Rev Lett. 1986;57:1761–1764.
  • Büttiker M. Transport as a consequence of state-dependent diffusion. Z Phys B. 1987;68:161–167.
  • Meir Y, Wingreen NS. Landauer formula for the current through an interacting electron region. Phys Rev Lett. 1992;68:2512–2515.
  • Jauho A-P, Wingreen NS, Meir Y. Time-dependent transport in interacting and noninteracting resonant-tunneling systems. Phys Rev B. 1994;50:5528–5544.
  • Blanter YM, Büttiker M. Shot noise in mesoscopic conductors. Phys Rep. 2000;336: 1–166.
  • Wang J-S, Wang J, Zeng N. Nonequilibrium green’s function approach to mesoscopic thermal transport. Phys Rev B. 2006;74:033408.
  • Lü JT, Wang J-S. Coupled electron and phonon transport in one-dimensional atomic junctions. Phys Rev B. 2007;76:165418.
  • Wang J-S, Wang J, Lü JT. Quantum thermal transport in nanostructures. Eur Phys J B. 2008;62:381–404.
  • Wang J-S, Agarwalla BK, Li H, et al. Nonequilibrium green’s function method for quantum thermal transport. Front Phys. 2014;9:673–697.
  • Lü J-T, Wang J-S, Hedegård P, et al. Electron and phonon drag in thermoelectric transport through coherent molecular conductors. Phys Rev B. 2016;93:205404.
  • Zhang Z-Q, Lü J-T. Thermal transport through a spin-phonon interacting junction: a nonequilibrium green’s function method study. Phys Rev B. 2017;96:125432.
  • Brandner K, Hanazato T, Saito K. Thermodynamic bounds on precision in ballistic multiterminal transport. Phys Rev Lett. 2018;120:090601.
  • Tu Z-C. Abstract models for heat engines. Front Phys. 2021;16:1–12.
  • Carrega M, Cangemi LM, De Filippis G, et al. Engineering dynamical couplings for quantum thermodynamic tasks. PRX Quantum. 2022;3:010323.
  • Guo J, Lü J-T, Feng Y, et al. Nuclear quantum effects of hydrogen bonds probed by tip-enhanced inelastic electron tunneling. Science. 2016;352:321–325.
  • Sothmann B, Sánchez R, Jordan AN. Thermoelectric energy harvesting with quantum dots. Nanotechnology. 2015;26:032001.
  • Jiang J-H, Imry Y. Linear and nonlinear mesoscopic thermoelectric transport with coupling with heat baths. C R Phys. 2016;17:1047–1059.
  • Thierschmann H, Sánchez R, Sothmann B, et al. Thermoelectrics with Coulomb-coupled quantum dots. C R Phys. 2016;17:1109–1122.
  • Entin-Wohlman O, Imry Y, Aharony A. Three-terminal thermoelectric transport through a molecular junction. Phys Rev B. 2010;82:115314.
  • Simine L, Segal D. Vibrational cooling, heating, and instability in molecular conducting junctions: full counting statistics analysis. Phys Chem Chem Phys. 2012;14:13820–13834.
  • Arrachea L, Bode N, von Oppen F. Vibrational cooling and thermoelectric response of nanoelectromechanical systems. Phys Rev B. 2014;90:125450.
  • Roy TR, Donald Raj J J, Sen A. Inelastic tunnel transport and nanoscale junction thermoelectricity with varying electrode topology. Adv Theory Simul. 2021;4:2100054.
  • Zhou H, Thingna J, Wang J-S, et al. Thermoelectric transport through a quantum nanoelectromechanical system and its backaction. Phys Rev B. 2015;91:045410.
  • Henriet L, Jordan AN, Le Hur K. Electrical current from quantum vacuum fluctuations in nanoengines. Phys Rev B. 2015;92:125306.
  • Yamamoto K, Entin-Wohlman O, Aharony A, et al. Efficiency bounds on thermoelectric transport in magnetic fields: the role of inelastic processes. Phys Rev B. 2016;94:121402.
  • McConnell C, Nazir A. Strong coupling in thermoelectric nanojunctions: a reaction coordinate framework. New J Phys. 2022;24:025002.
  • Cutler M, Mott NF. Observation of Anderson localization in an electron gas. Phys Rev. 1969;181:1336–1340.
  • Hicks LD, Dresselhaus MS. Effect of quantum-well structures on the thermoelectric figure of merit. Phys Rev B. 1993;47:12727–12731.
  • Hicks LD, Dresselhaus MS. Thermoelectric figure of merit of a one-dimensional conductor. Phys Rev B. 1993;47:16631–16634.
  • DiSalvo FJ. Thermoelectric cooling and power generation. Science. 1999;285:703–706.
  • Venkatasubramanian R. Lattice thermal conductivity reduction and phonon localization like behavior in superlattice structures. Phys Rev B. 2000;61:3091–3097.
  • Lon EB. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science. 2008;321:1457–1461.
  • Snyder GJ, Toberer ES. Complex thermoelectric materials. Nat Mater. 2008;7:105–114.
  • Biswas K, He J, Blum ID, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature. 2012;489:414–418.
  • Su L, Wang D, Wang S, et al. High thermoelectric performance realized through manipulating layered phonon-electron decoupling. Science. 2022;375:1385–1389.
  • Jiang J-H, Entin-Wohlman O, Imry Y. Thermoelectric three-terminal hopping transport through one-dimensional nanosystems. Phys Rev B. 2012;85:075412.
  • Jiang J-H, Entin-Wohlman O, Imry Y. Three-terminal semiconductor junction thermoelectric devices: improving performance. New J Phys. 2013;15:075021.
  • Jiang J-H. Enhancing efficiency and power of quantum-dots resonant tunneling thermo- electrics in three-terminal geometry by cooperative effects. J Appl Phys. 2014;116:194303.
  • Jiang J-H, Imry Y. Enhancing thermoelectric performance using nonlinear transport effects. Phys Rev Appl. 2017;7:064001.
  • Wang R, Lu J, Wang C, et al. Nonlinear effects for three-terminal heat engine and refrigerator. Sci Rep. 2018;8:2607.
  • Jiang J-H, Imry Y. Near-field three-terminal thermoelectric heat engine. Phys Rev B. 2018;97:125422.
  • Lu J, Jiang J-H, Imry Y. Unconventional four-terminal thermoelectric transport due to inelastic transport: cooling by transverse heat current, transverse thermoelectric effect, and Maxwell demon. Phys Rev B. 2021;103:085429.
  • Jiang J-H, Kulkarni M, Segal D, et al. Phonon thermoelectric transistors and rectifiers. Phys Rev B. 2015;92:045309.
  • Shockley W, Queisser HJ. Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys. 1961;32:510–519.
  • Scully MO. Quantum photocell: using quantum coherence to reduce radiative recombination and increase efficiency. Phys Rev Lett. 2010;104:207701.
  • Jaziri N, Boughamoura A, Mller J, et al. A comprehensive review of thermoelectric generators: technologies and common applications. Energy Reports. 2020;6:264–287.
  • Tohidi F, Ghazanfari Holagh S, Chitsaz A. Thermoelectric generators: a comprehensive review of characteristics and applications. Appl Therm Eng. 2022;201:117793.
  • Li L, Jiang J-H. Staircase quantum dots configuration in nanowires for optimized thermoelectric power. Sci Rep. 2016;6:31974.
  • Jiang J-H, Entin-Wohlman O, Imry Y. Hopping thermoelectric transport in finite systems: boundary effects. Phys Rev B. 2013;87:205420.
  • Sothmann B, Sánchez R, Jordan AN, et al. Powerful energy harvester based on resonant-tunneling quantum wells. New J Phys. 2013;15:095021.
  • Agarwalla BK, Kulkarni M, Mukamel S, et al. Giant photon gain in large-scale quantum dot-circuit qed systems. Phys Rev B. 2016;94:121305.
  • Kumar Agarwalla B, Kulkarni M, Mukamel S, et al. Tunable photonic cavity coupled to a voltage-biased double quantum dot system: diagrammatic nonequilibrium green’s function approach. Phys Rev B. 2016;94:035434.
  • Kumar Agarwalla B, Kulkarni M, Segal D. Photon statistics of a double quantum dot micromaser: quantum treatment. Phys Rev B. 2019;100:035412.
  • Rutten B, Esposito M, Cleuren B. Reaching optimal efficiencies using nanosized photoelectric devices. Phys Rev B. 2009;80:235122.
  • Cleuren B, Rutten B, Van den Broeck C. Cooling by heating: refrigeration powered by photons. Phys Rev Lett. 2012;108:120603.
  • Houck AA, Türeci HE, Koch J. On-chip quantum simulation with superconducting circuits. Nat Phys. 2012;8:292–299.
  • Sothmann B, Büttiker M. Magnon-driven quantum-dot heat engine. Europhys Lett. 2012;99:27001.
  • Sánchez R, Büttiker M. Optimal energy quanta to current conversion. Phys Rev B. 2011;83:085428.
  • Sánchez R, Sothmann B, Jordan AN, et al. Correlations of heat and charge currents in quantum-dot thermoelectric engines. New J Phys. 2013;15:125001.
  • Sothmann B, Sánchez R, Jordan AN, et al. Rectification of thermal fluctuations in a chaotic cavity heat engine. Phys Rev B. 2012;85:205301.
  • Whitney RS, Sánchez R, Haupt F, et al. Thermoelectricity without absorbing energy from the heat sources. Physica E. 2016;75:257–265.
  • Zhang Y, Guo J, Chen J. Thermoelectric performance of three-terminal quantum dot refrigerators in two configurations. Phys E Low Dimens Syst Nanostruct. 2020;118:113874.
  • Zhang Y, Zhang X, Ye Z, et al. Three-terminal quantum-dot thermal management devices. Appl Phys Lett. 2017;110:153501.
  • Mayrhofer RD, Elouard C, Splettstoesser J, et al. Stochastic thermodynamic cycles of a mesoscopic thermoelectric engine. Phys Rev B. 2021;103:075404.
  • Lu J, Wang R, Wang C, et al. Brownian thermal transistors and refrigerators in mesoscopic systems. Phys Rev B. 2020;102:125405.
  • Entin-Wohlman O, Jiang J-H, Imry Y. Efficiency and dissipation in a two-terminal thermoelectric junction, emphasizing small dissipation. Phys Rev E. 2014;89:012123.
  • Yamamoto K, Aharony A, Entin-Wohlman O, et al. Thermoelectricity near Anderson localization transitions. Phys Rev B. 2017;96:155201.
  • Strasberg P, Winter A. First and second law of quantum thermodynamics: a consistent derivation based on a microscopic definition of entropy. PRX Quantum. 2021;2:030202.
  • Chen G. Nanoscale energy transport and conversion. London: Oxford University Press; 2005.
  • Mahan GD, Sofo JO. The best thermoelectric. Proc Natl Acad Sci USA. 1996;93:7436–7439.
  • Zhou J, Yang R, Chen G, et al. Optimal bandwidth for high efficiency thermoelectrics. Phys Rev Lett. 2011;107:226601.
  • Landauer R. Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J Res Dev. 1957;1:223–231.
  • Landauer R. Electrical resistance of disordered one-dimensional lattices. Phil Mag. 1970;21:863–867.
  • Mazza F, Bosisio R, Benenti G, et al. Thermoelectric efficiency of three-terminal quantum thermal machines. New J Phys. 2014;16:085001.
  • Douglas Stone A, Szafer A. What is measured when you measure a resistance? The Landauer formula revisited. IBM J Res Dev. 1988;32:384–413.
  • Sivan U, Imry Y. Multichannel Landauer formula for thermoelectric transport with application to thermopower near the mobility edge. Phys Rev B. 1986;33:551–558.
  • Butcher PN. Thermal and electrical transport formalism for electronic microstructures with many terminals. J Phys Condens Matter. 1990;2:4869.
  • Benenti G, Casati G, Saito K, et al. Fundamental aspects of steady-state conversion of heat to work at the nanoscale. Phys Rep. 2017;694:1–124.
  • Lu J, Wang R, Liu Y, et al. Thermoelectric cooperative effect in three-terminal elastic transport through a quantum dot. J Appl Phys. 2017;122:044301.
  • Hartke TR, Liu -Y-Y, Gullans MJ, et al. Microwave detection of electron- phonon interactions in a cavity-coupled double quantum dot. Phys Rev ett. 2018;120:097701.
  • Petersson KD, Mcfaul LW, Schroer MD, et al. Circuit quantum electrodynamics with a spin qubit. Nature. 2012;490:380–383.
  • Liu -Y-Y, Petersson KD, Stehlik J, et al. Photon emission from a cavity-coupled double quantum dot. Phys Rev Lett. 2014;113:036801.
  • Gullans MJ, Liu -Y-Y, Stehlik J, et al. Phonon-assisted gain in a semiconductor double quantum dot maser. Phys Rev Lett. 2015;114:196802.
  • Prete D, Erdman PA, Demontis V, et al. Thermoelectric conversion at 30 k in inas/inp nanowire quantum dots. Nano Lett. 2019;19:3033–3039.
  • Dorsch S, Svilans A, Josefsson M, et al. Heat driven transport in serial double quantum dot devices. Nano lett. 2021;21:988–994.
  • Chen B, Wang B, Cao G, et al. Enhanced readout of spin states in double quantum dot. Sci Bull. 2017;62:712–716.
  • Chen M-B, Jiang S-L, Wang N, et al. Microwave-resonator-detected excited-state spectroscopy of a double quantum dot. Phys Rev Appl. 2021;15:044045.
  • Chen Z, Zhang X, Ren J, et al. Leveraging bipolar effect to enhance transverse thermoelectricity in semimetal mg2pb for cryogenic heat pumping. Nat Commun. 2021;12:1–7.
  • Zhou W, Yamamoto K, Miura A, et al. Seebeck-driven transverse thermoelectric generation. Nat Mater. 2021;20:463–467.
  • Yamamoto K, Iguchi R, Miura A, et al. Phenomenological analysis of transverse thermoelectric generation and cooling performance in magnetic/thermoelectric hybrid systems. J Appl Phys. 2021;129:223908.
  • Datta S. Quantum transport: atom to transistor. London: Cambridge University Press; 2005.
  • Bergenfeldt C, Samuelsson P, Sothmann B, et al. Hybrid microwave-cavity heat engine. Phys Rev Lett. 2014;112:076803.
  • Sánchez R, Thierschmann H, Molenkamp LW. All-thermal transistor based on stochastic switching. Phys Rev B. 2017;95:241401.
  • Guo B-Q, Liu T, Yu C-S. Quantum thermal transistor based on qubit-qutrit coupling. Phys Rev E. 2018;98:022118.
  • Liu H, Wang C, Wang L-Q, et al. Strong system-bath coupling induces negative differential thermal conductance and heat amplification in nonequilibrium two-qubit systems. Phys Rev E. 2019;99:032114.
  • Guo B-Q, Liu T, Yu C-S. Multifunctional quantum thermal device utilizing three qubits. Phys Rev E. 2019;99:032112.
  • Wang C, Chen X-M, Sun K-W, et al. Heat amplification and negative differential thermal conductance in a strongly coupled nonequilibrium spin-boson system. Phys Rev A. 2018;97:052112.
  • Liu Y-Q, Yu D-H, Yu C-S. Common environmental effects on quantum thermal transistor. Entropy. 2022;24: 10.3390/e24010032.
  • Bauer G, Saitoh E, Van Wees BJ. Spin caloritronics. Nat Mater. 2012;11:391.
  • Li N, Ren J, Wang L, et al. Colloquium: phononics: manipulating heat flow with electronic analogs and beyond. Rev Mod Phys. 2012;84:1045–1066.
  • Lu J, Wang R, Ren J, et al. Quantum-dot circuit-QED thermoelectric diodes and transistors. Phys Rev B. 2019;99:035129.
  • Li B, Wang L, Casati G. Negative differential thermal resistance and thermal transistor. Appl Phys Lett. 2006;88:143501.
  • Burkard G, Gullans MJ, Mi X, et al. Superconductor–semiconductor hybrid-circuit quantum electrodynamics. Nat Rev Phys. 2020;2:129–140.
  • Zhu J-X, Balatsky AV. Theory of current and shot-noise spectroscopy in single-molecular quantum dots with a phonon mode. Phys Rev B. 2003;67:165326.
  • Jiang J-H, John S. Photonic crystal architecture for room-temperature equilibrium Bose–Einstein condensation of exciton polaritons. Phys Rev X. 2014;4:031025.
  • Ren J, Zhu J-X, Gubernatis JE, et al. Thermoelectric transport with electron-phonon coupling and electron-electron interaction in molecular junctions. Phys Rev B. 2012;85:155443.
  • Mi X, Cady JV, Zajac DM, et al. Strong coupling of a single electron in silicon to a microwave photon. Science. 2017;355:156–158.
  • Jin P-Q, Jeske J, Greentree AD, et al. Microwave quantum optics as a direct probe of the overhauser field in a quantum dot circuit quantum electrodynamics device. Phys Rev B. 2021;103:045301.
  • Chen Z-H, Che H-X, Chen Z-K, et al. Tuning nonequilibrium heat current and two-photon statistics via composite qubit-resonator interaction. Phys Rev Res. 2022;4:013152.
  • Maxwell JC. Theory of heat. London: Longman; 1871.
  • Erdman PA, Bhandari B, Fazio R, et al. Absorption refrigerators based on Coulomb-coupled single-electron systems. Phys Rev B. 2018;98:045433.
  • Bhandari B, Chiriacò G, Erdman PA, et al. Thermal drag in electronic conductors. Phys Rev B. 2018;98:035415.
  • Friedman HM, Segal D. Cooling condition for multilevel quantum absorption refrigerators. Phys Rev E. 2019;100:062112.
  • Manikandan SK, Jussiau É, Jordan AN. Autonomous quantum absorption refrigerators. Phys Rev B. 2020;102:235427.
  • Liu J, Segal D. Coherences and the thermodynamic uncertainty relation: insights from quantum absorption refrigerators. Phys Rev E. 2021;103:032138.
  • Entin-Wohlman O, Imry Y, Aharony A. Enhanced performance of joint cooling and energy production. Phys Rev B. 2015;91:054302.
  • Mazza F, Valentini S, Bosisio R, et al. Separation of heat and charge currents for boosted thermoelectric conversion. Phys Rev B. 2015;91:245435.
  • Lu J, Liu Y, Wang R, et al. Optimal efficiency and power, and their trade-off in three-terminal quantum thermoelectric engines with two output electric currents. Phys Rev B. 2019;100:115438.
  • Sánchez R, Samuelsson P, Potts PP. Autonomous conversion of information to work in quantum dots. Phys Rev Res. 2019;1:033066.
  • Sánchez R, Splettstoesser J, Whitney RS. Nonequilibrium system as a demon. Phys Rev Lett. 2019;123:216801.
  • Annby-Andersson B, Samuelsson P, Maisi VF, et al. Maxwell’s demon in a double quantum dot with continuous charge detection. Phys Rev B. 2020;101:165404.
  • Koski JV, Maisi VF, Sagawa T, et al. Experimental observation of the role of mutual information in the nonequilibrium dynamics of a Maxwell demon. Phys Rev Lett. 2014;113:030601.
  • Koski JV, Kutvonen A, Khaymovich IM, et al. On-chip Maxwell’s demon as an information-powered refrigerator. Phys Rev Lett. 2015;115:260602.
  • Koski JV, Maisi VF, Pekola JP, et al. Experimental realization of a Szilard engine with a single electron. Proc Natl Acad Sci USA. 2014;111:13786–13789.
  • Chida K, Desai S, Nishiguchi K, et al. Power generator driven by Maxwell’s demon. Nat Commun. 2017;8:15310.
  • Xi M, Wang R, Lu J, et al. Coulomb thermoelectric drag in four-terminal mesoscopic quantum transport. Chin Phys Lett. 2021;38:088801.
  • Sánchez D, López R. Nonlinear phenomena in quantum thermoelectrics and heat. C R Phys. 2016;17:1060–1071.
  • Sánchez D, Serra L. Thermoelectric transport of mesoscopic conductors coupled to voltage and thermal probes. Phys Rev B. 2011;84:201307.
  • Sánchez D, López R. Scattering theory of nonlinear thermoelectric transport. Phys Rev Lett. 2013;110:026804.
  • López R, Sánchez D. Nonlinear heat transport in mesoscopic conductors: rectification, peltier effect, and Wiedemann-Franz law. Phys Rev B. 2013;88:045129.
  • Sánchez D, Sánchez R, López R, et al. Nonlinear chiral refrigerators. Phys Rev B. 2019;99:245304.
  • Saryal S, Gerry M, Khait I, et al. Universal bounds on fluctuations in continuous thermal machines. Phys Rev Lett. 2021;127:190603.
  • Liu J, Jung KA, Segal D. Periodically driven quantum thermal machines from warming up to limit cycle. Phys Rev Lett. 2021;127:200602.
  • Liu Y, Lu J, Wang R, et al. Energy cooperation in quantum thermoelectric systems with multiple electric currents. Chin Phys B. 2020;29:40504.
  • Hajiloo F, Sánchez R, Whitney RS, et al. Quantifying nonequilibrium thermodynamic operations in a multiterminal mesoscopic system. Phys Rev B. 2020;102:155405.
  • Manzano G, Sánchez R, Silva R, et al. Hybrid thermal machines: generalized thermodynamic resources for multitasking. Phys Rev Res. 2020;2:043302.
  • Caplan SR. A characteristic of self-regulated linear energy converters the hill force-velocity relation for muscle. J Theor Biol. 1966;11:63–86.
  • Sánchez R, Sothmann B, Jordan AN. Chiral thermoelectrics with quantum hall edge states. Phys Rev Lett. 2015;114:146801.
  • Gresta D, Real M, Arrachea L. Optimal thermoelectricity with quantum spin hall edge states. Phys Rev Lett. 2019;123:186801.
  • Jordan AN, Sothmann B, Sánchez R, et al. Powerful and efficient energy harvester with resonant-tunneling quantum dots. Phys Rev B. 2013;87:075312.
  • Zhang ZM. Nano/microscale heat transfer. New York: McGraw-Hill; 2007.
  • Song B, Thompson D, Fiorino A, et al. Radiative heat conductances between dielectric and metallic parallel plates with nanoscale gaps. Nat Nanotechnol. 2016;11:509–514.
  • Biehs S-A, Messina R, Venkataram PS, et al. Near-field radiative heat transfer in many-body systems. Rev Mod Phys. 2021;93:025009.
  • Polder D, Van Hove M. Theory of radiative heat transfer between closely spaced bodies. Phys Rev B. 1971;4:3303–3314.
  • Roßnagel J, Abah O, Schmidt-Kaler F, et al. Nanoscale heat engine beyond the carnot limit. Phys Rev Lett. 2014;112:030602.
  • Klaers J, Faelt S, Imamoglu A, et al. Squeezed thermal reservoirs as a resource for a nanomechanical engine beyond the carnot limit. Phys Rev X. 2017;7:031044.
  • Agarwalla BK, Jiang J-H, Segal D. Quantum efficiency bound for continuous heat engines coupled to noncanonical reservoirs. Phys Rev B. 2017;96:104304.
  • Breuer HP, Petruccione F. The theory of open quantum systems. New York: Oxford University Press; 2006.
  • Huang XL, Wang T, Yi XX. Effects of reservoir squeezing on quantum systems and work extraction. Phys Rev E. 2012;86:051105.
  • Manzano G, Galve F, Zambrini R, et al. Entropy production and thermodynamic power of the squeezed thermal reservoir. Phys Rev E. 2016;93:052120.
  • Blickle V, Bechinger C. Realization of a micrometre-sized stochastic heat engine. Nat Phys. 2012;8:143.
  • Seifert U. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep Prog Phys. 2012;75:126001.
  • Ciliberto S. Experiments in stochastic thermodynamics: short history and perspectives. Phys Rev X. 2017;7:021051.
  • Seifert U. From stochastic thermodynamics to thermodynamic inference. Annu Rev Condens. 2019;10:171–192.
  • Martínez IA, Roldán É, Dinis L, et al. Brownian carnot engine. Nat Phys. 2016;12:67.
  • Verley G, Massimiliano Esposito TW, Van Den Broeck C. The unlikely carnot efficiency. Nat Commun. 2014;5:4721.
  • Verley G, Willaert T, Van den Broeck C, et al. Universal theory of efficiency fluctuations. Phys Rev E. 2014;90:052145.
  • Ken F, Quan HT. Path integral approach to quantum thermodynamics. Phys Rev Lett. 2018;121:040602.
  • Liu F, Su S. Stochastic floquet quantum heat engines and stochastic efficiencies. Phys Rev E. 2020;101:062144.
  • Fei Z, Quan HT. Nonequilibrium green’s function’s approach to the calculation of work statistics. Phys Rev Lett. 2020;124:240603.
  • Fei Z, Freitas N, Cavina V, et al. Work statistics across a quantum phase transition. Phys Rev Lett. 2020;124:170603.
  • Ma Y-H, Zhai R-X, Chen J, et al. Experimental test of the 1/τ - scaling entropy generation in finite-time thermodynamics. Phys Rev Lett. 2020;125:210601.
  • Fei Z, Chen J-F, Ma Y-H. Efficiency statistics of a quantum Otto cycle. Phys Rev A. 2022;105:022609.
  • Lin J, Li K, He J, et al. Power statistics of Otto heat engines with the mpemba effect. Phys Rev E. 2022;105:014104.
  • Jiang J-H, Agarwalla BK, Segal D. Efficiency statistics and bounds for systems with broken time-reversal symmetry. Phys Rev Lett. 2015;115:040601.
  • Polettini M, Verley G, Esposito M. Efficiency statistics at all times: carnot limit at finite power. Phys Rev Lett. 2015;114:050601.
  • Gaspard P. Multivariate fluctuation relations for currents. New J Phys. 2013;15:115014.
  • Andrieux D, Gaspard P. Fluctuation theorem and onsager reciprocity relations. J Chem Phys. 2004;121:6167–6174.
  • Proesmans K, Dreher Y, Gavrilov M, et al. Brownian duet: a novel tale of thermodynamic efficiency. Phys Rev X. 2016;6:041010.
  • Esposito M, Ochoa MA, Galperin M. Efficiency fluctuations in quantum thermo- electric devices. Phys Rev B. 2015;91:115417.
  • Agarwalla BK, Jiang J-H, Segal D. Full counting statistics of vibrationally assisted electronic conduction: transport and fluctuations of thermoelectric efficiency. Phys Rev B. 2015;92:245418.
  • Touchette H. The large deviation approach to statistical mechanics. Phys Rep. 2009;478:1–69.
  • Agarwalla BK, Jiang J-H, Segal D. Thermoelectricity in molecular junctions with harmonic and anharmonic modes. BEILSTEIN J Nanotechnol. 2015;6:2129–2139.
  • Liao T, Cai L, Zhao Y, et al. Efficiently exploiting the waste heat in solid oxide fuel cell by means of thermophotovoltaic cell. J Power Sources. 2016;306:666–673.
  • Zhao B, Chen K, Buddhiraju S, et al. High-performance near-field thermophotovoltaics for waste heat recovery. Nano Energy. 2017;41:344–350.
  • Tervo E, Bagherisereshki E, Zhang ZM. Near-field radiative thermoelectric energy converters: a review. Front Energy. 2018;12:5–21.
  • Ilic O, Jablan M, Joannopoulos JD, et al. Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems. Opt Express. 2012;20:A366–A384.
  • Svetovoy VB, Palasantzas G. Graphene-on-silicon near-field thermophotovoltaic cell. Phys Rev Appl. 2014;2:034006.
  • Laroche M, Carminati R, Greffet JJ. Near-field thermophotovoltaic energy conversion. J Appl Phys. 2006;100:063704.
  • Molesky S, Jacob Z. Ideal near-field thermophotovoltaic cells. Phys Rev B. 2015;91:205435.
  • Svetovoy VB, Van Zwol PJ, Chevrier J. Plasmon enhanced near-field radiative heat transfer for graphene covered dielectrics. Phys Rev B. 2012;85:155418.
  • Messina R, Ben-Abdallah P. Graphene-based photovoltaic cells for near-field thermal energy conversion. Sci Rep. 2013;3:1383.
  • Zhao B, Zhang ZM. Enhanced photon tunneling by surface plasmonphonon polaritons in graphene/hBN heterostructures. J Heat Transfer. 2015;139:022701–022701–8.
  • Zhao B, Guizal B, Zhang ZM, et al. Near-field heat transfer between graphene/hBN multilayers. Phys Rev B. 2017;95:245437.
  • Shi K, Bao F, He S. Enhanced near-field thermal radiation based on multilayer graphene-hbn heterostructures. ACS Photonics. 2017;4:971–978.
  • Wang R, Lu J, Jiang J-H. Enhancing thermophotovoltaic performance using graphene-bn-InSb near-field heterostructures. Phys Rev Appl. 2019;12:044038.
  • Brar VW, Jang MS, Sherrott M, et al. Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-bn heterostructures. Nano Lett. 2014;14:3876–3880.
  • Kumar A, Low T, Fung KH, et al. Tunable light-matter inter- action and the role of hyperbolicity in graphene-hBN system. Nano Lett. 2015;15:3172–3180.
  • Heavens OS. Optical properties of thin solid films. Chicago: Courier Corporation; 1991.
  • Knittl Z. Optics of thin films: an optical multilayer theory. London: Wiley; 1976.
  • Polder D, Van H M. Theory of radiative heat transfer between closely spaced bodies. Phys Rev B. 1971;4:3303.
  • Pendry JB. Radiative exchange of heat between nanostructures. J Phys Condens Matter. 1999;11:6621.
  • Papadakis GT, Buddhiraju S, Zhao Z, et al. Broadening near-field emission for performance enhancement in thermophotovoltaics. Nano Lett. 2020;20:1654–1661.
  • Wang R, Lu J, Jiang J-H. Moderate-temperature near-field thermophotovoltaic systems with thin-film insb cells. Chin Phys Lett. 2021;38:024201.
  • Tulapurkar AA, Suzuki Y. Contribution of electronmagnon scattering to the spin- dependent seebeck effect in a ferromagnet. Solid State Commun. 2010;150:466–470. spin Caloritronics.
  • Bauer GEW, Saitoh E, Van Wees BJ. Spin caloritronics. Nat Mater. 2012;11:391–399.
  • Chumak AV, Vasyuchka VI, Serga AA, et al. Magnon spintronics. Nat Phys. 2015;11:453–461.
  • Rezende SM, Rodríguez-Suárez RL, Azevedo A. Theory of the spin seebeck effect in antiferromagnets. Phys Rev B. 2016;93:014425.
  • Qaiumzadeh A, Ado IA, Duine RA, et al. Theory of the interfacial Dzyaloshinskii-Moriya interaction in rashba antiferromagnets. Phys Rev Lett. 2018;120:197202.
  • Tang G, Chen X, Ren J, et al. Rectifying full-counting statistics in a spin seebeck engine. Phys Rev B. 2018;97:081407.
  • Upadhyay V, Naseem MT, Marathe R, et al. Heat rectification by two qubits coupled with Dzyaloshinskii-Moriya interaction. Phys Rev E. 2021;104:054137.
  • Wang L, Wang Z, Wang C, et al. Cycle flux ranking of network analysis in quantum thermal devices. Phys Rev Lett. 2022;128:067701.
  • Uchida K, Takahashi S, Harii K, et al. Observation of the spin seebeck effect. Nature. 2008;455:778–781.
  • Jaworski CM, Yang J, Mack S, et al. Observation of the spin-seebeck effect in a ferromagnetic semiconductor. Nat Mater. 2010;9:898–903.
  • Slachter A, Bakker FL, Adam J-P, et al. Thermally driven spin injection from a ferromagnet into a non-magnetic metal. Nat Phys. 2010;6:879–882.
  • Walter M, Walowski J, Zbarsky V, et al. Seebeck effect in magnetic tunnel junctions. Nat Mater. 2011;10:742–746.
  • Ren J, Zhu J-X. Heat diode effect and negative differential thermal conductance across nanoscale metal-dielectric interfaces. Phys Rev B. 2013;87:241412.
  • Ren J, Zhu J-X. Theory of asymmetric and negative differential magnon tunneling under temperature bias: towards a spin seebeck diode and transistor. Phys Rev B. 2013;88:094427.
  • Ren J. Predicted rectification and negative differential spin seebeck effect at magnetic interfaces. Phys Rev B. 2013;88:220406.
  • Barato AC, Seifert U. Thermodynamic uncertainty relation for biomolecular processes. Phys Rev Lett. 2015;114:158101.
  • Hasegawa Y. Thermodynamic uncertainty relation for general open quantum systems. Phys Rev Lett. 2021;126:010602.
  • Liu J, Segal D. Thermodynamic uncertainty relation in quantum thermoelectric junctions. Phys Rev E. 2019;99:062141.
  • Horowitz JM, Gingrich TR. Thermodynamic uncertainty relations constrain non- equilibrium fluctuations. Nat Phys. 2020;16:15–20.
  • Yan -L-L, Zhang J-W, Yun M-R, et al. Experimental verification of dissipation-time uncertainty relation. Phys Rev Lett. 2022;128:050603.
  • Sinitsyn NA, Nemenman I. Universal geometric theory of mesoscopic stochastic pumps and reversible ratchets. Phys Rev Lett. 2007;99:220408.
  • Sinitsyn NA, Nemenman I. The berry phase and the pump flux in stochastic chemical kinetics. Europhys Lett. 2007;77:58001.
  • Ren J, Hänggi P, Li B. Berry-phase-induced heat pumping and its impact on the fluctuation theorem. Phys Rev Lett. 2010;104:170601.
  • Wang C, Ren J, Cao J. Unifying quantum heat transfer in a nonequilibrium spin- boson model with full counting statistics. Phys Rev A. 2017;95:023610.
  • Wang Z, Wang L, Chen J, et al. Geometric heat pump: controlling thermal transport with time-dependent modulations. Front Phys. 2022;17:1–14.
  • Wang Z, Chen J, Liu Z, et al. Observation of geometric heat pump effect in periodic driven thermal diffusion. arXiv:2110.10001. 2021.
  • Terrén Alonso P, Abiuso P, Perarnau-Llobet M, et al. Geometric optimization of nonequilibrium adiabatic thermal machines and implementation in a qubit system. PRX Quantum. 2022;3:010326.
  • Lu J, Wang Z, Peng J, et al. Geometric thermodynamic uncertainty relation in a periodically driven thermoelectric heat engine. Phys Rev B. 2022;105:115428.
  • Bhandari B, Alonso PT, Taddei F, et al. Geometric properties of adiabatic quantum thermal machines. Phys Rev B. 2020;102:155407.
  • Hu G, Ou Q, Si G, et al. Topological polaritons and photonic magic angles in twisted α-moo 3 bilayers. Nature. 2020;582:209–213.
  • He M, Qi H, Ren Y, et al. Active control of near-field radiative heat transfer by a graphene-gratings coating-twisting method. Opt Lett. 2020;45:2914–2917.
  • Tang G, Chen J, Zhang L. Twist-induced control of near-field heat radiation between magnetic Weyl semimetals. ACS Photonics. 2021;8:443–448.
  • Peng J, Tang G, Wang L, et al. Twist-induced near-field thermal switch using nonreciprocal surface magnon-polaritons. ACS Photonics. 2021;8:2183–2189.
  • Awschalom D, Samarth N. Spintronics without magnetism. Physics. 2009;2:50.
  • Hasan MZ, Kane CL. Colloquium: topological insulators. Rev Mod Phys. 2010;82:3045–3067.
  • Qi X-L, Zhang S-C. Topological insulators and superconductors. Rev Mod Phys. 2011;83:1057–1110.
  • Bliokh KY, Rodríguez-Fortuño FJ, Nori F, et al. Spin-orbit interactions of light. Nat Photonics. 2015;9:796–808.
  • Konstantin YB, Franco N. Transverse and longitudinal angular momenta of light. Phys Rep. 2015;592:1–38.
  • Zhang Z-Q, Lü J-T, Wang J-S. Angular momentum radiation from current-carrying molecular junctions. Phys Rev B. 2020;101:161406.