9,929
Views
5
CrossRef citations to date
0
Altmetric
Reviews

A review on non-Hermitian skin effect

ORCID Icon, , &
Article: 2109431 | Received 12 Jun 2022, Accepted 30 Jul 2022, Published online: 12 Aug 2022

References

  • Bender CM, Boettcher S. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys Rev Lett. 1998;80:5243.
  • Bender CM, Boettcher S, Meisinger PN. PT-symmetric quantum mechanics. J Math Phys. 1999;40:2201–30.
  • Bender CM, Brody DC, Jones HF. Complex extension of quantum mechanics. Phys Rev Lett. 2002;89:270401.
  • Rotter I. A non-Hermitian Hamilton operator and the physics of open quantum systems. J Phys A: Math Theor. 2009;42:153001.
  • Shen H, Fu L. Quantum oscillation from in-gap states and a non-Hermitian landau level problem. Phys Rev Lett. 2018;121:026403.
  • Makris KG, El-Ganainy R, Christodoulides DN, et al. Beam dynamics in PT symmetric optical lattices. Phys Rev Lett. 2008;100:103904.
  • Klaiman S, Günther U, Moiseyev N. Visualization of branch points in PT-symmetric waveguides. Phys Rev Lett. 2008;101:080402.
  • Longhi S. Bloch oscillations in complex crystals with PT symmetry. Phys Rev Lett. 2009;103:123601.
  • Rüter CE, Makris KG, El-Ganainy R, et al. Observation of parity–time symmetry in optics. Nat Phys. 2010;6:192–195.
  • Regensburger A, Bersch C, Miri MA, et al. Parity–time synthetic photonic lattices. Nature. 2012;488:167–171.
  • Feng L, Xu YL, Fegadolli WS, et al. Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nat Mater. 2013;12:108–113.
  • Malzard S, Poli C, Schomerus H. Topologically protected defect states in open photonic systems with non-Hermitian charge-conjugation and parity-time symmetry. Phys Rev Lett. 2015;115:200402.
  • Zhen B, Hsu CW, Igarashi Y, et al. Spawning rings of exceptional points out of Dirac cones. Nature. 2015;525:354–358.
  • Chen W, Kaya Özdemir Ş, Zhao G, et al. Exceptional points enhance sensing in an optical microcavity. Nature. 2017;548:192–196.
  • Zhou H, Peng C, Yoon Y, et al. Observation of bulk Fermi arc and polarization half charge from paired exceptional points. Science. 2018;359:1009–1012.
  • Ding K, Ma G, Zhang ZQ, et al. Experimental demonstration of an anisotropic exceptional point. Phys Rev Lett. 2018;121:085702.
  • Tang W, Jiang X, Ding K, et al. Exceptional nexus with a hybrid topological invariant. Science. 2020;370:1077–1080.
  • Zhang Z, Qiao X, Midya B, et al. Tunable topological charge vortex microlaser. Science. 2020;368:760–763.
  • Ji Z, Liu W, Krylyuk S, et al. Photocurrent detection of the orbital angular momentum of light. Science. 2020;368:763–767.
  • Rivero JDH, Pan M, Makris KG, et al. Non-Hermiticity-governed active photonic resonances. Phys Rev Lett. 2021;126:163901.
  • Martinez Alvarez VM, Barrios Vargas JE, Berdakin M, et al. Topological states of non-Hermitian systems. Eur Phys J Spec Top. 2018;227:1295–1308.
  • Ashida Y, Gong Z, Ueda M. Non-Hermitian physics. Adv Phys. 2020;69:249–435.
  • Wang H, Zhang X, Hua J, et al. Topological physics of non-Hermitian optics and photonics: a review. J Opt. 2021;23:123001.
  • Bergholtz EJ, Budich JC, Kunst FK. Exceptional topology of non-Hermitian systems. Rev Mod Phys. 2021;93:015005.
  • Ding K, Fang C, Ma G. Non-Hermitian Topology and Exceptional-Point Geometries. arXiv preprint arXiv:2204.11601. 2022
  • Yao S, Wang Z. Edge states and topological invariants of non-Hermitian systems. Phys Rev Lett. 2018;121:086803.
  • Hatano N, Nelson DR. Localization transitions in non-Hermitian quantum mechanics. Phys Rev Lett. 1996;77:570.
  • Hatano N, Nelson DR. Vortex pinning and non-Hermitian quantum mechanics. Phys Rev B. 1997;56:8651.
  • Lee TE. Anomalous edge state in a non-Hermitian lattice. Phys Rev Lett. 2016;116:133903.
  • Xiong Y. Why does bulk boundary correspondence fail in some non-Hermitian topological models. J Phys Commun. 2018;2:035043.
  • Longhi S, Gatti D, Valle GD. Robust light transport in non-Hermitian photonic lattices. Sci Rep. 2015;5:1–12.
  • Longhi S, Gatti D, Della Valle G. Non-Hermitian transparency and one-way transport in low-dimensional lattices by an imaginary gauge field. Phys Rev B. 2015;92:094204.
  • Longhi S. Tight-binding lattices with an oscillating imaginary gauge field. Phys Rev A. 2016;94:022102.
  • Longhi S. Non-Hermitian bidirectional robust transport. Phys Rev B. 2017;95:014201.
  • Longhi S. Nonadiabatic robust excitation transfer assisted by an imaginary gauge field. Phys Rev A. 2017;95:062122.
  • Alvarez VMM, Vargas JEB, Torres LEFF. Non-Hermitian robust edge states in one dimension: anomalous localization and eigenspace condensation at exceptional points. Phys Rev B. 2018;97:121401.
  • McDonald A, Pereg-Barnea T, Clerk AA. Phase-dependent chiral transport and effective non-Hermitian dynamics in a bosonic Kitaev-Majorana chain. Phys Rev X. 2018;8:041031.
  • Lee CH, Thomale R. Anatomy of skin modes and topology in non-Hermitian systems. Phys Rev B. 2019;99:201103.
  • Longhi S. Probing non-Hermitian skin effect and non-Bloch phase transitions. Phys Rev Res. 2019;1:023013.
  • Song F, Yao S, Wang Z. Non-Hermitian skin effect and chiral damping in open quantum systems. Phys Rev Lett. 2019;123:170401.
  • Schomerus H. Nonreciprocal response theory of non-Hermitian mechanical metamaterials: response phase transition from the skin effect of zero modes. Phys Rev Res. 2020;2:013058.
  • Borgnia DS, Kruchkov AJ, Slager RJ. Non-Hermitian boundary modes and topology. Phys Rev Lett. 2020;124:056802.
  • Okuma N, Kawabata K, Shiozaki K, et al. Topological origin of non-Hermitian skin effects. Phys Rev Lett. 2020;124:086801.
  • Zhang K, Yang Z, Fang C. Correspondence between winding numbers and skin modes in non-Hermitian systems. Phys Rev Lett. 2020;125:126402.
  • Longhi S. Unraveling the non-Hermitian skin effect in dissipative systems. Phys Rev B. 2020;102:201103.
  • Okuma N, Sato M. Quantum anomaly, non-Hermitian skin effects, and entanglement entropy in open systems. Phys Rev B. 2021;103:085428.
  • Longhi S. Non-Hermitian skin effect beyond the tight-binding models. Phys Rev B. 2021;104:125109.
  • Yokomizo K, Murakami S. Scaling rule for the critical non-Hermitian skin effect. Phys Rev B. 2021;104:165117.
  • Kunst FK, Edvardsson E, Budich JC, et al. Biorthogonal bulk-boundary correspondence in non-Hermitian systems. Phys Rev Lett. 2018;121:026808.
  • Wang BX, Zhao CY. Topological phonon polaritons in one-dimensional non-Hermitian silicon carbide nanoparticle chains. Phys Rev B. 2018;98:165435.
  • Kawabata K, Shiozaki K, Ueda M. Anomalous helical edge states in a non-Hermitian Chern insulator. Phys Rev B. 2018;98:165148.
  • Jin L, Song Z. Bulk-boundary correspondence in a non-Hermitian system in one dimension with chiral inversion symmetry. Phys Rev B. 2019;99:081103.
  • Song F, Yao S, Wang Z. Non-Hermitian topological invariants in real space. Phys Rev Lett. 2019;123:246801.
  • Edvardsson E, Kunst FK, Bergholtz EJ. Non-Hermitian extensions of higher-order topological phases and their biorthogonal bulk-boundary correspondence. Phys Rev B. 2019;99:081302.
  • Kunst FK, Dwivedi V. Non-Hermitian systems and topology: a transfer-matrix perspective. Phys Rev B. 2019;99:245116.
  • Longhi S. Topological phase transition in non-Hermitian quasicrystals. Phys Rev Lett. 2019;122:237601.
  • Yokomizo K, Murakami S. Non-Bloch band theory of non-Hermitian systems. Phys Rev Lett. 2019;123:066404.
  • Ge ZY, Zhang YR, Liu T, et al. Topological band theory for non-Hermitian systems from the Dirac equation. Phys Rev B. 2019;100:054105.
  • Jiang H, Lang LJ, Yang C, et al. Interplay of non-Hermitian skin effects and Anderson localization in nonreciprocal quasiperiodic lattices. Phys Rev B. 2019;100:054301.
  • Imura KI, Takane Y. Generalized bulk-edge correspondence for non-Hermitian topological systems. Phys Rev B. 2019;100:165430.
  • Kawabata K, Shiozaki K, Ueda M, et al. Symmetry and topology in non-Hermitian physics. Phys Rev X. 2019;9:041015.
  • Lee JY, Ahn J, Zhou H, et al. Topological correspondence between Hermitian and non-Hermitian systems: anomalous dynamics. Phys Rev Lett. 2019;123:206404.
  • Wang XR, Guo CX, Kou SP. Defective edge states and number-anomalous bulk-boundary correspondence in non-Hermitian topological systems. Phys Rev B. 2020;101:121116.
  • Zhu X, Wang H, Gupta SK, et al. Photonic non-Hermitian skin effect and non-Bloch bulk-boundary correspondence. Phys Rev Res. 2020;2:013280.
  • Zeng QB, Yang YB, Lü R. Topological phases in one-dimensional nonreciprocal superlattices. Phys Rev B. 2020;101:125418.
  • Yoshida T, Mizoguchi T, Hatsugai Y. Mirror skin effect and its electric circuit simulation. Phys Rev Res. 2020;2:022062.
  • Lee CH, Li L, Thomale R, et al. Unraveling non-Hermitian pumping: emergent spectral singularities and anomalous responses. Phys Rev B. 2020;102:085151.
  • Mandal S, Banerjee R, Ostrovskaya EA, et al. Nonreciprocal transport of exciton polaritons in a non-Hermitian chain. Phys Rev Lett. 2020;125:123902.
  • Edvardsson E, Kunst FK, Yoshida T, et al. Phase transitions and generalized biorthogonal polarization in non-Hermitian systems. Phys Rev Res. 2020;2:043046.
  • Li L, Lee CH, Mu S, et al. Critical non-Hermitian skin effect. Nat Commun. 2020;11:1–8.
  • Gao P, Willatzen M, Christensen J. Anomalous topological edge states in non-Hermitian piezophononic media. Phys Rev Lett. 2020;125:206402.
  • Yang Z, Zhang K, Fang C, et al. Non-Hermitian bulk-boundary correspondence and auxiliary generalized brillouin zone theory. Phys Rev Lett. 2020;125:226402.
  • Yoshida T. Real-space dynamical mean field theory study of non-Hermitian skin effect for correlated systems: analysis based on pseudospectrum. Phys Rev B. 2021;103:125145.
  • Xu K, Zhang X, Luo K, et al. Coexistence of topological edge states and skin effects in the non-Hermitian Su-Schrieffer-Heeger model with long-range nonreciprocal hopping in topoelectric realizations. Phys Rev B. 2021;103:125411.
  • Claes J, Hughes TL. Skin effect and winding number in disordered non-Hermitian systems. Phys Rev B. 2021;103:L140201.
  • Okuma N, Sato M. Non-Hermitian skin effects in hermitian correlated or disordered systems: quantities sensitive or insensitive to boundary effects and pseudo-quantum-number. Phys Rev Lett. 2021;126:176601.
  • Kawabata K, Shiozaki K, Ryu S. Topological field theory of non-Hermitian systems. Phys Rev Lett. 2021;126:216405.
  • Yu LW, Deng DL. Unsupervised learning of non-Hermitian topological phases. Phys Rev Lett. 2021;126:240402.
  • Roccati F. Non-Hermitian skin effect as an impurity problem. Phys Rev A. 2021;104:022215.
  • Zhong J, Wang K, Park Y, et al. Nontrivial point-gap topology and non-Hermitian skin effect in photonic crystals. Phys Rev B. 2021;104:125416.
  • Guo CX, Liu CH, Zhao XM, et al. Exact solution of non-hermitian systems with generalized boundary conditions: size-dependent boundary effect and fragility of the skin effect. Phys Rev Lett. 2021;127:116801.
  • Mao L, Deng T, Zhang P. Boundary condition Independence of non-Hermitian Hamiltonian dynamics. Phys Rev B. 2021;104:125435.
  • Alsallom F, Herviou L, Yazyev OV, et al. Fate of the non-Hermitian skin effect in many-body fermionic systems. arXiv preprint arXiv:2110.13164. 2021
  • Yan Q, Chen H, Yang Y. Non-Hermitian skin effect and delocalized edge states in photonic crystals with anomalous parity-time symmetry. arXiv preprint arXiv:2111.08213. 2021
  • Guo S, Dong C, Zhang F, et al. Theoretical prediction of Non-Hermitian skin effect in ultracold atom systems. arXiv preprint arXiv:2111.04220. 2021
  • Zhou L, Li H, Yi W, et al. Engineering Non-Hermitian skin effect with band topology in ultracold gases. arXiv preprint arXiv:2111.04196. 2021
  • Cai X. Boundary-dependent self-dualities, winding numbers, and asymmetrical localization in non-Hermitian aperiodic one-dimensional models. Phys Rev B. 2021;103:014201.
  • Li H, Cui X, Yi W. Non-Hermitian skin effect in a spin-orbit-coupled Bose-Einstein condensate. arXiv preprint arXiv:2201.01580. 2022
  • Yang R, Tan JW, Tai T, et al. Designing non-Hermitian real spectra through electrostatics. arXiv preprint arXiv:2201.04153. 2022
  • Mandal S, Banerjee R, Liew TCH. From the topological spin-Hall effect to the non-Hermitian skin effect in an elliptical micropillar chain. ACS Photonics. 2022;9:527–539.
  • Xiao YX, Chan CT. Topology in non-Hermitian Chern insulators with skin effect. Phys Rev B. 2022;105:075128.
  • Li L, Teo WX, Mu S, et al. Direction reversal of non-Hermitian skin effect via coherent coupling. arXiv preprint arXiv:2203.07400. 2022;
  • Li L, Lee CH. Non-Hermitian Pseudo-Gaps. Sci Bull. 2022;67:685–690.
  • Yao S, Song F, Wang Z. Non-hermitian chern bands. Phys Rev Lett. 2018;121:136802.
  • Wang H, Ruan J, Zhang H. Non-Hermitian nodal-line semimetals with an anomalous bulk-boundary correspondence. Phys Rev B. 2019;99:075130.
  • Lee CH, Li L, Gong J. Hybrid higher-order skin-topological modes in nonreciprocal systems. Phys Rev Lett. 2019;123:016805.
  • Li L, Lee CH, Gong J. Topological switch for non-Hermitian skin effect in cold-atom systems with loss. Phys Rev Lett. 2020;124:250402.
  • Scheibner C, Irvine WTM, Vitelli V. Non-Hermitian band topology and skin modes in active elastic media. Phys Rev Lett. 2020;125:118001.
  • Kawabata K, Sato M, Shiozaki K. Higher-order non-Hermitian skin effect. Phys Rev B. 2020;102:205118.
  • Okugawa R, Takahashi R, Yokomizo K. Second-order topological non-Hermitian skin effects. Phys Rev B. 2020;102:241202.
  • Song Y, Liu W, Zheng L, et al. Two-dimensional non-Hermitian skin effect in a synthetic photonic lattice. Phys Rev Appl. 2020;14:064076.
  • Fu Y, Hu J, Wan S. Non-Hermitian second-order skin and topological modes. Phys Rev B. 2021;103:045420.
  • Kim KM, Park MJ. Disorder-driven phase transition in the second-order non-Hermitian skin effect. Phys Rev B. 2021;104:L121101.
  • Ghorashi SAA, Li T, Sato M, et al. Non-Hermitian higher-order Dirac semimetals. Phys Rev B. 2021;104:L161116.
  • Ghorashi SAA, Li T, Sato M. Non-Hermitian higher-order Weyl semimetals. Phys Rev B. 2021;104:L161117.
  • Yang X, Cao Y, Zhai Y. Non-Hermitian Weyl semimetals: non-Hermitian skin effect and non-Bloch bulk–boundary correspondence. Chin Phys B. 2022;31:010308.
  • Zhu W, Gong J. Hybrid skin-topological modes without asymmetric couplings. arXiv preprint arXiv:2203.03284. 2022
  • Zhang K, Yang Z, Fang C. Universal non-Hermitian skin effect in two and higher dimensions. Nat Commun. 2022;13:1–7.
  • Okuma N, Sato M. Topological phase transition driven by infinitesimal instability: majorana fermions in non-hermitian spintronics. Phys Rev Lett. 2019;123:097701.
  • Zhang X, Gong J. Non-Hermitian Floquet topological phases: exceptional points, coalescent edge modes, and the skin effect. Phys Rev B. 2020;101:045415.
  • Longhi S. Non-Bloch-band collapse and chiral zener tunneling. Phys Rev Lett. 2020;124:066602.
  • Longhi S. Stochastic non-Hermitian skin effect. Opt Lett. 2020;45:5250–5253.
  • Yi Y, Yang Z. Non-Hermitian skin modes induced by on-site dissipations and chiral tunneling effect. Phys Rev Lett. 2020;125:186802.
  • Li L, Lee CH, Gong J. Impurity induced scale-free localization. Commun Phys. 2021;4:1–9.
  • Wang K, Dutt A, Yang KY, et al. Generating arbitrary topological windings of a non-Hermitian band. Science. 2021;371:1240–1245.
  • Xu X, Xu H, Mandal S, et al. Interaction-induced double-sided skin effect in an exciton-polariton system. Phys Rev B. 2021;103:235306.
  • Lin Z, Ding L, Ke S, et al. Steering non-Hermitian skin modes by synthetic gauge fields in optical ring resonators. Opt Lett. 2021;46:3512–3515.
  • Sun XQ, Zhu P, Hughes TL. Geometric response and disclination-induced skin effects in non-Hermitian systems. Phys Rev Lett. 2021;127:066401.
  • Yuce C. Nonlinear non-Hermitian skin effect. Phys Lett A. 2021;408:127484.
  • Liu Y, Zeng Y, Li L, et al. Exact solution of the single impurity problem in nonreciprocal lattices: impurity-induced size-dependent non-Hermitian skin effect. Phys Rev B. 2021;104:085401.
  • Zhang X, Tian Y, Jiang JH, et al. Observation of higher-order non-Hermitian skin effect. Nat Commun. 2021;12:1–8.
  • Deng K, Flebus B. Non-Hermitian skin effect in magnetic systems. arXiv preprint arXiv:2109.01711. 2021;
  • Schindler F, Prem A. Dislocation non-Hermitian skin effect. Phys Rev B. 2021;104:L161106.
  • Zhang L, Yang Y, Ge Y, et al. Acoustic non-Hermitian skin effect from twisted winding topology. Nat Commun. 2021;12:1–7.
  • Bhargava BA, Fulga IC, Van Den Brink J, et al. Non-Hermitian skin effect of dislocations and its topological origin. Phys Rev B. 2021;104:L241402.
  • Peng Y, Jie J, Yu D, et al. Manipulating non-Hermitian skin effect via electric fields. arXiv preprint arXiv:2201.10318. 2022;
  • Wang Q, Zhu C, Wang Y, et al. Amplification of quantum signals by the non-Hermitian skin effect. arXiv preprint arXiv:2202.10727. 2022;
  • Weidemann S, Kremer M, Helbig T, et al. Topological funneling of light. Science. 2020;368:311–314.
  • Xiao L, Deng T, Wang K, et al. Non-Hermitian bulk–boundary correspondence in quantum dynamics. Nat Phys. 2020;16:761–766.
  • Helbig T, Hofmann T, Imhof S, et al. Generalized bulk–boundary correspondence in non-Hermitian topolectrical circuits. Nat Phys. 2020;16:747–750.
  • Hofmann T, Helbig T, Schindler F, et al. Reciprocal skin effect and its realization in a topolectrical circuit. Phys Rev Res. 2020;2:023265.
  • Ghatak A, Brandenbourger M, Van Wezel J, et al. Observation of non-Hermitian topology and its bulk–edge correspondence in an active mechanical metamaterial. Proc Natl Acad Sci. 2020;117:29561–29568.
  • Liu S, Shao R, Ma S, et al. Non-Hermitian skin effect in a non-Hermitian electrical circuit. Research. 2021; 2021. 5608038 .
  • Zhang W, Di F, Yuan H, et al. Observation of non-Hermitian many-body skin effects in Hilbert space. arXiv preprint arXiv:2109.08334. 2021
  • Zou D, Chen T, He W, et al. Observation of hybrid higher-order skin-topological effect in non-Hermitian topolectrical circuits. Nat Commun. 2021;12:1–11.
  • Liang Q, Xie D, Dong Z, et al. Observation of Non-Hermitian skin effect and topology in ultracold atoms. arXiv preprint arXiv:2201.09478. 2022
  • Shang C, Liu S, Shao R, et al. Experimental identification of the second-order non-Hermitian skin effect with physics-graph-informed machine learning. arXiv preprint arXiv:2203.00484. 2022
  • Descheemaeker L, Ginis V, Viaene S, et al. Optical force enhancement using an imaginary vector potential for photons. Phys Rev Lett. 2017;119:137402.
  • Haldane FDM. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the” parity anomaly”. Phys Rev Lett. 1988;61:2015.
  • Lu L, Joannopoulos JD, Soljačić M. Topological photonics. Nat Photonics. 2014;8:821–829.
  • Zhang X, Xiao M, Cheng Y, et al. Topological sound. Commun Phys. 2018;1:1–13.
  • Miri MA, Alu A. Exceptional points in optics and photonics. Science. 2019;363:49eaar7709.
  • Hodaei H, Hassan AU, Wittek S, et al. Enhanced sensitivity at higher-order exceptional points. Nature. 2017;548:187–191.
  • Xiao L, Deng T, Wang K, et al. Observation of non-Bloch parity-time symmetry and exceptional points. Phys Rev Lett. 2021;126:230402.
  • Song F, Wang HY, Wang Z. Non-Bloch PT symmetry breaking: universal threshold and dimensional Surprise. arXiv preprint arXiv:2102.02230. 2021
  • Hasan MZ, Kane CL. Colloquium: topological insulators. Rev Mod Phys. 2010;82:3045.
  • Qi XL, Zhang SC. Topological insulators and superconductors. Rev Mod Phys. 2011;83:1057.
  • Chiu CK, Teo JCY, Schnyder AP, et al. Classification of topological quantum matter with symmetries. Rev Mod Phys. 2016;88:035005.
  • Armitage NP, Mele EJ, Vishwanath A. Weyl and Dirac semimetals in three-dimensional solids. Rev Mod Phys. 2018;90:015001.
  • Shen H, Zhen B, Fu L. Topological band theory for non-Hermitian Hamiltonians. Phys Rev Lett. 2018;120:146402.
  • Gong Z, Ashida Y, Kawabata K, et al. Topological phases of non-Hermitian systems. Phys Rev X. 2018;8:031079.
  • Cheng J, Zhang X, Lu MH, et al. Competition between band topology and non-Hermiticity. Phys Rev B. 2022;105:094103.
  • Ma G, Xiao M, Chan CT. Topological phases in acoustic and mechanical systems. Nat Rev Phys. 2019;1:281–294.
  • Ozawa T, Price HM, Amo A, et al. Topological photonics. Rev Mod Phys. 2019;91:015006.
  • Xie B, Wang HX, Zhang X, et al. Higher-order band topology. Nat Rev Phys. 2021;3:520–532.
  • Fu L. Topological crystalline insulators. Phys Rev Lett. 2011;106:106802.
  • Su WP, Schrieffer JR, Heeger AJ. Solitons in polyacetylene. Phys Rev Lett. 1979;42:1698.
  • Benalcazar WA, Bernevig BA, Hughes TL. Quantized electric multipole insulators. Science. 2017;357:61–66.
  • Shao K, Geng H, Chen W, et al. Interplay between Non-Hermitian skin effect and magnetic field: skin modes suppression, onsager quantization and MT phase transition. arXiv preprint arXiv:2111.04412. 2021
  • Ezawa M. Dynamical nonlinear higher-order non-Hermitian skin effects and topological trap-skin phase. Phys Rev B. 2022;105:125421.
  • Brandenbourger M, Locsin X, Lerner E, et al. Non-reciprocal robotic metamaterials. Nat Commun. 2019;10:1–8.
  • Brandenbourger M, Scheibner C, Veenstra J, et al. Active impact and locomotion in robotic matter with nonlinear work cycles. arXiv preprint arXiv:2108.08837. 2021
  • Chen Y, Li X, Scheibner C, et al. Realization of active metamaterials with odd micropolar elasticity. Nat Commun. 2021;12:1–12.
  • Scheibner C, Souslov A, Banerjee D, et al. Odd elasticity. Nat Phys. 2020;16:475–480.
  • Palacios LS, Tchoumakov S, Guix M, et al. Guided accumulation of active particles by topological design of a second-order skin effect. Nat Commun. 2021;12:1–8.
  • Yang K, Morampudi SC, Bergholtz EJ. Exceptional spin liquids from couplings to the environment. Phys Rev Lett. 2021;126:077201.
  • Shen R, Lee CH. Non-Hermitian skin clusters from strong interactions. arXiv preprint arXiv:2107.03414. 2021
  • Lee CH. Many-body topological and skin states without open boundaries. Phys Rev B. 2021;104:195102.
  • Yang F, Jiang QD, Bergholtz EJ. Liouvillian skin effect in an exactly solvable model. arXiv preprint arXiv:2203.01333. 2022
  • Tai T, Lee CH. Zoology of non-Hermitian spectra and their graph topology. arXiv preprint arXiv:2202.03462. 2022
  • Li Y, Liang C, Wang C, et al. Gain-Loss-Induced hybrid skin-topological effect. Phys Rev Lett. 2022;128:223903.
  • McDonald A, Clerk AA. Exponentially-enhanced quantum sensing with non-Hermitian lattice dynamics. Nat Commun. 2020;11:1–12.
  • Xue WT, Hu YM, Song F, et al. Non-Hermitian Edge Burst. Phys Rev Lett. 2022;128:120401.
  • Lee CH, Longhi S. Ultrafast and anharmonic Rabi oscillations between non-Bloch bands. Commun Phys. 2020;3:1–9.
  • Budich JC, Bergholtz EJ. Non-Hermitian topological sensors. Phys Rev Lett. 2020;125:180403.