5,836
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Group III-V semiconductors as promising nonlinear integrated photonic platforms

, , , , , , , & show all

References

  • Soltani M, Lin J, Forties RA, et al. Nanophotonic trapping for precise manipulation of biomolecular arrays. Nat Nanotechnol. 2014;9:448–39.
  • Eldada L, Shacklette LW. Advances in polymer integrated optics. IEEE J Sel Top Quantum Electron. 2000;6:54–68.
  • Gallo K, Assanto G, Stegeman GI. Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides. Appl Phys Lett. 1997;71:1020–1022.
  • Vico Triviño N, Dharanipathy U, Carlin JF, et al. Integrated photonics on silicon with wide bandgap GaN semiconductor. Appl Phys Lett. 2013;102:081120.
  • Van Der Ziel JP, Miller RC, Logan RA, et al. Phase-matched second-harmonic generation in GaAs optical waveguides by focused laser beams. Appl Phys Lett. 1974;25:238–240.
  • Van Der Ziel JP, Ilegems M, Foy PW, et al. Phase-matched second harmonic generation in a periodic GaAs waveguide. Appl Phys Lett. 1976;29:775–777.
  • Vakhshoori D, Walker J, Wang S, et al. Integrable optical correlator: its temporal resolution, spectral response, and power sensitivity. Appl Phys Lett. 1989;54:1725–1727.
  • Le HQ, Bossi DE, Nichols KB, et al. Observation of Maker fringes and estimation of χ(3) using picosecond nondegenerate four-wave mixing in AlGaAs waveguides. Appl Phys Lett. 1990;56:1008–1010.
  • Islam M, Soccolich C, Slusher R, et al. Nonlinear spectroscopy near half-gap in bulk and quantum well GaAs/AlGaAs waveguides. J Appl Phys. 1992;71:1927–1935.
  • Le HQ, Cecca SD. Ultrafast, Multi-THz-detuning, third-order frequency conversion in semiconductor quantum-well waveguides. IEEE Photonics Technol Lett. 1992;4:878–880.
  • Al-Hemyari K, Aitchison J, Ironside C, et al. Ultrafast all-optical switching in GaAlAs integrated interferometer in 1.55 μm spectral region. Electron Lett. 1992;28:1090–1092.
  • Villeneuve A, Yang CC, Wigley PG, et al. Ultrafast all-optical switching in semiconductor nonlinear directional couplers at half the band gap. Appl Phys Lett. 1992;61:147–149.
  • Villeneuve A, Yang CC, Stegeman GI, et al. Nonlinear refractive-index and two photon-absorption near half the band gap in AlGaAs. Appl Phys Lett. 1993;62:2465–2467.
  • Al-Hemyari K, Villeneuve A, Kang JU, et al. Ultrafast all-optical switching in GaAlAs directional couplers at 1.55 μm without multiphoton absorption. Appl Phys Lett. 1993;63:3562–3564.
  • Aitchison JS, Villeneuve A, Stegeman GI. All optical switching in a nonlinear GaAlAs X-junction. Opt Lett. 1993;18:1153–1155.
  • Yang CC, Villeneuve A, Stegeman GI, et al. Nonlinear polarization switching near half the band gap in semiconductors. Opt Lett. 1993;18:1487–1489.
  • Kang JU, Villeneuve A, Sheik-Bahae M, et al. Limitation due to three-photon absorption on the useful spectral range for nonlinear optics in AlGaAs below half band gap. Appl Phys Lett. 1994;65:147–149.
  • Stegeman G, Villeneuve A, Kang J, et al. AlGaAs below half bandgap: the silicon of nonlinear optical materials. Int J Nonlinear Optical Phys. 1994;3:347–371.
  • Villeneuve A, Yang CC, Stegeman GI, et al. Nonlinear absorption in a GaAs waveguide just above half the band gap. IEEE J Quantum Electron. 1994;30:1172–1175.
  • Yoo S, Bhat R, Caneau C, et al. Quasi-phase-matched second-harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by wafer-bonding. Appl Phys Lett. 1995;66:3410–3412.
  • Kang JU, Stegeman GI, and Aitchison JS. All-optical multiplexing of femtosecond signals by using an AlGaAs nonlinear directional coupler. Conference on Lasers and Electro-Optics; Optica Publishing Group, Baltimore, Maryland USA; 1995. p. CThB3.
  • Villeneuve A, Kang JU, Aitchison JS, et al. Unity ratio of cross- to self-phase modulation in bulk AlGaAs and AlGaAs/GaAs multiple quantum well waveguides at half the band gap. Appl Phys Lett. 1995;67:760–762.
  • Villeneuve A, Mamyshev P, Kang JU, et al. Efficient time-domain demultiplexing with separate signal and control wavelengths in an AlGaAs nonlinear directional coupler. IEEE J Quantum Electron. 1995;31:2165–2172.
  • Villeneuve A, Mamyshev P, Kang J, et al. Time domain all-optical demultiplexing with a semiconductor directional coupler. Appl Phys Lett. 1995;66:1668–1670.
  • Espindola RP, Udo MK, Ho ST. Nearly-degenerate frequency technique for simultaneous measurement of n(2) and α(2), and four-wave mixing gain coefficients in waveguides. Opt Commun. 1995;119:682–692.
  • Hutchings DC, Aitchison JS, Villeneuve A, et al. Polarization dependence of ultrafast nonlinear refraction in semiconductors at the half-bandgap. Opt Photonics News. 1995;6:28–29.
  • Ramos PA, Towe E. Second-harmonic generation of blue light from [112]-oriented III-V antiresonant waveguide heterostructures. Appl Phys Lett. 1996;68:1754–1756.
  • Yoo S, Caneau C, Bhat R, et al. Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding. Appl Phys Lett. 1996;68:2609–2611.
  • Kang JU, Stegeman GI, Villeneuve A, et al. AlGaAs below half bandgap: a laboratory for spatial soliton physics. Pure Appl Optics J Eur Optical Soc Part A. 1996;5:583–594.
  • Hamilton CJ, Marsh JH, Hutchings DC, et al. Localized Kerr-type nonlinearities in GaAs/AlGaAs multiple quantum well structures at 1.55 μm. Appl Phys Lett. 1996;68:3078–3080.
  • Aitchison JS, Hutchings DC, Kang JU, et al. The nonlinear optical properties of AlGaAs at the half band gap. IEEE J Quantum Electron. 1997;33:341–348.
  • Fiore A, Beaulieu Y, Janz S, et al. Quasiphase matched surface emitting second harmonic generation in periodically reversed asymmetric GaAs/AlGaAs quantum well waveguide. Appl Phys Lett. 1997;70:2655–2657.
  • Fiore A, Berger V, Rosencher E, et al. Phase-matched mid-infrared difference frequency generation in GaAs-based waveguides. Appl Phys Lett. 1997;71:3622–3624.
  • Street MW, Whitbread ND, Hamilton CJ, et al. Modification of the second-order optical nonlinearities in AlGaAs asymmetric multiple quantum well waveguides by quantum well intermixing. Appl Phys Lett. 1997;70:2804–2806.
  • Street MW, Whitbread ND, Hutchings DC, et al. Quantum-well intermixing for the control of second-order nonlinear effects in AlGaAs multiple-quantum-well waveguides. Opt Lett. 1997;22:1600–1602.
  • Xu CQ, Takemasa K, Nakamura K, et al. Device length dependence of optical second-harmonic generation in AlGaAs quasiphase matched waveguides. Appl Phys Lett. 1997;70:1554–1556.
  • Fiore A, Janz S, Delobel L, et al. Second-harmonic generation at λ=1.6 μm in AlGaAs/Al2O3 waveguides using birefringence phase matching. Appl Phys Lett. 1998;72:2942–2944.
  • Bravetti P, Fiore A, Berger V, et al. 5.2–5.6-μm source tunable by frequency conversion in a GaAs-based waveguide. Opt Lett. 1998;23:331–333.
  • Xu CQ, Takemasa K, Nakamura K, et al. AlGaAs semiconductor quasiphase-matched wavelength converters. Jpn J Appl Phys. 1998;37:823–831.
  • Kang JU, Aitchison JS, Stegeman GI, et al. One-dimensional spatial solitons in AlGaAs waveguides. Opt Quantum Electron. 1998;30:649–672.
  • Fiore A, Berger V, Rosencher E, et al. Phase matching using an isotropic nonlinear optical material. Nature. 1998;391:463–466.
  • Millar P, De La Rue RM, Krauss TF, et al. Nonlinear propagation effects in an AlGaAs Bragg grating filter. Opt Lett. 1999;24:685–687.
  • Peschel U, Morandotti R, Aitchison JS, et al. Nonlinearly induced escape from a defect state in waveguide arrays. Appl Phys Lett. 1999;75:1348–1350.
  • Tsang H, Penty R, White I, et al. Two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantum-well waveguides. J Appl Phys. 1991;70:3992–3994.
  • Day IE, Snow PA, Penty RV, et al. Bias dependent recovery time of all-optical resonant nonlinearity in an InGaAsP/InGaAsP multiquantum well waveguide. Appl Phys Lett. 1994;65:2657–2659.
  • D’Ottavi A, Mecozzi A, Scotti S, et al. Four-wave mixing efficiency in traveling wave semiconductor optical amplifiers at high saturation. Appl Phys Lett. 1995;67:2753–2755.
  • Donnelly JP, Le HQ, Swanson EA, et al. Nondegenerate four-wave mixing wavelength conversion in low-loss passive InGaAsP-InP quantum-well waveguides. IEEE Photonics Technol Lett. 1996;8:623–625.
  • Darwish A, Ippen E, Le H, et al. Short-pulse wavelength shifting by four wave mixing in passive InGaAsP/InP waveguides. Appl Phys Lett. 1996;68:2038–2040.
  • Nakatsuhara K, Muzimoto R, Munakata R, et al. All-optical set-reset operation in a distributed feedback GaInAsP waveguide. IEEE Photonics Technol Lett. 1998;10:78–80.
  • Claps R, Dimitropoulos D, Han Y, et al. Observation of Raman emission in silicon waveguides at 1.54 μm. Opt Express. 2002;10:1305–1313.
  • Tsang HK, Wong CS, Liang TK, et al. Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength. Appl Phys Lett. 2002;80:416–418.
  • Liu A, Rong H, Paniccia M, et al. Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering. Opt Express. 2004;12:4261–4268.
  • Rong H, Liu A, Jones R, et al. An all-silicon Raman laser. Nature. 2005;433:292–294.
  • Urino Y, Nakamura T, Arakawa Y (2016). Silicon Optical Interposers for High-Density Optical Interconnects. In: Pavesi, L., Lockwood, D. (eds) Silicon Photonics III. Vol. Topics in Applied Physics, vol 122:1-39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10503-6_1.
  • Pavesi L, and Lockwood, DJ . Silicon fundamentals for photonics applications. In: Silicon photonics. Springer, Berlin, Heidelberg; 2004. p. 1–50 https://link.springer.com/chapter/10.1007/978-3-540-39913-1_1.
  • Rickman A. The commercialization of silicon photonics. Nat Photonics. 2014;8:579–582.
  • Soref R. Mid-infrared photonics in silicon and germanium. Nat Photonics. 2010;4:495–497.
  • Bristow AD, Rotenberg N, Van Driel HM. Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm. Appl Phys Lett. 2007;90:191104.
  • Yin L, Agrawal GP. Impact of two-photon absorption on self-phase modulation in silicon waveguides. Opt Lett. 2007;32:2031–2033.
  • Levy JS, Gondarenko A, Foster MA, et al. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nat Photonics. 2009;4:37–40.
  • Tien MC, Bauters JF, Heck MJR, et al. Ultra-low loss Si3N4 waveguides with low nonlinearity and high power handling capability. Opt Express. 2010;18:23562–23568.
  • Krückel CJ, Torres-Company V, Andrekson PA, et al. Continuous wave-pumped wavelength conversion in low-loss silicon nitride waveguides. Opt Lett. 2015;40:875–878.
  • Wang L, Xie W, Van Thourhout D, et al. Nonlinear silicon nitride waveguides based on a PECVD deposition platform. Opt Express. 2018;26:9645–9654.
  • Wang T, Ng DKT, Ng SK, et al. Supercontinuum generation in bandgap engineered, back-end CMOS compatible silicon rich nitride waveguides. Laser Photonics Rev. 2015;9:498–506.
  • Krückel CJ, Fülöp A, Klintberg T, et al. Linear and nonlinear characterization of low-stress high-confinement silicon-rich nitride waveguides. Opt Express. 2015;23:25827–25837.
  • Lacava C, Stankovic S, Khokhar AZT, et al. Si-rich silicon nitride for nonlinear signal processing applications. Sci Rep. 2017;7:22.
  • Ooi KJA, Ng DKT, Wang T, et al. Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge. Nat Commun. 2017;8:13878.
  • Tan D, Ooi K, Ng D. Nonlinear optics on silicon-rich nitride—a high nonlinear figure of merit CMOS platform. Photonics Res. 2018;6:B50–B66.
  • Wang KY, Foster AC. Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides. Opt Lett. 2012;37:1331–1333.
  • Lacava C, Ettabib MA, Cristiani I, et al. Ultra-compact amorphous silicon waveguide for wavelength conversion. IEEE Photonics Technol Lett. 2016;28:410–413.
  • Ferrera M, Razzari L, Duchesne D, et al. Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures. Nat Photonics. 2008;2:737.
  • Ferrera M, Duchesne D, Razzari L, et al. Low power four wave mixing in an integrated, micro-ring resonator with Q = 1.2 million. Opt Express. 2009;17:14098.
  • Duchesne D, Ferrera M, Razzari L, et al. Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides. Opt Express. 2009;17:1865.
  • Razzari L, Duchesne D, Ferrera M, et al. CMOS-compatible integrated optical hyper-parametric oscillator. Nat Photonics. 2010;4:41–45.
  • Qi Y, Li Y. Integrated lithium niobate photonics. Nanophotonics. 2020;9:1287–1320.
  • Osellame R, Lobino M, Chiodo N, et al. Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient. Appl Phys Lett. 2007;90:241107.
  • Schiek R, Pertsch T. Absolute measurement of the quadratic nonlinear susceptibility of lithium niobate in waveguides. Opt Mater Express. 2012;2:126–139.
  • Honardoost A, Gonzalez GFC, Khan S, et al. Cascaded integration of optical waveguides with third-order nonlinearity with lithium niobate waveguides on silicon substrates. IEEE Photonics J. 2018;10:4500909.
  • Jankowski M, Langrock C, Desiatov B, et al. Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides. Optica. 2020;7:40–46.
  • Ta’eed VG, Lamont MR, Moss DJ, et al. All optical wavelength conversion via cross phase modulation in chalcogenide glass rib waveguides. Opt Express. 2006;14:11242–11247.
  • Madden SJ, Choi DY, Bulla DA, et al. Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration. Opt Express. 2007;15:14414.
  • Lamont MRE, Luther-Davies B, Choi DY, et al. Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3 chalcogenide planar waveguide. Opt Express. 2008;15:14938.
  • Gai X, Madden SJ, Choi DY, et al. Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W–1m–1 at 1550 nm. Opt Express. 2010;18:18866.
  • Pelusi MD, Luan F, Madden SJ, et al. Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip. IEEE Photonics Technol Lett. 2010;22:3.
  • Trivedi SB, Wang CC, Kutcher S, et al. Crystal growth technology of binary and ternary II–VI semiconductors for photonic applications. J Crystal Growth. 2008;310:1099–1106.
  • Jain RK, Klein MB. Degenerate four-wave mixing near the band gap of semiconductors. Appl Phys Lett. 1979;35:454–456.
  • Miller DAB, Smith SD, Johnston A. Optical bistability and signal amplification in a semiconductor crystal: applications of new low-power nonlinear effects in InSb. Appl Phys Lett. 1979;35:658–660.
  • Patel CKN, Slusher RE, Fleury PA. Optical nonlinearities due to mobile carriers in semiconductors. Phys Rev Lett. 1966;17:1011–1014.
  • Wolff PA, Pearson GA. Theory of optical mixing by mobile carriers in semiconductors. Phys Rev Lett. 1966;17:1015–1017.
  • Gibbs HM, Gossard AC, McCall SL, et al. Saturation of the free exciton resonance in GaAs. Solid State Comm. 1979;30:271–275.
  • Wherrett BS, Higgins NA. Theory of nonlinear refraction near the band edge of a semiconductor. Proceedings of the Royal Society of London A. 1982;379:67–90.
  • Sen PK. Third order susceptibility of III-V semiconductors in the true continuum near the band edge. Solid State Comm. 1982;43:141–146.
  • Hutchings D, Wherrett B. Theory of the dispersion of ultrafast nonlinear refraction in zinc-blende semiconductors below the band edge. Phys Rev B. 1994;50:4622–4630.
  • Reshak AH. Electronic, linear, and nonlinear optical properties of III-V indium compound semiconductors. J Chem Phys. 2006;125:034710.
  • GaAs AS. AlAs, and AlxGa1–xAs: material parameters for use in research and device applications. J Appl Phys. 1985;58:R1–R29.
  • Denton AR, Ashcroft NW. Vegard’s law. Phys Rev A. 1991;43:3161.
  • Nahory R, Pollack M, Johnston JW, et al. Band gap versus composition and demonstration of Vegard’s law for In1–xGaxAsyP1–y lattice matched to InP. Appl Phys Lett. 1978;33:659–661.
  • Hu Y, Liang D, Mukherjee K, et al. III/V-on-Si MQW lasers by using a novel photonic integration method of regrowth on a bonding template. Light Sci Appl. 2019;8:93.
  • Hansen D, and Kuech T. Epitaxial technology for integrated circuit manufacturing. Encyclopedia of Physical Science and Technology. 2003;3:641–652.
  • Jain SK, Low MX, Vashishtha P, et al. Influence of temperature on photodetection properties of honeycomb-like GaN nanostructures. Adv Mater Interfaces. 2021;8:2100593.
  • Gastellóu E, García G, Herrera AM, et al. A brief review of growth techniques for obtaining of III-V semiconductor compounds. Eur J Eng Res Sci. 2019;4:17–21.
  • Simon J, Schulte KL, Horowitz KA, et al. III-V-based optoelectronics with low-cost dynamic hydride vapor phase epitaxy. Crystals. 2019;9:3.
  • Funch CJ, Greenaway AL, Boucher JW, et al. Close-spaced vapor transport reactor for III-V growth using HCl as the transport agent. J Crystal Growth. 2019;506:147–155.
  • Kapadia R, Yu Z, Wang H. HH, et al. Sci Report. 2013;3:2275.
  • Greenaway AL, Boucher JW, Oener SZ, et al. Low-cost approaches to III-V semiconductor growth for photovoltaic applications. ACS Energy Lett. 2017;2:2270–2282.
  • Scriven L. Physics and applications of dip coating and spin coating. MRS Online Proc Lib (OPL). 1988;121:717.
  • Smith BW. Optics for photolithography. New York: Marcel Dekker, Inc; 1998.
  • Bjorkholm JE. EUV lithography—the successor to optical lithography. Intel Tech J. 1998;3:98.
  • Manouras T, Argitis P. High sensitivity resists for EUV lithography: a review of material design strategies and performance results. Nanomaterials. 2020;10:1593.
  • Pearton S, Ren F. Science of dry etching of III-V materials. J Mater Sci. 1994;5:1–12.
  • Dolgaleva K, Sarrafi P, Kultavewuti P, et al. Tuneable four-wave mixing in AlGaAs nanowires. Opt Express. 2015;23:22477–22493.
  • Kleckner TC, Modotto D, Locatelli A, et al. Design, fabrication, and characterization of deep-etched waveguide gratings. J Lightwave Technol. 2005;23:3832–3842.
  • Awan KM, Schulz SA, Liu DX, et al. Post-process wavelength tuning of silicon photonic crystal slow-light waveguides. Opt Lett. 2015;40:1952–1955.
  • Awan KM, Muhammad MM, Sivan M, et al. Fabrication and optical characterization of GaN waveguides on (–201)-oriented β—Ga2O3. Opt Mater Express. 2018;8:88.
  • Gösele U, Tong QY. Semiconductor wafer bonding. Ann Rev Mater Sci. 1998;28:215–241.
  • Pu M, Ottaviano L, Semenova E, et al. Efficient frequency comb generation in AlGaAs-on-insulator. Optica. 2016;3:823–826.
  • Stanton EJ, Chiles J, Nader N, et al. Efficient second harmonic generation in GaAs-on-insulator waveguides. Opt Express. 2020;28:9521–9532.
  • Smit M, Williams K, Tol JVD. Past, present, and future of InP-based photonic integration. APL Photonics. 2019;4:50901.
  • Milanizadeh M. Design and control recipes for complex photonic integrated circuits. Special Topics in Information Technology. 2022;141. https://link.springer.com/chapter/10.1007/978-3-030-85918-3_12#citeas.
  • Ramirez JM, Elfaiki H, Verolet T, et al. III-V-on-silicon integration: from hybrid devices to heterogeneous photonic integrated circuits. IEEE J Sel Top Quantum Electron. 2019;26:1–13.
  • Liang D, Bowers JE. Recent progress in heterogeneous III-V-on-silicon photonic integration. Light Adv Manuf. 2021;2:59–83.
  • Liu AY, Bowers J. Photonic integration with epitaxial III–V on silicon. IEEE J Sel Top Quantum Electron. 2018;24:1–12.
  • Boyd RW. Nonlinear optics. United Kingdom: Academic press; 2020.
  • Sutherland RL. Handbook of nonlinear optics. New York, USA: Marcel Dekker, Inc.; 2003.
  • Sheik-Bahae M, Said AA, Van Stryland EW. High-sensitivity, single-beam n2 measurements. Opt Lett. 1989;14:955–957.
  • Sheik-Bahae M, Hagan DJ, Van Stryland EW. Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption. Phys Rev Lett. 1990;65:96.
  • Sheik-Bahae M, Said AA, Wei TH, et al. Sensitive measurement of optical nonlinearities using a single beam. IEEE J Quantum Electron. 1990;26:760–769.
  • Agrawal GP. Nonlinear fiber optics. United Kingdom: Academic Press/Elsevier; 2007.
  • Sato T, Makino S, Ishizaka Y, et al. A rigorous definition of nonlinear parameter γ and effective area Aeff for photonic crystal optical waveguides. J Opt Soc Am B. 2015;32:1245–1251.
  • Yang Y, Wu J, Xu X, et al. Invited article: enhanced four-wave mixing in waveguides integrated with graphene oxide. APL Photonics. 2018;3:120803.
  • Van V, Ibrahim T, Ritter K, et al. All-optical nonlinear switching in GaAs-AlGaAs microring resonators. IEEE Photonics Technol Lett. 2002;14:74–76.
  • Van Stryland EW, Wu YY, Hagan DJ, et al. Optical limiting with semiconductors. J Opt Soc Am B. 1988;5:1980–1988.
  • Hutchings D, Wherrett B. Theory of anisotropy of two-photon absorption in zinc-blende semiconductors. Phys Rev B. 1994;49:2418.
  • Hutchings DC, Wherrett BS. Theory of the anisotropy of ultrafast nonlinear refraction in zinc-blende semiconductors. Phys Rev B. 1995;52:8150.
  • Olszak PD, Cirloganu CM, Webster S, et al. Spectral and temperature dependence of two-photon and free-carrier absorption in InSb. Phys Rev B. 2010;82:235207.
  • Ahn H, Lee MT, Chang YM. Spectral dependence of third-order nonlinear optical properties in InN. Appl Phys Lett. 2014;104:201904.
  • Valdueza-Felip S, Monteagudo-Lerma L, Mangeney J, et al. Nonlinear absorption at optical telecommunication wavelengths of InN films deposited by RF sputtering. IEEE Photonics Technol Lett. 2012;24:1998–2000.
  • Gehrsitz S, Reinhart F, Gourgon C, et al. The refractive index of AlxGa1–xAs below the band gap: accurate determination and empirical modeling. J Appl Phys. 2000;87:7825–7837.
  • Inoue H, Hiruma K, Ishida K, et al. Low loss GaAs optical waveguides. IEEE Trans Electron Devices. 1985;32:2662–2668.
  • Chang L, Boes A, and Pintus P, et al. High efficiency SHG in heterogenous integrated GaAs ring resonators. In: 2018 IEEE Photonics Conference (IPC), Reston, Virginia USA; IEEE; 2019. p. 1–2.
  • Baron A, Ryasnyanskiy A, Dubreuil N, et al. Light localization induced enhancement of third order nonlinearities in a GaAs photonic crystal waveguide. Opt Express. 2009;17:552–557.
  • Laucht A, Pütz S, Günthner T, et al. A waveguide-coupled on-chip single-photon source. Phys Rev X. 2012;2:011014.
  • Wang J, Santamato A, Jiang P, et al. Gallium arsenide (GaAs) quantum photonic waveguide circuits. Opt Commun. 2014;327:49–55.
  • Espinosa DHG, Awan KM, Odungide M, et al. Tunable four-wave mixing in AlGaAs waveguides of three different geometries. Opt Commun. 2021;479:126450.
  • Duchesne D, Morandotti R, and Siviloglou GA, et al. Nonlinear photonics in AlGaAs photonics nanowires: self phase and cross phase modulation. Conference Proceedings of the International Symposium on Signals, Systems and Electronics, Baltimore, Maryland USA; 2007:475–478.
  • Duchesne D, Rutkowska KA, Volatier M, et al. Second harmonic generation in AlGaAs photonic wires using low power continuous wave light. Opt Express. 2011;19:12408.
  • Apiratikul P, Wathen JJ, Porkolab GA, et al. Enhanced continuous-wave four-wave mixing efficiency in nonlinear AlGaAs waveguides. Opt Express. 2014;22:26814–26824.
  • Wathen JJ, Apiratikul P, Richardson CJK, et al. Efficient continuous-wave four-wave mixing in bandgap-engineered AlGaAs waveguides. Opt Lett. 2014;39:3161–3164.
  • Pu M, Hu H, Ottaviano L, et al. Ultra-Efficient and broadband nonlinear AlGaAs-on-insulator chip for low-power optical signal processing. Laser Photonics Rev. 2018;12:1800111.
  • Hu H, Da Ros F, Pu M, et al. Single-source chip-based frequency comb enabling extreme parallel data transmission. Nat Photonics. 2018;12:469–473.
  • Da Ros F, Yankov MP, Da Silva EP, et al. Characterization and optimization of a high-efficiency AlGaAs-on-insulator-based wavelength converter for 64- and 256-QAM signals. J Lightwave Technol. 2017;35:3750–3757.
  • Chang L, Boes A, Guo X, et al. Heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion. Laser Photon Rev. 2018;12:1–7.
  • Chang L, Boes A, Pintus P, et al. Strong frequency conversion in heterogeneously integrated GaAs resonators. APL Photonics. 2019;4:036103.
  • Stassen E, Kim C, Kong D, et al. Ultra-low power all-optical wavelength conversion of high-speed data signals in high-confinement AlGaAs-on-insulator microresonators. APL Photonics. 2019;4:100804.
  • Kaminski PM, Oxenlowe LK, Galili M, et al. Characterization and optimization of four-wave-mixing wavelength conversion system. J Lightwave Technol. 2019;37:5628–5636.
  • Chang L, Boes A, Pintus P, et al. Low loss (Al)GaAs on an insulator waveguide platform. Opt Lett. 2019;44:4075.
  • Steiner TJ, Castro JE, Chang L, et al. Ultrabright entangled-photon-pair generation from an AlGaAs-on-insulator microring resonator. PRX Quantum. 2021;2:010337.
  • Roland I, Ravaro M, Suffit S, et al. Second-harmonic generation in suspended AlGaAs waveguides: a comparative study. Micromachines. 2020;11:229.
  • Roland I, Borne A, Ravaro M, et al. Frequency doubling and parametric fluorescence in a four-port aluminum gallium arsenide photonic chip. Opt Lett. 2020;45:2878.
  • Chiles J, Nader N, Stanton EJ, et al. Multifunctional integrated photonics in the mid-infrared with suspended AlGaAs on silicon. Optica. 2019;6:1246.
  • Stanton EJ, Chiles J, Nader N, et al. Efficient second harmonic generation in nanophotonic GaAs-on-insulator waveguides. Opt Express. 2020;28:9521–9532.
  • Mobini E, Espinosa DHG, and Vyas K, et al. AlGaAs nonlinear integrated photonics. Micromachines. Multidisciplinary Digital Publishing Institute. (accepted for publication). 2022;13(7): 991 .
  • Bergfeld S, Daum W. Second-harmonic generation in GaAs: experiment versus theoretical predictions of χxyz(2). Phys Rev Lett. 2003;90:4.
  • Shoji I, Kondo T, Kitamoto A, et al. Absolute scale of second-order nonlinear-optical coefficients. J Opt Soc Am B. 1997;14:2268.
  • Skauli T, Vodopyanov KL, Pinguet TJ, et al. Measurement of the nonlinear coefficient of orientation-patterned GaAs and demonstration of highly efficient second-harmonic generation. Opt Lett. 2002;27:628.
  • Hurlbut WC, Lee YS, Vodopyanov KL, et al. Multi-photon absorption and nonlinear refraction of GaAs in the mid-infrared. Opt Lett. 2007;32:668.
  • Han JB, Abolghasem P, Bijlani BJ, et al. Continuous-wave sum-frequency generation in AlGaAs Bragg reflection waveguides. Opt Lett. 2009;34:3656.
  • Wagner SJ, Holmes BM, Younis U, et al. Controlling third-order nonlinearities by ion-implantation quantum-well intermixing. IEEE Photonics Technol Lett. 2009;21:85–87.
  • Wagner SJ, Meier J, Helmy AS, et al. Polarization-dependent nonlinear refraction and two-photon absorption in GaAs/AlAs superlattice waveguides below the half-bandgap. J Opt Soc Am B. 2007;24:1557.
  • Zhu D, Wallis DJ, Humphreys CJ. Prospects of III-nitride optoelectronics grown on Si. Rep Prog Phys. 2013;76:106501.
  • Zheng Z, Zhang L, Song W, et al. Gallium nitride-based complementary logic integrated circuits. Nat Electron. 2021;4:595–603.
  • Munk D, Katzman M, Westreich O, et al. Four-wave mixing and nonlinear parameter measurement in a gallium-nitride ridge waveguide. Opt Mater Express. 2018;8:66.
  • Stassen E, Pu M, Semenova E, et al. High-confinement gallium nitride-on-sapphire waveguides for integrated nonlinear photonics. Opt Lett. 2019;44:1064–1067.
  • Liu L, Edgar JH. Substrates for gallium nitride epitaxy. Mater Sci Eng R Rep. 2002;37:61.
  • Hiramatsu K, Itoh S, Amano H, et al. Growth mechanism of GaN grown on sapphire with AlN buffer layer by MOVPE. J Crystal Growth. 1991;115:628–633.
  • Nakamura S. GaN growth using GaN buffer layer. Jpn J Appl Phys. 1991;30:1705–1707.
  • Zheng Y, Sun C, Xiong B, et al. Integrated gallium nitride nonlinear photonics. Laser Photonics Rev. 2022;16:2100071.
  • Xiong C, Pernice W, Ryu KK, et al. Integrated GaN photonic circuits on silicon (100) for second harmonic generation. Opt Express. 2011;19:10462.
  • Dharanipathy U, Vico Triviño N, Yan C, et al. Near-infrared characterization of gallium nitride photonic-crystal waveguides and cavities. Opt Lett. 2012;37:4588.
  • Stolz A, Cho E, Dogheche E, et al. Optical waveguide loss minimized into gallium nitride based structures grown by metal organic vapor phase epitaxy. Appl Phys Lett. 2011;98:161904.
  • Westreich O, Katz M, Paltiel Y, et al. Low propagation loss in GaN/AlGaN-based ridge waveguides. Phys Status Solidi (A) Appl Mater Sci. 2015;212:1043–1048.
  • Chen H, Fu H, Huang X, et al. Low loss GaN waveguides at the visible spectral wavelengths for integrated photonics applications. Opt Express. 2017;25:31758.
  • Bruch AW, Liu X, Guo X, et al. 17000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonator. Appl Phys Lett. 2018;113:131102.
  • Bruch AW, Xiong C, Leung B, et al. Broadband nanophotonic waveguides and resonators based on epitaxial GaN thin films. Appl Phys Lett. 2015;107:141113.
  • Ansari A, Rais-Zadeh M. CoupledUHF micromechanical ring resonators with Schottky transducers. J Microelectromech Syst. 2017;26:740–742.
  • Liu X, Sun C, XIong B, et al. Aluminum nitride-on-sapphire platform for integrated high-Q microresonators. Opt Express. 2017;25:461–463.
  • Jung H, Xiong C, Fong KY, et al. Optical frequency comb generation from aluminum nitride microring resonator. Opt Lett. 2013;38:2810.
  • Zhang HY, He XH, Shih YH, et al. Study of nonlinear optical effects in GaN:Mg epitaxial film. Appl Phys Lett. 1996;69:2953–2955.
  • Sun CK, Liang JC, Wang JC, et al. Two-photon absorption study of GaN. Appl Phys Lett. 2000;76:439–441.
  • Chen H, Huang X, Fu H, et al. Characterizations of nonlinear optical properties on GaN crystals in polar, nonpolar, and semipolar orientations. Appl Phys Lett. 2017;110:181110.
  • Klamkin J, Zhao H, and Song B, et al. Indium phosphide photonic integrated circuits: technology and applications. 2018 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS), San Diego, California, USA; IEEE; 2018. p. 8–13.
  • van der Tol JJ, Jiao Y, Shen L, et al. Indium phosphide integrated photonics in membranes. IEEE J Sel Top Quantum Electron. 2017;24:1–9.
  • Saeidi S, Rasekh P, Awan KM, et al. Demonstration of optical nonlinearity in InGaAsP/InP passive waveguides. Opt Mater. 2018;84:524–530.
  • Yao W, Jiao Y, and Williams K. Nanophotonics enables future InP PIC scaling. Featured Art PIC Mag. 2018;11:7535.
  • Jiao Y, van der Tol J, Pogoretskii V, et al. Indium phosphide membrane nanophotonic integrated circuits on silicon. Phys Status Solidi A. 2020;217:1900606.
  • Liang D, Huang X, Kurczveil G, et al. Integrated finely tunable microring laser on silicon. Nat Photonics. 2016;10:719–722.
  • Hou L, Marsh JH. Photonic integrated circuits based on quantum well intermixing techniques. Procedia Eng. 2016;140:107–114.
  • Dehghani Firouzabadi M, Nikoufard M, Tavakoli MB. Optical Kerr nonlinear effect in InP-based hybrid plasmonic waveguides. Opt Quantum Electron. 2017;49:1–7.
  • Thoen E, Donnelly J, Groves S, et al. Proton bombardment for enhanced four-wave mixing in InGaAsP-InP waveguides. IEEE Photonics Technol Lett. 2000;12:311–313.
  • Li G, de Sterke CM, Palomba S. Figure of merit for Kerr nonlinear plasmonic waveguides. Laser Photonics Rev. 2016;10:639–646.
  • Fedorov VV, Bolshakov A, Sergaeva O, et al. Gallium phosphide nanowires in a free-standing, flexible, and semitransparent membrane for large-scale infrared-to-visible light conversion. ACS Nano. 2020;14:10624–10632.
  • Wilson DJ, Schneider K, Hönl S, et al. Integrated gallium phosphide nonlinear photonics. Nat Photonics. 2020;14:57–62.
  • O’Donnell CF, Kumar SC, Schunemann P, et al. Femtosecond optical parametric oscillator continuously tunable across 3.6–8 μm based on orientation-patterned gallium phosphide. Opt Lett. 2019;44:4570–4573.
  • Schneider K, Welter P, Baumgartner Y, et al. Gallium phosphide-on-silicon dioxide photonic devices. J Lightwave Technol. 2018;36:2994–3002.
  • Khmelevskaia D, Markina D, Fedorov V, et al. Directly grown crystalline gallium phosphide on sapphire for nonlinear all-dielectric nanophotonics. Appl Phys Lett. 2021;118:201101.
  • Grinblat G, Nielsen MP, Dichtl P, et al. Ultrafast sub–30-fs all-optical switching based on gallium phosphide. Sci Adv. 2019;5:eaaw3262.
  • Yamaguchi M. III–V compound multi-junction solar cells: present and future. Sol Energy Mater Sol Cells. 2003;75:261–269.
  • Takamoto T, Kaneiwa M, Imaizumi M, et al. InGaP/GaAs-based multijunction solar cells. Prog Photovoltaics Res Appl. 2005;13:495–511.
  • Dave UD, Kuyken B, Leo F, et al. Nonlinear properties of dispersion engineered InGaP photonic wire waveguides in the telecommunication wavelength range. Opt Express. 2015;23:4650.
  • Dave UD, Ciret C, Gorza SP, et al. Dispersive-wave-based octave-spanning supercontinuum generation in InGaP membrane waveguides on a silicon substrate. Opt Lett. 2015;40:3584.
  • Marty G, Combrié S, Raineri F, et al. Photonic crystal optical parametric oscillator. Nat Photonics. 2021;15:53–58.
  • Zhao M, Fang K. InGaP quantum nanophotonic integrated circuits with 1.5% nonlinearity-to-loss ratio. Optica. 2022;9:258–263.
  • York PK, Beernink KJ, Fernández GE. InGaAs-GaAs strained-layer quantum well buried heterostructure lasers (λ < 1 μm) by metalorganic chemical vapor deposition. Appl Phys Lett. 1989;54:499.
  • Liou KY, Dentai AG, and Burrows EC, et al. Strained-layer single quantum-well InGaAsP/InP lasers for wavelength range from 1.43 μm to 1.55 μm. In: Conference on Lasers and Electro-Optics; Baltimore, Maryland USA; Optica Publishing Group; 1991. p. CFD4.
  • Xiong F, Tombrello T, Wang H, et al. Fabrication of GaAs/AlGaAs quantum well lasers with MeV oxygen ion implantation. MRS Online Proc Lib. 1988;144:367–372.
  • Saxena D, Jiang N, Yuan X, et al. Design and room-temperature operation of GaAs/AlGaAs multiple quantum well nanowire lasers. Nano Lett. 2016;16:5080–5086.
  • SPIE. Automotive-focused indie semiconductor snaps up TeraXion. 2021. Available from: https://optics.org/news/12/9/1
  • Hardy S. Marvell closes inphi acquisition. 2021. Available from: https://www.lightwaveonline.com/business/mergers-acquisitions/article/14201959/marvell-closes-inphi-acquisition
  • Liu X, Bruch AW, Lu J, et al. Beyond 100 THz-spanning ultraviolet frequency combs in a non-centrosymmetric crystalline waveguide. Nat Commun. 2019;10:1–8.
  • Renaud C, Pantouvaki M, and Gregoire S, et al. A monolithic MQW InP/InGaAsP-based comb generator. 2006 International Topical Meeting on Microwave Photonics, Grenoble, France; IEEE; 2006. p. 1–4.
  • Joshi S, Calò C, Chimot N, et al. Quantum dash based single section mode locked lasers for photonic integrated circuits. Opt Express. 2014;22:11254.
  • Chang L, Xie W, Shu H, et al. Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators. Nat Commun. 2020;11:1–8.
  • Kemal JN, Marin-Palomo P, Panapakkam V, et al. Coherent WDM transmission using quantum-dash mode-locked laser diodes as multi-wavelength source and local oscillator. Opt Express. 2019;27:31164–31175.
  • Sun H, Khalil M, Liu J, et al. Reconfigurable microwave photonic filter based on a quantum dash mode-locked laser. Opt Lett. 2022;47:1133–1136.
  • Guo X, Zou CL, Tang HX. Second-harmonic generation in aluminum nitride microrings with 2500%/W conversion efficiency. Optica. 2016;3:1126–1131.
  • Lake DP, Mitchell M, Jayakumar H, et al. Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks. Appl Phys Lett. 2016;108:031109.
  • Mariani S, Andronico A, Lemaître A, et al. Second-harmonic generation in AlGaAs microdisks in the telecom range. Opt Lett. 2014;39:3062–3065.
  • Walker R, Cameron N, and Zhou Y, et al. 50GHz gallium arsenide electro-optic modulators for spaceborne telecommunications. International Conference on Space Optics—ICSO 2018; Vol. 11180; Chania, Greece: International Society for Optics and Photonics; 2019. p. 111807G.
  • Petrova-Koch V, Hezel R, and Goetzberger A. High-efficient low-cost photovoltaics. Vol. 140. Atlanta, Georgia USA: Springer Berlin Heidelberg; 2009.
  • Bunandar D, Lentine A, Lee C, et al. Metropolitan quantum key distribution with silicon photonics. Phys Rev X. 2018;8:021009.
  • Ding Y, Bacco D, Dalgaard K, et al. High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits. Npj Quantum Inf. 2017;3:1–7.
  • Toudeh-Fallah F, Pistoia M, Kawakura Y, et al. Paving the way towards 800 Gbps quantum-secured optical channel deployment in mission-critical environments. arXiv preprint arXiv:220207764. 2022.
  • Comandar LC, Fröhlich B, Dynes JF, et al. GHz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550 nm. arXiv preprint arXiv:14121586. 2014.
  • Kultavewuti P, Zhu EY, Qian L, et al. Correlated photon pair generation in AlGaAs nanowaveguides via spontaneous four-wave mixing. Opt Express. 2016;24:3365.
  • Sarrafi P, Zhu EY, Dolgaleva K, et al. Continuous-wave quasi-phase-matched waveguide correlated photon pair source on a III-V chip. Appl Phys Lett. 2013;103:251115.
  • Abellan C, Amaya W, Domenech D, et al. Quantum entropy source on an InP photonic integrated circuit for random number generation. Optica. 2016;3:989.
  • Nielsen MA, and Chuang IL. Quantum computation and quantum information. New York: Cambridge University Press; 2010.
  • Nazemi E, Aithal S, Hassen WM, et al. GaAs/AlGaAs heterostructure based photonic biosensor for rapid detection of Escherichia coli in phosphate buffered saline solution. Sensors and Actuat B Chem. 2015;207:556–562.
  • Moreau AL, Janissen R, Santos CA, et al. Highly-sensitive and label-free indium phosphide biosensor for early phytopathogen diagnosis. Biosens Bioelectron. 2012;36:62–68.
  • Saeboe AM, Nikiforov AY, Toufanian R, et al. Extending the near-infrared emission range of indium phosphide quantum dots for multiplexed in vivo imaging. Nano Lett. 2021;21:3271–3279.
  • Herr T, McCracken RA. Astrocombs: recent advances. IEEE Photonics Technol Lett. 2019;31:1890–1893.