6,044
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Ultrafast dynamics of electrons and phonons: from the two-temperature model to the time-dependent Boltzmann equation

&
Article: 2095925 | Received 11 Feb 2022, Accepted 23 Jun 2022, Published online: 20 Jul 2022

References

  • Giustino F. Electron-phonon interactions from first principles. Rev Mod Phys. 2017 Feb;89:015003.
  • Allen PB, Heine V. Theory of the temperature dependence of electronic band structures. J Phys C. 1976 June;9:2305–45.
  • Allen PB, Cardona M. Theory of the temperature dependence of the direct gap of germanium. Phys Rev B. 1981 Feb;23:1495–1505.
  • Giustino F, Louie SG, Cohen ML. Electron-phonon renormalization of the direct band gap of diamond. Phys Rev Lett. 2010 Dec;105:265501.
  • Poncé S, Margine ER, Giustino F. Towards predictive many-body calculations of phonon-limited carrier mobilities in semiconductors. Phys Rev B. 2018 Mar;97:121201.
  • Allen PB. Electron-phonon effects in the infrared properties of metals. Phys Rev B. 1971 Jan;3:305.
  • Park C-H, Bonini N, Sohier T, et al. Electron–phonon interactions and the intrinsic electrical resistivity of graphene. Nano Lett. 2014;14:1113.
  • Poncé S, Wenbin L, Reichardt S, et al. First-principles calculations of charge carrier mobility and conductivity in bulk semiconductors and two-dimensional materials. Rep Prog Phys. 2020 Feb;83:036501.
  • Kioupakis E, Rinke P, Schleife A, et al. Free-carrier absorption in nitrides from first principles. Phys Rev B. 2010 Jun;81:241201.
  • Noffsinger J, Kioupakis E, Van de Walle CG, et al. Phonon-assisted optical absorption in silicon from first principles. Phys Rev Lett. 2012 Apr;108:167402.
  • Brown AM, Sundararaman R, Narang P, et al. Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces, and geometry. ACS Nano. 2016;10:957.
  • Novko D. Dopant-induced plasmon decay in graphene. Nano Lett. 2017;17:6991.
  • Caruso F, Novko D, Draxl C. Phonon-assisted damping of plasmons in three- and two-dimensional metals. Phys Rev B. 2018 May;97:205118.
  • Piscanec S, Lazzeri M, Mauri F, et al. Kohn anomalies and electron-phonon interactions in graphite. Phys Rev Lett. 2004 Oct;93:185503.
  • Lazzeri M, Mauri F. Nonadiabatic kohn anomaly in a doped graphene monolayer. Phys Rev Lett. 2006 Dec;97:266407.
  • Calandra M, Profeta G, Mauri F. Adiabatic and nonadiabatic phonon dispersion in a wannier function approach. Phys Rev B. 2010 Oct;82:165111.
  • Caruso F, Hoesch M, Achatz P, et al. Nonadiabatic kohn anomaly in heavily boron-doped diamond. Phys Rev Lett. 2017 Jul;119:017001.
  • Novko D. Nonadiabatic coupling effects in MgB2 reexamined. Phys Rev B. 2018;98:041112.
  • Garcia-Goiricelaya P, Lafuente-Bartolome J, Gurtubay IG, et al. Emergence of large nonadiabatic effects induced by the electron-phonon interaction on the complex vibrational quasiparticle spectrum of doped monolayer MoS2. Phys Rev B. 2020 Feb;101:054304.
  • Novko D. Broken adiabaticity induced by lifshitz transition in MoS2 and WS2 single layers. Commun Phys. Feb 2020;3.10.1038/s42005-020-0299-1
  • Verdi C, Caruso F, Giustino F. Origin of the crossover from polarons to Fermi liquids in transition metal oxides. Nat Commun. 2017;8:15769.
  • Riley JM, Caruso F, Verdi C, et al. Crossover from lattice to plasmonic polarons of a spin-polarised electron gas in ferromagnetic euo. Nat Commun. 2018;9:2305.
  • Caruso F, Verdi C, Poncé S, et al. Electron-plasmon and electron-phonon satellites in the angle-resolved photoelectron spectra of n-doped anatase TiO2. Phys Rev B. 2018 Apr;97:165113.
  • Kang M, Won Jung S, Jong Shin W, et al. Holstein polaron in a valley-degenerate two-dimensional semiconductor. Nat Mater. 2018;17:676.
  • Garcia-Goiricelaya P, Lafuente-Bartolome J, Gurtubay IG, et al. Long-living carriers in a strong electron–phonon interacting two-dimensional doped semiconductor. Commun Phys. 2019;2:81.
  • Carbotte JP, Marsiglio F. Electron-Phonon Superconductivity, 233. Berlin Heidelberg: Springer; 2003.
  • Lüders M, Marques MAL, Lathiotakis NN, et al. Ab initio theory of superconductivity. I. Density functional formalism and approximate functionals. Phys Rev B. 2005 Jul;72:024545.
  • Marques MAL, Lüders M, Lathiotakis NN, et al. Ab initio theory of superconductivity. II. Application to elemental metals. Phys Rev B. 2005 Jul;72:024546.
  • Margine ER, Giustino F. Anisotropic migdal-eliashberg theory using wannier functions. Phys Rev B. 2013 Jan;87:024505.
  • Kemper AF, Sentef MA, Moritz B, et al. Review of the theoretical description of time‐resolved angle‐resolved photoemission spectroscopy in electron‐phonon mediated superconductors. Ann Phys. 2017 Sept;529:1600235.
  • Calandra M, Mazin II, Mauri F. Effect of dimensionality on the charge-density wave in few-layer 2H - NbSe2. Phys Rev B. 2009 Dec;80:241108.
  • Rossnagel K. On the origin of charge-density waves in select layered transition-metal dichalcogenides. J Phys. 2011 May;23:213001.
  • Zhu X, Cao Y, Zhang J, et al. Classification of charge density waves based on their nature. Proc Nat Acad Sci. 2015;112:2367.
  • Kemper AF, Abdurazakov O, Freericks JK. General principles for the nonequilibrium relaxation of populations in quantum materials. Phys Rev X. 2018 Oct;8:041009.
  • Bernardi M, Vigil-Fowler D, Lischner J, et al. Ab initio study of hot carriers in the first picosecond after sunlight absorption in silicon. Phys Rev Lett. 2014 Jun;112:257402.
  • Lisowski M, Loukakos PA, Bovensiepen U, et al. Ultra-fast dynamics of electron thermalization, cooling and transport effects in Ru(001). Appl Phys A Mater Sci Process. 2004 Jan;78:165–176.
  • de la Torre A, Kennes DM, Claassen M, et al. Colloquium: nonthermal pathways to ultrafast control in quantum materials. Rev Mod Phys. 2021 Oct;93:041002.
  • Bovensiepen U, Kirchmann PS. Elementary relaxation processes investigated by femtosecond photoelectron spectroscopy of two-dimensional materials. Laser Photonics Rev. 2012;6:589.
  • Rohde G, Stange A, Müller A, et al. Ultrafast formation of a fermi-dirac distributed electron gas. Phys Rev Lett. 2018 Dec;121:256401.
  • Waldecker L, Bertoni R, Ernstorfer R, et al. Electron-phonon coupling and energy flow in a simple metal beyond the two-temperature approximation. Phys Rev X. 2016 Apr;6:021003.
  • Stern MJ, René de Cotret LP, Otto MR, et al. Mapping momentum-dependent electron-phonon coupling and nonequilibrium phonon dynamics with ultrafast electron diffuse scattering. Phys Rev B. 2018 Apr;97:165416.
  • Dürr HA, Ernstorfer R, Siwick BJ. Revealing momentum-dependent electron–phonon and phonon–phonon coupling in complex materials with ultrafast electron diffuse scattering. MRS Bull. 2021;46:731.
  • Kaganov MI, Lifshitz IM, Tanatarov LV. Electron emission from metal surfaces exposed to ultrashort laser pulses. Sov Phys JETP. 1957;4:173.
  • Lifshits IM, Kaganov MI, Tanatarov LV. On the theory of the changes produced in metals by radiation. Soviet J Atomic Energy.1960;6:261.
  • Anisimov SI, Kapeliovich BL, Perel’man TL. Electron emission from metal surfaces exposed to ultrashort laser pulses. Sov Phys JETP. 1973;39:375.
  • Philip BA. Theory of thermal relaxation of electrons in metals. Phys Rev Lett. 1987 Sep;59:1460–1463.
  • Corkum PB, Brunel F, Sherman NK, et al. Thermal response of metals to ultrashort-pulse laser excitation. Phys Rev Lett. 1988 Dec;61:2886–2889.
  • Brorson SD, Kazeroonian A, Moodera JS, et al. Femtosecond room-temperature measurement of the electron-phonon coupling constant γ in metallic superconductors. Phys Rev Lett. 1990 Apr;64:2172–2175.
  • Rethfeld B, Kaiser A, Vicanek M, et al. Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation. Phys Rev B. 2002 May;65:214303.
  • Jiang L, Tsai H-L. Improved two-temperature model and its application in ultrashort laser heating of metal films. J Heat Transfer. 2005 Oct;127:1167–1173.
  • Carpene E. Ultrafast laser irradiation of metals: beyond the two-temperature model. Phys Rev B. 2006 July;74:024301.
  • Lin Z, Zhigilei LV, Celli V. Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Phys Rev B. 2008 Feb;77:075133.
  • Conforti M, Della Valle G. Derivation of third-order nonlinear susceptibility of thin metal films as a delayed optical response. Phys Rev B. 2012 Jun;85:245423.
  • Mueller BY, Rethfeld B. Relaxation dynamics in laser-excited metals under nonequilibrium conditions. Phys Rev B. 2013 Jan;87:035139.
  • Wilson RB, Feser JP, Hohensee GT, et al. Two-channel model for nonequilibrium thermal transport in pump-probe experiments. Phys Rev B. 2013 Oct;88:144305.
  • Shin T, Teitelbaum SW, Wolfson J, et al. Extended two-temperature model for ultrafast thermal response of band gap materials upon impulsive optical excitation. J Chem Phys. 2015 Nov;143:194705.
  • Brown AM, Sundararaman R, Narang P, et al. Ab initio phonon coupling and optical response of hot electrons in plasmonic metals. Phys Rev B. 2016 Aug;94:075120.
  • Lončarić I, Alducin M, Saalfrank P, et al. Femtosecond-laser-driven molecular dynamics on surfaces: photodesorption of molecular oxygen from ag(110). Phys Rev B. 2016 Jan;93:014301.
  • Xian D-Q, Xiao-Hong L. An analytic study on the two-temperature model for electron-lattice thermal dynamic process. Therm Sci. 2017;21:1777–1782.
  • Meng A, Song Q, Xiaoxiang Y, et al. Generalized two-temperature model for coupled phonons in nanosized graphene. Nano Lett. 2017 Sept;17:5805–5810.
  • Sadasivam S, Chan MKY, Darancet P. Theory of thermal relaxation of electrons in semiconductors. Phys Rev Lett. 2017 Sep;119:136602.
  • Maldonado P, Carva K, Flammer M, et al. Theory of out-of-equilibrium ultrafast relaxation dynamics in metals. Phys Rev B. 2017 Nov;96:174439.
  • Maldonado P, Chase T, Reid AH, et al. Tracking the ultrafast nonequilibrium energy flow between electronic and lattice degrees of freedom in crystalline nickel. Phys Rev B. 2020 Mar;101:100302.
  • Novko D, Tremblay J-C, Alducin M, et al. Ultrafast transient dynamics of adsorbates on surfaces deciphered: the case of CO on Cu(100). Phys Rev Lett. 2019 Jan;122:016806.
  • Smirnov NA. Copper, gold, and platinum under femtosecond irradiation: results of first-principles calculations. Phys Rev B. 2020 Mar;101:094103.
  • Naldo SB, Bernotas AV, Donovan BF. Understanding the sensitivity of the two-temperature model for electron–phonon coupling measurements. J Appl Phys. 2020 Aug;128:085102.
  • Di Pietro P, Adhlakha N, Piccirilli F, et al. Terahertz tuning of dirac plasmons in Bi2Se3 topological insulator. Phys Rev Lett. 2020 Jun;124:226403.
  • Ritzmann U, Oppeneer PM, Maldonado P. Theory of out-of-equilibrium electron and phonon dynamics in metals after femtosecond laser excitation. Phys Rev B. 2020 Dec;102:214305.
  • Miao W, Wang M. Nonequilibrium effects on the electron-phonon coupling constant in metals. Phys Rev B. 2021 Mar;103:125412.
  • Novko D. First-principles study of ultrafast dynamics of dirac plasmon in graphene. New J Phys. 2021 Apr;23:043023.
  • Sidiropoulos TPH, Di Palo N, Rivas DE, et al. Probing the energy conversion pathways between light, carriers, and lattice in real time with attosecond core-level spectroscopy. Phys Rev X. 2021 Dec;11:041060.
  • Fujimoto JG, Liu JM, Ippen EP, et al. Femtosecond laser interaction with metallic tungsten and nonequilibrium electron and lattice temperatures. Phys Rev Lett. 1984 Nov;53:1837–1840.
  • Fann WS, Storz R, Tom HWK, et al. Direct measurement of nonequilibrium electron-energy distributions in subpicosecond laser-heated gold films. Phys Rev Lett. 1992 May;68:2834–2837.
  • Fann WS, Storz R, Tom HWK, et al. Electron thermalization in gold. Phys Rev B. 1992 Nov;46:13592–13595.
  • Hertel T, Knoesel E, Wolf M, et al. Ultrafast electron dynamics at Cu(111): response of an electron gas to optical excitation. Phys Rev Lett. 1996 Jan;76:535–538.
  • Perfetti L, Loukakos PA, Lisowski M, et al. Ultrafast electron relaxation in superconducting Bi2Sr2CaCu2O8+δ by time-resolved photoelectron spectroscopy. Phys Rev Lett. 2007 Nov;99:197001.
  • Bonn M, Denzler DN, Funk S, et al. Ultrafast electron dynamics at metal surfaces: competition between electron-phonon coupling and hot-electron transport. Phys Rev B. 2000 Jan;61:1101–1105.
  • Christian Johannsen J, Ulstrup S, Cilento F, et al. Direct view of hot carrier dynamics in graphene. Phys Rev Lett. 2013 July;111:027403.
  • Gierz I, Petersen JC, Mitrano M, et al. Snapshots of non-equilibrium dirac carrier distributions in graphene. Nat Mater. 2013 Dec;12:1119–1124.
  • Yang J-A, Parham S, Dessau D, et al. Novel electron-phonon relaxation pathway in graphite revealed by time-resolved raman scattering and angle-resolved photoemission spectroscopy. Sci Rep. 2017;7:40876.
  • Caruso F, Novko D, Draxl C. Photoemission signatures of nonequilibrium carrier dynamics from first principles. Phys Rev B. 2020 Jan;101:035128.
  • Novko D, Caruso F, Draxl C, et al. Ultrafast hot phonon dynamics in MgB 2 driven by anisotropic electron-phonon coupling. Phys Rev Lett. 2020 Feb;124:077001.
  • Pellatz N, Roy S, Lee J-W, et al. Relaxation timescales and electron-phonon coupling in optically pumped YBa2Cu3O6+x revealed by time-resolved raman scattering. Phys Rev B. 2021 Nov;104:L180505.
  • Chase T, Trigo M, Reid AH, et al. Ultrafast electron diffraction from non-equilibrium phonons in femtosecond laser heated Au films. Appl Phys Lett. 2016 Jan;108:041909.
  • René de Cotret LP, Pöhls J-H, Stern MJ, et al. Time- and momentum-resolved phonon population dynamics with ultrafast electron diffuse scattering. Phys Rev B. 2019 Dec;100:214115.
  • Elsayed-Ali HE, Norris TB, Pessot MA, et al. Time-resolved observation of electron-phonon relaxation in copper. Phys Rev Lett. 1987 Mar;58:1212–1215.
  • Schoenlein RW, Lin WZ, Fujimoto JG, et al. Femtosecond studies of nonequilibrium electronic processes in metals. Phys Rev Lett. 1987 Apr;58:1680–1683.
  • Groeneveld RHM, Sprik R, Lagendijk A. Effect of a nonthermal electron distribution on the electron-phonon energy relaxation process in noble metals. Phys Rev B. 1992 Mar;45:5079–5082.
  • Juhasz T, Elsayed-Ali HE, Smith GO, et al. Direct measurements of the transport of nonequilibrium electrons in gold films with different crystal structures. Phys Rev B. 1993 Nov;48:15488–15491.
  • Sun C-K, Vallée F, Acioli LH, et al. Femtosecond-tunable measurement of electron thermalization in gold. Phys Rev B. 1994 Nov;50:15337–15348.
  • Hohlfeld J, Müller JG, Wellershoff -S-S, et al. Time-resolved thermoreflectivity of thin gold films and its dependence on film thickness. Appl Phys B. 1997 Mar;64:387–390.
  • Wellershoff -S-S, Hohlfeld J, Güdde J, et al. The role of electron–phonon coupling in femtosecond laser damage of metals. Appl Phys A Mater Sci Process. 1999 Dec;69:S99–S107.
  • Hohlfeld J, Wellershoff -S-S, Güdde J, et al. Electron and lattice dynamics following optical excitation of metals. Chem Phys. 2000 Jan;251:237–258.
  • Hase M, Ishioka K, Demsar J, et al. Ultrafast dynamics of coherent optical phonons and nonequilibrium electrons in transition metals. Phys Rev B. 2005 May;71:184301.
  • Della Valle G, Conforti M, Longhi S, et al. Real-time optical mapping of the dynamics of nonthermal electrons in thin gold films. Phys Rev B. 2012 Oct;86:155139.
  • Ortolani M, Mancini A, Budweg A, et al. Pump-probe spectroscopy study of ultrafast temperature dynamics in nanoporous gold. Phys Rev B. 2019 Jan;99:035435.
  • Novko D, Kralj M. Phonon-assisted processes in the ultraviolet-transient optical response of graphene. NPJ 2D Mater Appl.2019;3:48.
  • Bresson P, Bryche J-F, Besbes M, et al. Improved two-temperature modeling of ultrafast thermal and optical phenomena in continuous and nanostructured metal films. Phys Rev B. 2020 Oct;102:155127.
  • Obergfell M, Demsar J. Tracking the time evolution of the electron distribution function in copper by femtosecond broadband optical spectroscopy. Phys Rev Lett. 2020 Jan;124:037401.
  • Chan CCS, Fan K, Wang H, et al. Uncovering the electron-phonon interplay and dynamical energy-dissipation mechanisms of hot carriers in hybrid lead halide perovskites. Adv Energy Mater. 2021;11:2003071.
  • Chang H-T, Guggenmos A, Cushing SK, et al. Electron thermalization and relaxation in laser-heated nickel by few-femtosecond core-level transient absorption spectroscopy. Phys Rev B. 2021 Feb;103:064305.
  • Tang J. Coherent phonon excitation and linear thermal expansion in structural dynamics and ultrafast electron diffraction of laser-heated metals. J Chem Phys. 2008 Apr;128:164702.
  • Giret Y, Gellé A, Arnaud B. Entropy driven atomic motion in laser-excited bismuth. Phys Rev Lett. 2011 Apr;106:155503.
  • Holst B, Recoules V, Mazevet S, et al. Ab initio model of optical properties of two-temperature warm dense matter. Phys Rev B. 2014 July;90:035121.
  • Leguay PM, Lévy A, Chimier B, et al. Ultrafast short-range disordering of femtosecond-laser-heated warm dense aluminum. Phys Rev Lett. 2013 Dec;111:245004.
  • Petrov GM, Davidson A, Gordon D, et al. Modeling of short-pulse laser-metal interactions in the warm dense matter regime using the two-temperature model. Phys Rev E. 2021 Mar;103:033204.
  • Simoni J, Daligault J. First-Principles determination of electron-ion couplings in the warm dense matter regime. Phys Rev Lett. 2019 May;122:205001.
  • Benhayoun O, Terekhin PN, Ivanov DS, et al. Theory for heating of metals assisted by surface plasmon polaritons. Appl Surf Sci. 2021;569:150427.
  • Beaurepaire E, Merle J-C, Daunois A, et al. Ultrafast spin dynamics in ferromagnetic nickel. Phys Rev Lett. 1996 May;76:4250–4253.
  • Sanders DJ, Walton D. Effect of magnon-phonon thermal relaxation on heat transport by magnons. Phys Rev B. 1977 Feb;15:1489–1494.
  • Schreier M, Kamra A, Weiler M, et al. Magnon, phonon, and electron temperature profiles and the spin Seebeck effect in magnetic insulator/normal metal hybrid structures. Phys Rev B. 2013 Sept;88:094410.
  • Agrawal M, Vasyuchka VI, Serga AA, et al. Direct measurement of magnon temperature: new insight into magnon-phonon coupling in magnetic insulators. Phys Rev Lett. 2013 Sept;111:107204.
  • Montagnese M, Otter M, Zotos X, et al. Phonon-Magnon interaction in low dimensional quantum magnets observed by dynamic heat transport measurements. Phys Rev Lett. 2013 April;110:147206.
  • Hohensee GT, Wilson RB, Feser JP, et al. Magnon-phonon coupling in the spin-ladder compound Ca 9 La 5 Cu 24 O 41 measured by time-domain thermoreflectance. Phys Rev B. 2014 Jan;89:024422.
  • Liao B, Zhou J, Chen G. Generalized two-temperature model for coupled phonon-magnon diffusion. Phys Rev Lett. 2014 July;113:025902.
  • Patz A, Tianqi L, Ran S, et al. Ultrafast observation of critical nematic fluctuations and giant magnetoelastic coupling in iron pnictides. Nat Commun. 2014 Feb;5. 10.1038/ncomms4229.
  • George DT. Ultrafast dynamics of non-equilibrium electrons and strain generation under femtosecond laser irradiation of nickel. Appl Phys A. 2018 Mar;124:311.
  • Uehlein M, Weber ST, and Rethfeld B. Implementation of the electronic non-equilibrium in the two-temperature model. Nanomaterials. 2022; 12(10):1655. https://www.mdpi.com/2079-4991/12/10/1655 .
  • Singh NAVINDER. Two-temperature model of nonequilibrium electron relaxation: a review. Int J Modern Phys B. 2010;24:1141–1158.
  • Rethfeld B, Ivanov DS, Garcia ME, et al. Modelling ultrafast laser ablation. J Phys D Appl Phys. 2017 Apr;50:193001.
  • Waldecker L, Vasileiadis T, Bertoni R, et al. Coherent and incoherent structural dynamics in laser-excited antimony. Phys Rev B. 2017 Feb;95:054302.
  • Zexi L, Vallabhaneni A, Cao B, et al. Phonon branch-resolved electron-phonon coupling and the multitemperature model. Phys Rev B. 2018 Oct;98:134309.
  • Ono S. Thermalization in simple metals: role of electron-phonon and phonon-phonon scattering. Phys Rev B. 2018 Feb;97:054310.
  • Kampfrath T, Perfetti L, Schapper F, et al. Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite. Phys Rev Lett. 2005 Oct;95:187403.
  • Ishida Y, Togashi T, Yamamoto K, et al. Non-thermal hot electrons ultrafastly generating hot optical phonons in graphite. Sci Rep. 2011 Aug;1. 10.1038/srep00064.
  • Dal Conte S, Giannetti C, Coslovich G, et al. Disentangling the electronic and phononic glue in a High-Tc superconductor. Science. 2012;335:1600.
  • Mansart B, Cottet MJG, Mancini GF, et al. Temperature-dependent electron-phonon coupling in La2−xSrxCuO4 probed by femtosecond x-ray diffraction. Phys Rev B. 2013 Aug;88:054507.
  • David P, Robert Schrieffer J. Approach to equilibrium of electrons, plasmons, and phonons in quantum and classical plasmas. Phys Rev. 1962;125:804.
  • Grinberg AA, Luryi S. Nonstationary quasiperiodic energy distribution of an electron gas upon ultrafast thermal excitation. Phys Rev Lett. 1990 Sep;65:1251–1254.
  • Vitalyi EG, Oliver BW. Ultrafast nonequilibrium dynamics of electrons in metals. Phys Rev B. 1998 Feb;57:2878–2888.
  • Kim R, Perebeinos V, Avouris P. Relaxation of optically excited carriers in graphene. Phys Rev B. 2011 Aug;84:075449.
  • Baranov VV, Kabanov VV. Theory of electronic relaxation in a metal excited by an ultrashort optical pump. Phys Rev B. 2014 Mar;89:125102.
  • Marini A, Ciattoni A, Conti C. Out-of-equilibrium electron dynamics of silver driven by ultrafast electromagnetic fields – a novel hydrodynamical approach. Faraday Discuss. 2019;214:235–243.
  • Ono S, Suemoto T. Ultrafast photoluminescence in metals: theory and its application to silver. Phys Rev B. 2020 Jul;102:024308.
  • Collet J, Amand T. Model calculation of the laser-semiconductor interaction in subpicosecond regime. J Phys Chem Solids. 1986;47:153–163.
  • Binder R, Scott D, Paul AE, et al. Carrier-carrier scattering and optical dephasing in highly excited semiconductors. Phys Rev B. 1992 Jan;45:1107–1115.
  • Jhalani VA, Zhou J-J, Bernardi M. Ultrafast hot carrier dynamics in gan and its impact on the efficiency droop. Nano Lett. 2017;17:5012–5019. PMID: 28737402.
  • Zhou J-J, Park J, Lu I-T, et al. Perturbo: a software package for ab initio electron–phonon interactions, charge transport and ultrafast dynamics. Comput Phys Commun. 2021;264:107970.
  • Richter M, Carmele A, Butscher S, et al. Two-dimensional electron gases: theory of ultrafast dynamics of electron-phonon interactions in graphene, surfaces, and quantum wells. J Appl Phys. 2009;105:122409.
  • Tani S, Ç Çois Blanchard F, Tanaka K. Ultrafast carrier dynamics in graphene under a high electric field. Phys Rev Lett. 2012 Oct;109:166603.
  • Brida D, Tomadin A, Manzoni C, et al. Ultrafast collinear scattering and carrier multiplication in graphene. Nat Commun. 2013 Oct;4:1987.
  • Kratzer P, Zahedifar M. Relaxation of electrons in quantum-confined states in Pb/Si(111) thin films from master equation with first-principles-derived rates. New J Phys. 2019 Dec;21:123023.
  • Tong X, Bernardi M. Toward precise simulations of the coupled ultrafast dynamics of electrons and atomic vibrations in materials. Phys Rev Res. 2021 April;3:023072.
  • Caruso F. Nonequilibrium lattice dynamics in monolayer mos2. J Phys Chem Lett. 2021;12:1734–1740. PMID: 33569950.
  • Seiler H, Zahn D, Zacharias M, et al. Accessing the anisotropic nonthermal phonon populations in black phosphorus. Nano Lett. 2021;21:6171–6178. PMID: 34279103.
  • Mueller BY, Roth T, Cinchetti M, et al. Driving force of ultrafast magnetization dynamics. New J Phys. 2011 Dec;13:123010.
  • Mueller BY, Baral A, Vollmar S, et al. Feedback effect during ultrafast demagnetization dynamics in ferromagnets. Phys Rev Lett. 2013 Oct;111:167204.
  • Cao T, Wang G, Han W, et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat Commun. 2012 Jan;3:887.
  • Fai Mak K, Keliang H, Shan J, et al. Control of valley polarization in monolayer MoS2 by optical helicity. Nat Nanotechnol. 2012 Aug;7:494–498.
  • Zeng H, Dai J, Yao W, et al. Valley polarization in MoS2 monolayers by optical pumping. Nat Nanotechnol. 2012 Aug;7:490–493.
  • Caruso F, Schebek M, and Pan Y, et al. Chirality of valley excitons in monolayer transition-metal dichalcogenides. J.Phys. Chem. Lett, 2022;13(25):5894. doi:10.1021/acs.jpclett.2c01034. https://doi.org/10.1021/acs.jpclett.2c01034 .
  • Otto MR, Pöhls J-H, René de Cotret LP, et al. Mechanisms of electron-phonon coupling unraveled in momentum and time: the case of soft phonons in TiSe 2. Sci Adv. 2021 May;7:eabf2810.
  • Zacharias M, Seiler H, Caruso F, et al. Multiphonon diffuse scattering in solids from first principles: application to layered crystals and two-dimensional materials. Phys Rev B. 2021 Nov;104:205109.
  • Zacharias M, Seiler H, Caruso F, et al. Efficient first-principles methodology for the calculation of the all-phonon inelastic scattering in solids. Phys Rev Lett. 2021 Nov;127:207401.
  • Chen JK, Beraun JE. Numerical study of ultrashort laser pulse interactions with metal films. Numer Heat Tr Part A Appl. 2001. July;40:1–20.
  • Hakkinen H, Landman U. Superheating, melting, and annealing of copper surfaces. Phys Rev Lett. 1993 Aug;71:1023–1026.
  • Dmitriy SI, Leonid VZ. Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films. Phys Rev B. 2003 Aug;68:064114.
  • Lin Z, Leonid VZ. Time-resolved diffraction profiles and atomic dynamics in short-pulse laser-induced structural transformations: molecular dynamics study. Phys Rev B. 2006 May;73:184113.
  • Baroni S, de Gironcoli S, Dal Corso A, et al. Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys. 2001 Jul;73:515–562.
  • Poncé S, Margine ER, Verdi C, et al. Epw: electron–phonon coupling, transport and superconducting properties using maximally localized wannier functions. Comput Phys Commun. 2016;209:116–133.
  • Wang H, Strait JH, George PA, et al. Ultrafast relaxation dynamics of hot optical phonons in graphene. Appl Phys Lett. 2010 Feb;96:081917.
  • Breusing M, Ropers C, Elsaesser T. Ultrafast carrier dynamics in graphite. Phys Rev Lett. 2009 Feb;102:086809.
  • T. L. Britt, Q. Li, L. de Cotret, N. Olsen, M. Otto, S. A. Hassan, M. Zacharias, F. Caruso, and X. Zhu, B. J. Siwick, Nano Lett. 22, 4718 (2022).
  • Michael Ziman J. Electrons and phonons: the theory of transport phenomena in solids. Oxford: Clarendon Press; 1960.
  • Yang S-L, Sobota JA, Leuenberger D, et al. Inequivalence of single-particle and population lifetimes in a cuprate superconductor. Phys Rev Lett. 2015 Jun;114:247001.
  • Rana F. Electron-hole generation and recombination rates for Coulomb scattering in graphene. Phys Rev B. 2007 Oct;76:155431.
  • Hamm JM, Page AF, Bravo-Abad J, et al. Nonequilibrium plasmon emission drives ultrafast carrier relaxation dynamics in photoexcited graphene. Phys Rev B. 2016 Jan;93:041408.
  • Kim L, Kim S, Jha PK, et al. Mid-infrared radiative emission from bright hot plasmons in graphene. Nat Mater. 2021 Apr;20:805–811.
  • Gumhalter B. Ultrafast dynamics of hot electrons and holes in solids: elementary stages in the spectroscopies of surface electronic structure. In: Wandelt K, editor. Encyclopedia of interfacial chemistry. Oxford: Elsevier; 2018. p. 668.
  • De Giovannini U, Sato SA, Hübener H, et al. First-principles modelling for time-resolved arpes under different pump–probe conditions. J Electron Spectros Relat Phenomena. 2022;254:147152.
  • Tanaka S, Yoshida T, Watanabe K, et al. Ultrafast plasmonic response ensured by atomic scale confinement. ACS Photonics. 2022;9:837.
  • McIver JW, Schulte B, Stein F-U, et al. Light-induced anomalous hall effect in graphene. Nat Phys. 2020 Jan;16:38–41.
  • Schüler M, De Giovannini U, Hübener H, et al. How circular dichroism in time- and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys Rev X. 2020 Oct;10:041013.
  • Sentef MA, Claassen M, Kemper AF, et al. Theory of Floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat Commun. 2015 Nov;6:7047.
  • George PA, Strait J, Dawlaty J, et al. Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene. Nano Lett. 2008 Dec;8:4248–4251.
  • Sun D, Zong-Kwei W, Divin C, et al. Ultrafast relaxation of excited dirac fermions in epitaxial graphene using optical differential transmission spectroscopy. Phys Rev Lett. 2008 Oct;101:157402.
  • Hung Lui C, Fai Mak K, Shan J, et al. Ultrafast photoluminescence from graphene. Phys Rev Lett. 2010 Sept;105:127404.
  • Breusing M, Kuehn S, Winzer T, et al. Ultrafast nonequilibrium carrier dynamics in a single graphene layer. Phys Rev B. 2011 Apr;83:153410.
  • Winnerl S, Orlita M, Plochocka P, et al. Carrier relaxation in epitaxial graphene photoexcited near the dirac point. Phys Rev Lett. 2011 Nov;107:237401.
  • Li T, Luo L, Hupalo M, et al. Femtosecond population inversion and stimulated emission of dense dirac fermions in graphene. Phys Rev Lett. 2012 Apr;108:167401.
  • Jnawali G, Rao Y, Yan H, et al. Observation of a transient decrease in terahertz conductivity of single-layer graphene induced by ultrafast optical excitation. Nano Lett. 2013;13:524.
  • Frenzel AJ, Lui CH, Shin YC, et al. Semiconducting-to-metallic photoconductivity crossover and temperature-dependent drude weight in graphene. Phys Rev Lett. 2014 Jul;113:056602.
  • Jensen SA, Mics Z, Ivanov I, et al. Competing ultrafast energy relaxation pathways in photoexcited graphene. Nano Lett. 2014;14:5839.
  • Haight R. Electron dynamics at surfaces. Surf Sci Rep. 1995;21:275–325.
  • Armbrust N, Güdde J, Jakob P, et al. Time-Resolved two-photon photoemission of unoccupied electronic states of periodically rippled graphene on Ru(0001). Phys Rev Lett. 2012 Jan;108:056801.
  • Niesner D, Fauster T, Dadap JI, et al. Trapping surface electrons on graphene layers and Islands. Phys Rev B. 2012 Feb;85:081402.
  • Ulstrup S, Christian Johannsen J, Cilento F, et al. Ultrafast dynamics of massive dirac fermions in bilayer graphene. Phys Rev Lett. 2014 Jun;112:257401.
  • Gierz I, Link S, Starke U, et al. Non-equilibrium dirac carrier dynamics in graphene investigated with time- and angle-resolved photoemission spectroscopy. Faraday Discuss. 2014;171:311.
  • Gierz I, Calegari F, Aeschlimann S, et al. Tracking primary thermalization events in graphene with photoemission at extreme time scales. Phys Rev Lett. 2015 Aug;115:086803.
  • Gierz I, Mitrano M, Bromberger H, et al. Phonon-pump extreme-ultraviolet-photoemission probe in graphene: anomalous heating of dirac carriers by lattice deformation. Phys Rev Lett. 2015 Mar;114:125503.
  • Christian Johannsen J, Ulstrup S, Crepaldi A, et al. Tunable carrier multiplication and cooling in graphene. Nano Lett. 2015;15:326.
  • Aeschlimann S, Krause R, Chávez-Cervantes M, et al. Ultrafast momentum imaging of pseudospin-flip excitations in graphene. Phys Rev B. 2017 July;96:020301.
  • Tan S, Argondizzo A, Wang C, et al. Ultrafast multiphoton thermionic photoemission from graphite. Phys Rev X. 2017 Jan;7:011004.
  • Pomarico E, Mitrano M, Bromberger H, et al. Enhanced electron-phonon coupling in graphene with periodically distorted lattice. Phys Rev B. 2017 Jan;95:024304.
  • Someya T, Fukidome H, Watanabe H, et al. Suppression of supercollision carrier cooling in high mobility graphene on SiC(0001¯). Phys Rev B. 2017 Apr;95:165303.
  • Na MX, Mills AK, Boschini F, et al. Direct determination of mode-projected electron-phonon coupling in the time domain. Science. 2019;366:1231.
  • Keunecke M, Möller C, Schmitt D, et al. Time-resolved momentum microscopy with a 1 MHz high-harmonic extreme ultraviolet beamline. Rev Sci Instrum. 2020 June;91:063905.
  • Malic E, Winzer T, Bobkin E, et al. Microscopic theory of absorption and ultrafast many-particle kinetics in graphene. Phys Rev B. 2011 Nov;84:205406.
  • Winzer T, Malić E, Knorr A. Microscopic mechanism for transient population inversion and optical gain in graphene. Phys Rev B. 2013 Apr;87:165413.
  • Tomadin A, Brida D, Cerullo G, et al. Nonequilibrium dynamics of photoexcited electrons in graphene: collinear scattering, auger processes, and the impact of screening. Phys Rev B. 2013 Jul;88:035430.
  • Yadav D, Trushin M, Pauly F. Photocarrier thermalization bottleneck in graphene. Phys Rev B. 2019 Apr;99:155410.
  • Na MX, Boschini F, Mills AK, et al. Establishing nonthermal regimes in pump-probe electron relaxation dynamics. Phys Rev B. 2020 Nov;102:184307.
  • De Giovannini U, Hübener H, Sato SA, et al. Direct measurement of electron-phonon coupling with time-resolved arpes. Phys Rev Lett. 2020 Sep;125:136401.
  • Shi-Qi H, Zhao H, and Lian C, et al. Tracking photocarrier-enhanced electron-phonon coupling in nonequilibrium. Npj Quant Mater. 2022 jan;7:14.
  • Perfetto E, Pavlyukh Y, Stefanucci G. Real-Time gw: oward an ab initio description of the ultrafast carrier and exciton dynamics in two-dimensional materials. Phys Rev Lett. 2022 Jan;128:016801.
  • Tomadin A, Hornett SM, Wang HI, et al. The ultrafast dynamics and conductivity of photoexcited graphene at different Fermi energies. Sci Adv. 2018;4:eaar5313.
  • Zhang H, Bao C, Schüler M, et al. Self-energy dynamics and mode-specific phonon threshold effect in a Kekulé-ordered graphene. Natl Sci Rev. 2021;9:nwab175.
  • Gierz I. Probing carrier dynamics in photo-excited graphene with time-resolved arpes. J Electron Spectros Relat Phenomena. 2017;219:53–56. SI: The electronic structure of 2D and layered materials.
  • Gierz I, Mitrano M, Petersen JC, et al. Population inversion in monolayer and bilayer graphene. J Phys Condens Matter. 2015 Apr;27:164204.
  • Winzer T, Knorr A, Malic E. Carrier multiplication in graphene. Nano Lett. 2010 Dec;10:4839–4843.
  • Shiwei W, Liu W-T, Liang X, et al. Hot phonon dynamics in graphene. Nano Lett. 2012;12:5495–5499. PMID: 23106146.
  • Pogna EAA, Jia X, Principi A, et al. Hot-carrier cooling in high-quality graphene is intrinsically limited by optical phonons. ACS Nano. 2021;15:11285.
  • Stange A, Sohrt C, Yang LX, et al. Hot electron cooling in graphite: supercollision versus hot phonon decay. Phys Rev B. 2015 Nov;92:184303.
  • Puschnig P, Lüftner D. Simulation of angle-resolved photoemission spectra by approximating the final state by a plane wave: from graphene to polycyclic aromatic hydrocarbon molecules. J Electron Spectros Relat Phenomena. 2015;200:193–208. Special Anniversary Issue: Volume 200.
  • Wang XY, Riffe DM, Lee Y-S, et al. Time-resolved electron-temperature measurement in a highly excited gold target using femtosecond thermionic emission. Phys Rev B. 1994 Sept;50:8016–8019.
  • Andreatta F, Rostami H, Čabo AGĆ, et al. Transient hot electron dynamics in single-layer TaS2. Phys Rev B. 2019 Apr;99:165421.
  • Majchrzak P, Pakdel S, Biswas D, et al. Switching of the electron-phonon interaction in 1t – vse2 assisted by hot carriers. Phys Rev B. 2021 Jun;103:L241108.
  • Grimvall G. The electron-phonon interaction in metals. North-Holland: Selected topics in solid state physics; 1981.
  • Giannozzi P, Andreussi O, Brumme T, et al. Advanced capabilities for materials modelling with quantum ESPRESSO. J Phys. 2017 Oct;29:465901.
  • Kupčić I. Damping effects in doped graphene: the relaxation-time approximation. Phys Rev B. 2014 Nov;90:205426.
  • Pagliara S, Galimberti G, Mor S, et al. Photoinduced π – π* band gap renormalization in graphite. J Am Chem Soc. 2011;133:6318–6322.
  • Roberts AT, Binder R, Kwong NH, et al. Optical characterization of electron-phonon interactions at the saddle point in graphene. Phys Rev Lett. 2014 May;112:187401.
  • Caruso F. Nonequilibrium lattice dynamics in monolayer mos2. J Phys Chem Lett. 2021;12:1734–1740. 10.1021/acs.jpclett.0c03616.
  • Rameau JD, Freutel S, Kemper AF, et al. Energy dissipation from a correlated system driven out of equilibrium. Nat Commun. 2016 Dec;7:13761.
  • Konstantinova T, Rameau JD, Reid AH, et al. Nonequilibrium electron and lattice dynamics of strongly correlated Bi 2 Sr 2 CaCu 2 O 8+δ single crystals. Sci Adv. 2018 Apr;4:7427.
  • Schlünzen N, Hermanns S, Scharnke M, et al. Ultrafast dynamics of strongly correlated fermions—nonequilibrium green functions and selfenergy approximations. J Phys. 2019 Dec;32:103001.
  • Beaulieu S, Dong S, Tancogne-Dejean N, et al. Ultrafast dynamical lifshitz transition. Sci Adv. 2021;7:eabd9275.
  • Chatelain RP, Morrison VR, Klarenaar BLM, et al. Coherent and incoherent electron-phonon coupling in graphite observed with radio-frequency compressed ultrafast electron diffraction. Phys Rev Lett. 2014 Dec;113:235502.
  • Marini A, Perfetto E, Stefanucci G. Coherence and de-coherence in the time-resolved arpes of realistic materials: an ab-initio perspective. 2021.
  • Juraschek DM, Fechner M, Spaldin NA. Ultrafast structure switching through nonlinear phononics. Phys Rev Lett. 2017 Jan;118:054101.
  • Marini G, Calandra M. Light-Tunable charge density wave orders in MoTe2 and WTe2 single layers. Phys Rev Lett. 2021 Dec;127:257401.
  • Guan M-X, Liu X-B, Chen D-Q, et al. Optical control of multistage phase transition via phonon coupling in MoTe2. Phys Rev Lett. 2022 Jan;128:015702.
  • Nuske M, Broers L, Schulte B, et al. Floquet dynamics in light-driven solids. Phys Rev Res. 2020 Dec;2:043408.
  • Sato SA, Tang P, Sentef MA, et al. Light-induced anomalous hall effect in massless dirac fermion systems and topological insulators with dissipation. New J Phys. 2019 Sept;21:093005.
  • Sato SA, McIver JW, Nuske M, et al. Microscopic theory for the light-induced anomalous hall effect in graphene. Phys Rev B. 2019 June;99:214302.
  • René de Cotret LP, Otto MR, and Pöhls J-H, et al. Direct visualization of polaron formation in the thermoelectric snse. Proc Nat Acad Sci. 2022;119:e2113967119.
  • Sangalli D, Perfetto E, Stefanucci G, et al. An ab-initio approach to describe coherent and non-coherent exciton dynamics. Eur Phys J B. 2018 Aug;91. 10.1140/epjb/e2018-90126-5.
  • Berghäuser G, Bernal-Villamil I, Schmidt R, et al. Inverted valley polarization in optically excited transition metal dichalcogenides. Nat Commun. 2018 Mar;9. 10.1038/s41467-018-03354-1.
  • Heide C, Eckstein T, Boolakee T, et al. Electronic coherence and coherent dephasing in the optical control of electrons in graphene. Nano Lett. 2021;21:9403.
  • Rossi F, Kuhn T. Theory of ultrafast phenomena in photoexcited semiconductors. Rev Mod Phys. 2002 Aug;74:895–950.
  • Ruggenthaler M, Flick J, Pellegrini C, et al. Quantum-electrodynamical density-functional theory: bridging quantum optics and electronic-structure theory. Phys Rev A. 2014 Jul;90:012508.
  • Flick J, Ruggenthaler M, Appel H, et al. Kohn–sham approach to quantum electrodynamical density-functional theory: exact time-dependent effective potentials in real space. Proc Nat Acad Sci. 2015;112:15285–15290.
  • Schüler M, Eckstein M, Werner P. Truncating the memory time in nonequilibrium dynamical mean field theory calculations. Phys Rev B. 2018 Jun;97:245129.
  • Murakami Y, Schüler M, Takayoshi S, et al. Ultrafast nonequilibrium evolution of excitonic modes in semiconductors. Phys Rev B. 2020 Jan;101:035203.
  • Myöhänen P, Stan A, Stefanucci G, et al. Kadanoff-baym approach to quantum transport through interacting nanoscale systems: from the transient to the steady-state regime. Phys Rev B. 2009 Sep;80:115107.
  • von Friesen MP, Verdozzi C, Almbladh C-O. Kadanoff-baym dynamics of hubbard clusters: performance of many-body schemes, correlation-induced damping and multiple steady and quasi-steady states. Phys Rev B. 2010 Oct;82:155108.
  • Schüler M, Berakdar J, Pavlyukh Y. Time-dependent many-body treatment of electron-boson dynamics: application to plasmon-accompanied photoemission. Phys Rev B. 2016 Feb;93:054303.
  • Golež D, Eckstein M, Werner P. Multiband nonequilibrium GW+EDMFT formalism for correlated insulators. Phys Rev B. 2019 Dec;100:235117.
  • Perfetto E, Marini A, Stefanucci G. Self-consistent screening enhances the stability of the nonequilibrium excitonic insulator phase. Phys Rev B. 2020 Aug;102:085203.
  • Bonitz M. Quantum kinetic theory. Springer, Berlin; 2015.
  • Schlünzen N, Joost J-P, Bonitz M. Achieving the scaling limit for nonequilibrium green functions simulations. Phys Rev Lett. 2020 Feb;124:076601.
  • Zeiger HJ, Vidal J, Cheng TK, et al. Theory for displacive excitation of coherent phonons. Phys Rev B. 1992 Jan;45:768–778.
  • Kuznetsov AV, Stanton CJ. Theory of coherent phonon oscillations in semiconductors. Phys Rev Lett. 1994 Dec;73:3243–3246.
  • Garrett GA, Albrecht TF, Whitaker JF, et al. Coherent THz phonons driven by light pulses and the Sb problem: what is the mechanism? Phys Rev Lett. 1996 Oct;77:3661–3664.
  • Hase M, Kitajima M, Monia Constantinescu A, et al. The birth of a quasiparticle in silicon observed in time–frequency space. Nature. 2003 Nov;426:51.
  • Lee S-Y, Zhang D, McCamant DW, et al. Theory of femtosecond stimulated Raman spectroscopy. J Chem Phys. 2004 Aug;121:3632–3642.
  • Perfetti L, Loukakos PA, Lisowski M, et al. time evolution of the electronic structure of 1T−TaS2 through the insulator-metal transition. Phys Rev Lett. 2006 Aug;97:067402.
  • Ishioka K, Hase M, Kitajima M, et al. Ultrafast electron-phonon decoupling in graphite. Phys Rev B. 2008 Mar;77:121402.
  • Trovatello C, Miranda HPC, Molina-Sánchez A, et al. Strongly coupled coherent phonons in single-layer mos2. ACS Nano. 2020;14:5700. PMID: 32233453.
  • Hein P, Jauernik S, Erk H, et al. Mode-resolved reciprocal space mapping of electron-phonon interaction in the Weyl semimetal candidate Td-WTe2. Nat Commun. 2020 Dec;11:2613.
  • Dhar L, Rogers JA, Nelson KA. Time-resolved vibrational spectroscopy in the impulsive limit. Chem Rev. 1994 Jan;94:157–193.
  • Dominik MJ, Sebastian FM. Sum-frequency ionic Raman scattering. Phys Rev B. 2018 May;97:174302.
  • Wallis RF, Maradudin AA. Ionic Raman effect. ii. the first-order ionic Raman effect. Phys Rev B. 1971 Mar;3:2063–2075.
  • Först M, Manzoni C, Kaiser S, et al. Nonlinear phononics as an ultrafast route to lattice control. Nat Phys. 2011 Nov;7:854–856.
  • Brüesch P. Phonons: theory and experiments II. Berlin: Springer; 1986.
  • Dumitrică T, Garcia ME, Jeschke HO, et al. Selective cap opening in carbon nanotubes driven by laser-induced coherent phonons. Phys Rev Lett. 2004 Mar;92:117401.
  • Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B. 1993 Jan;47:558–561.
  • Zijlstra ES, Kalitsov A, Zier T, et al. Squeezed thermal phonons precurse nonthermal melting of silicon as a function of fluence. Phys Rev X. 2013 Jan;3:011005.
  • Chen N-K, Xian-Bin L, Bang J, et al. Directional forces by momentumless excitation and order-to-order transition in peierls-distorted solids: the case of gete. Phys Rev Lett. 2018 May;120:185701.
  • Hübener H, De Giovannini U, Rubio A. Phonon driven floquet matter. Nano Lett. 2018;18:1535.
  • Subedi A, Cavalleri A, Georges A. Theory of nonlinear phononics for coherent light control of solids. Phys Rev B. 2014 Jun;89:220301.
  • Mankowsky R, Subedi A, Först M, et al. Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5. Nature. 2014 Dec;516:71–73.
  • Subedi A. Proposal for ultrafast switching of ferroelectrics using midinfrared pulses. Phys Rev B. 2015 Dec;92:214303.
  • Subedi A. Midinfrared-light-induced ferroelectricity in oxide paraelectrics via nonlinear phononics. Phys Rev B. 2017 Apr;95:134113.
  • Nova TF, Cartella A, Cantaluppi A, et al. An effective magnetic field from optically driven phonons. Nat Phys. 2017 Feb;13:132–136.
  • Nova TF, Disa AS, Fechner M, et al. Metastable ferroelectricity in optically strained SrTiO 3. Science. 2019 Jun;364:1075–1079.
  • Nicholson CW, Lücke A, Schmidt WG, et al. Beyond the molecular movie: dynamics of bands and bonds during a photoinduced phase transition. Science. 2018 Nov;362:821–825.
  • Frigge T, Hafke B, Witte T, et al. Optically excited structural transition in atomic wires on surfaces at the quantum limit. Nature. 2017 Apr;544:207–211.
  • Suzuki T, Shinohara Y, Yangfan L, et al. Detecting electron-phonon coupling during photoinduced phase transition. Phys Rev B. 2021 Mar;103:L121105.
  • Seiler H, Krynski M, Zahn D, et al. Nuclear dynamics of singlet exciton fission in pentacene single crystals. Sci Adv. 2021 Jun;7:eabg0869.
  • Dettori R, Ceriotti M, Hunger J, et al. Energy relaxation and thermal diffusion in infrared pump–probe spectroscopy of hydrogen-bonded liquids. J Phys Chem Lett. 2019 Jun;10:3447–3452.
  • Lively K, Albareda G, Sato SA, et al. Simulating vibronic spectra without born–oppenheimer surfaces. J Phys Chem Lett. 2021 Apr;12:3074–3081.
  • Sato SA, Kelly A, Rubio A. Coupled forward-backward trajectory approach for nonequilibrium electron-ion dynamics. Phys Rev B. 2018 Apr;97:134308.
  • Kapil V, Engel E, Rossi M, et al. Assessment of approximate methods for anharmonic free energies. J Chem Theory Comput. 2019 Nov;15:5845–5857.
  • Ligges M, Rajkovic I, Zhou P, et al. Observation of ultrafast lattice heating using time resolved electron diffraction. Appl Phys Lett. 2009 Mar;94:101910.
  • Li W, Carrete J, Katcho NA, et al., ShengBTE: a solver of the Boltzmann transport equation for phonons. Comp Phys Commun.2014;185:1747–1758.