4,655
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Charge carrier dynamics in 2D materials probed by ultrafast THzspectroscopy

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2120416 | Received 23 Mar 2022, Accepted 30 Aug 2022, Published online: 30 Sep 2022

References

  • Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306:666–48.
  • Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nat Nanotechnol. 2011;6:147–150.
  • Li L, Yu Y, Ye GJ, et al. Black phosphorus field-effect transistors. Nature Nanotechnol. 2014;9:372–377.
  • Tao L, Cinquanta E, Chiappe D, et al. Silicene field-effect transistors operating at room temperature. Nat Nanotechnol. 2015;10:227–231.
  • Ferrari AC, Bonaccorso F, Fal’Ko V, et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale. 2015;7:4598–4810.
  • Viti L, Vitiello MS. Tailored nano-electronics and photonics with two-dimensional materials at terahertz frequencies. J Appl Phys. 2021;130:170903.
  • Qiu DY, da Jornada FH, Louie SG. Optical spectrum of MoS2: many-body effects and diversity of exciton States. Phys Rev Lett. 2013;111:216805.
  • Ugeda MM, Bradley AJ, Shi SF, et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat Mater. 2014;13:1091–1095.
  • Pei J, Yang J, Yildirim T, et al. Many-body complexes in 2D semiconductors. Adv Mater. 2019 31;31:1706945.
  • Pogna EAA, Marsili M, De Fazio D, et al. Photo-induced bandgap renormalization governs the ultrafast response of single-layer MoS2. ACS Nano. 2016;10:1182–1188.
  • Jeong TY, Kim H, Choi S-J, et al. Spectroscopic studies of atomic defects and bandgap renormalization in semiconducting monolayer transition metal dichalcogenides. Nature Commun. 2019;10:3825.
  • Sun D, Rao Y, Reider GA, et al. Observation of rapid exciton–exciton annihilation in monolayer molybdenum disulfide. Nano Lett. 2014;14:5625–5629.
  • Ceballos F, Cui Q, Bellusa MZ, et al. Exciton formation in monolayer transition metal dichalcogenides. Nanoscale. 2016;8:11681–11688.
  • Trovatello C, Katsch F, Borys NJ, et al. The ultrafast onset of exciton formation in 2D semiconductors. Nat Commun. 2020;11:5277.
  • Ferrari AC, Meyer JC, Scardaci V, et al. Raman spectrum of graphene and graphene layers. Phys Rev Lett. 2006;97:187401.
  • Efetov DK, Kim P. Controlling electron-phonon interactions in graphene at ultrahigh carrier densities. Phys Rev Lett. 2010;105:256805.
  • Chevalier P, Amirzhan A, Wang F, et al. Widely tunable compact terahertz gas lasers. Science. 2019;366:856–860.
  • Neu J, Schmuttenmaer CA. Tutorial: an introduction to terahertz time domain spectroscopy (thz-tds). J Appl Phys. 2018;124:231101.
  • Jepsen P, Cooke D, Koch M. Terahertz spectroscopy and imaging – modern techniques and applications. Laser Photonics Rev. 2011;5:124–166.
  • Schmuttenmaer CA. Exploring dynamics in the far-infrared with terahertz spectroscopy. Chem Rev. 2004;104:1759–1780.
  • Spies JA, Neu J, Tayvah UT, et al. Terahertz spectroscopy of emerging materials. J Phys Chem C. 2020;124:22335–22346.
  • Xie J, Ye W, Zhou L, et al. A review on terahertz technologies accelerated by silicon photonics. Nanomaterials. 2021;11:1646.
  • Chen P, Hosseini M, Babakhani A. An integrated germanium-based thz impulse radiator with an optical waveguide coupled photoconductive switch in silicon. Micromachines. 2019;10:367.
  • Papaioannou ET, Beigang R. Thz spintronic emitters: a review on achievements and future challenges. Nanophotonics. 2021;10:1243–1257.
  • Cook DJ, Hochstrasser RM. Intense terahertz pulses by four-wave rectification in air. Opt Lett. 2000;25:1210–1212.
  • Xie X, Dai J, Zhang XC. Coherent control of thz wave generation in ambient air. Phys Rev Lett. 2006;96:075005.
  • Kim KY, Glownia JH, Taylor AJ, et al. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields. Opt Express. 2007;15:4577–4584.
  • Kim KY, Taylor AJ, Glownia JH, et al. Coherent control of terahertz supercontinuum generation in ultrafast laser–gas interactions. Nat Photon. 2008;2:605–609.
  • Karpowicz N, Zhang XC. Coherent terahertz echo of tunnel ionization in gases. Phys Rev Lett. 2009;102:093001.
  • Burford NM, El-Shenawee MO. Review of terahertz photoconductive antenna technology. Opt Eng. 2017;56:1–20.
  • Bacon DR, Madéo J, Dani KM. Photoconductive emitters for pulsed terahertz generation. J Opt. 2021;23:064001.
  • Jepsen PU, Jacobsen RH, Keiding SR. Generation and detection of terahertz pulses from biased semiconductor antennas. J Opt Soc Am B. 1996;13:2424–2436.
  • Castro-Camus E, Lloyd-Hughes J, Johnston MB. Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches. Phys Rev B. 2005;71:195301.
  • Upadhya PC, Fan W, Burnett A, et al. Excitation-density-dependent generation of broadband terahertz radiation in an asymmetrically excited photoconductive antenna. Opt Lett. 2007;32:2297–2299.
  • Bass M, Franken PA, Ward JF, et al. Optical rectification. Phys Rev Lett. 1962;9:446–448.
  • Rice A, Jin Y, Ma XF, et al. Terahertz optical rectification from <11> zinc-blende crystals. Appl Phys Lett. 1994;64:1324–1326.
  • Aoki K, Savolainen J, Havenith M. Broadband terahertz pulse generation by optical rectification in gap crystals. Appl Phys Lett. 2017;110:201103.
  • Ashida M. Ultra-broadband terahertz wave detection using photoconductive antenna. Jpn J Appl Phys. 2008;47:8221–8225.
  • Reimann K, Smith RP, Weiner AM, et al. Direct field-resolved detection of terahertz transients with amplitudes of megavolts per centimeter. Opt Lett. 2003;28:471–473.
  • Huber R, Brodschelm A, Tauser F, et al. Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 thz. Appl Phys Lett. 2000;76:3191–3193.
  • Jazbinsek M, Puc U, Abina A, et al. Organic crystals for thz photonics. Appl Sci. 2019;9:882.
  • Vicario C, Ovchinnikov AV, Ashitkov SI, et al. Generation of 0.9-mj thz pulses in dstms pumped by a Cr:Mg2SiO4 laser. Opt Lett. 2014;39:6632–6635.
  • Hirori H, Doi A, Blanchard F, et al. Single-cycle terahertz pulses with amplitudes exceeding 1 mv/cm generated by optical rectification in linbo3. Appl Phys Lett. 2011;98:091106.
  • Hebling J, Almási G, Kozma IZ, et al. Velocity matching by pulse front tilting for large-area thz-pulse generation. Opt Express. 2002;10:1161–1166.
  • Andreeva VA, Kosareva OG, Panov NA, et al. Ultrabroad terahertz spectrum generation from an air-based filament plasma. Phys Rev Lett. 2016;116:063902.
  • Minami Y, Kurihara T, Yamaguchi K, et al. High-power thz wave generation in plasma induced by polarization adjusted two-color laser pulses. Appl Phys Lett. 2013;102:041105.
  • Dai J, Karpowicz N, Zhang XC. Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma. Phys Rev Lett. 2009;103:023001.
  • Liao GQ, Li YT. Review of intense terahertz radiation from relativistic laser-produced plasmas. IEEE Trans Plasma Sci. 2019;47:3002–3008.
  • Gallot G, Grischkowsky D. Electro-optic detection of terahertz radiation. J Opt Soc Am B. 1999 Aug;16:1204–1212.
  • Wu Q, Litz M, Zhang X. Broadband detection capability of znte electro‐optic field detectors. Appl Phys Lett. 1996;68:2924–2926.
  • Wu Q, Zhang XC. 7 terahertz broadband gap electro-optic sensor. Appl Phys Lett. 1997;70:1784–1786.
  • Ho IC, Guo X, Zhang XC. Design and performance of reflective terahertz air-biased-coherent-detection for time-domain spectoscopy. Opt Express. 2010;18:2872–2883.
  • Dai J, Xie X, Zhang XC. Detection of broadband terahertz waves with a laser-induced plasma in gases. Phys Rev Lett. 2006;97:103903.
  • Whelan PR, Zhou B, Bezencenet O, et al. Case studies of electrical characterisation of graphene by terahertz time-domain spectroscopy. 2D Mater. 2021;8:022003 doi:10.1088/2053-1583/abdbcb.
  • Iwaszczuk K, Cooke DG, Fujiwara M, et al. Simultaneous reference and differential waveform acquisition in time-resolved terahertz spectroscopy. Opt Express. 2009 Nov;17:21969–21976.
  • Duvillaret L, Garet F, Coutaz JL. A reliable method for extraction of material parameters in terahertz time-domain spectroscopy. IEEE J Sel Top Quantum Electron. 1996;2:739–746.
  • Beard MC, Turner GM, Schmuttenmaer CA. Subpicosecond carrier dynamics in low-temperature grown gaas as measured by time-resolved terahertz spectroscopy. J Appl Phys. 2001;90:5915–5923.
  • Ulbricht R, Hendry E, Shan J, et al. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Rev Mod Phys. 2011 Jun;83:543–586.
  • Neu J, Regan KP, Swierk JR, et al. Applicability of the thin-film approximation in terahertz photoconductivity measurements. Appl Phys Lett. 2018;113:233901.
  • Ulatowski AM, Herz LM, Johnston MB. Terahertz conductivity analysis for highly doped thin-film semiconductors. J Infrared Millimet Terahertz Waves. 2020 Dec;41:1431–1449.
  • Nienhuys HK, Sundström V. Intrinsic complications in the analysis of optical-pump, terahertz probe experiments. Phys Rev B. 2005 Jun;71:235110.
  • Cunningham PD. Accessing terahertz complex conductivity dynamics in the time-domain. IEEE Transact Terahertz Sci Technol. 2013;3:494–498.
  • Hafez HA, Kovalev S, Tielrooij K-J, et al. Terahertz nonlinear optics of graphene: from saturable absorption to high-Harmonics generation. Adv Opt Mater. 2020;8:1900771.
  • Banszerus L, Schmitz M, Engels S, et al. Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci Adv. 2015;1:e1500222.
  • Nair RR, Blake P, Grigorenko AN, et al. Fine structure constant defines visual transparency of graphene. Science. 2008;320:1308.
  • Castro Neto AH, Guinea F, Peres NMR, et al. The electronic properties of graphene. Rev Mod Phys. 2009 Jan;81:109–162.
  • George PA, Strait J, Dawlaty J, et al. Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene. Nano Lett. 2008;8:4248–4251.
  • Breusing M, Kuehn S, Winzer T, et al. Ultrafast nonequilibrium carrier dynamics in a single graphene layer. Phys Rev B. 2011;83:153410.
  • Brida D, Tomadin A, Manzoni C, et al. Ultrafast collinear scattering and carrier multiplication in graphene. Nat Commun. 2013;4:1–9.
  • Gierz I, Petersen JC, Mitrano M, et al. Snapshots of non-equilibrium dirac carrier distributions in graphene. Nat Mater. 2013;12:1119–1124.
  • Tielrooij KJ, Song J, Jensen SA, et al. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nat Phys. 2013;9:248–252.
  • Bandurin DA, Svintsov D, Gayduchenko I, et al. Resonant terahertz detection using graphene plasmons. Nat Commun. 2018;9:1–8.
  • Castilla S, Terrés B, Autore M, et al. Fast and sensitive terahertz detection using an antenna-integrated graphene pn junction. Nano Lett. 2019;19:2765–2773.
  • Viti L, Purdie DG, Lombardo A, et al. HBN-encapsulated, graphene-based, room-temperature terahertz receivers, with high speed and low noise. Nano Lett. 2020;20:3169–3177.
  • Viti L, Cadore AR, Yang X, et al. Thermoelectric graphene photodetectors with sub-nanosecond response times at terahertz frequencies. Nanophotonics. 2021;10:89–98.
  • Sensale-Rodriguez B, Yan R, Rafique S, et al. Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators. Nano Lett. 2012;12:4518–4522.
  • Di Gaspare A, Pogna EAA, Salemi L, et al. Tunable, grating-gated, graphene-on-polyimide terahertz modulators. Adv Fun Mater. 2021;31:2008039.
  • Bianchi V, Carey T, Viti L, et al. Terahertz saturable absorbers from liquid phase exfoliation of graphite. Nat Commun. 2017;8:15763.
  • Kakenov N, Balci O, Takan T, et al. Observation of gate-tunable coherent perfect absorption of terahertz radiation in graphene. ACS Photonics. 2016;3:1531–1535.
  • Deinert JC, Alcaraz Iranzo D, Pérez R, et al. Grating-graphene metamaterial as a platform for terahertz nonlinear photonics. ACS Nano. 2021;15:1145–1154.
  • AzimBeik M, Moradi G, Shirazi RS. Graphene-based switched line phase shifter in thz band. Optik. 2018;172:431–436.
  • Kakenov N, Ergoktas MS, Balci O, et al. Graphene based terahertz phase modulators. 2D Mater. 2018;5:035018.
  • Castro Neto AH, Guinea F, Peres NMR, et al. The electronic properties of graphene. Rev Mod Phys. 2009;81:109–162.
  • Balci O, Polat E O, Kakenov N and Kocabas C. (2015). Graphene-enabled electrically switchable radar-absorbing surfaces. Nat Commun, 6(1), 10.1038/ncomms7628
  • Mak KF, Sfeir MY, Wu Y, et al. Measurement of the optical conductivity of graphene. Phys Rev Lett. 2008;101:196405.
  • Mak KF, Ju L, Wang F, et al. Optical spectroscopy of graphene: from the far infrared to the ultraviolet. Solid State Commun. 2012;152:1341–1349.
  • Falkovsky L. Optical properties of graphene. J Phys Conf Ser. 2008;129:012004.
  • Ando T, Zheng Y, Suzuura H. Dynamical conductivity and zero-mode anomaly in honeycomb lattices. J Phys Soc Jpn. 2002;71:1318–1324.
  • Gusynin V, Sharapov S, Carbotte J. Unusual microwave response of dirac quasiparticles in graphene. Phys Rev Lett. 2006;96:256802.
  • Horng J, Chen CF, Geng B, et al. Drude conductivity of dirac fermions in graphene. Phys Rev B. 2011;83:165113.
  • Stauber T, Peres NMR, Geim AK. Optical conductivity of graphene in the visible region of the spectrum. Phys Rev B. 2008;78:085432.
  • Malard LM, Mak KF, Neto AC, et al. Observation of intra-and inter-band transitions in the transient optical response of graphene. New J Phys. 2013;15:015009.
  • Sarma SD, Adam S, Hwang E, et al. Electronic transport in two-dimensional graphene. Rev Mod Phys. 2011;83:407.
  • Mak KF, Shan J, Heinz TF. Seeing many-body effects in single-and few-layer graphene: observation of two-dimensional saddle-point excitons. Phys Rev Lett. 2011;106:046401.
  • Gusynin V, Sharapov S, Carbotte J. On the universal ac optical background in graphene. New J Phys. 2009;11:095013.
  • Tomadin A, Hornett SM, Wang HI, et al. The ultrafast dynamics and conductivity of photoexcited graphene at different Fermi energies. Sci Adv. 2018;4:eaar5313.
  • Mackenzie DM, Whelan PR, Bøggild P, et al. Quality assessment of terahertz time-domain spectroscopy transmission and reflection modes for graphene conductivity mapping. Opt Express. 2018;26:9220–9229.
  • Gierz I, Calegari F, Aeschlimann S, et al. Tracking primary thermalization events in graphene with photoemission at extreme time scales. Phys Rev Lett. 2015;115:086803.
  • Tani S, Blanchard F, Tanaka K. Ultrafast carrier dynamics in graphene under a high electric field. Phys Rev Lett. 2012;109:166603.
  • Liu WT, Wu SW, Schuck PJ, et al. Nonlinear broadband photoluminescence of graphene induced by femtosecond laser irradiation. Phys Rev B. 2010;82:081408.
  • Freitag M, Chiu HY, Steiner M, et al. Thermal infrared emission from biased graphene. Nat Nanotechnol. 2010;5:497–501.
  • Ghirardini L, Pogna EAA, Soavi G, et al. Tunable broadband light emission from graphene. 2D Mater. 2021;8:035026 doi:10.1088/2053-1583/abf08d.
  • Lui CH, Mak KF, Shan J, et al. Ultrafast photoluminescence from graphene. Phys Rev Lett. 2010;105:127404.
  • Kim YD, Kim H, Cho Y, et al. Bright visible light emission from graphene. Nat Nanotechnol. 2015;10:676–681.
  • Bahk YM, Ramakrishnan G, Choi J, et al. Plasmon enhanced terahertz emission from single layer graphene. ACS Nano. 2014;8:9089–9096.
  • Jnawali G, Rao Y, Yan H, et al. Observation of a transient decrease in terahertz conductivity of single-layer graphene induced by ultrafast optical excitation. Nano Lett. 2013;13:524–530.
  • Strait JH, Wang H, Shivaraman S, et al. Very slow cooling dynamics of photoexcited carriers in graphene observed by optical-pump terahertz-probe spectroscopy. Nano Lett. 2011;11:4902–4906.
  • Jensen SA, Mics Z, Ivanov I, et al. Competing ultrafast energy relaxation pathways in photoexcited graphene. Nano Lett. 2014;14:5839–5845.
  • Frenzel A, Lui C, Fang W, et al. Observation of suppressed terahertz absorption in photoexcited graphene. Appl Phys Lett. 2013;102:113111.
  • Frenzel AJ, Lui CH, Shin YC, et al. Semiconducting-to-metallic photoconductivity crossover and temperature-dependent Drude weight in graphene. Phys Rev Lett. 2014;113:056602.
  • Shi SF, Tang TT, Zeng B, et al. Controlling graphene ultrafast hot carrier response from metal-like to semiconductor-like by electrostatic gating. Nano Lett. 2014;14:1578–1582.
  • Pogna EAA, Jia X, Principi A, et al. Hot-carrier cooling in high-quality graphene is intrinsically limited by optical phonons. ACS Nano. 2021;15:11285–11295 doi:10.1021/acsnano.0c10864.
  • Hafez HA, Al-Naib A, Dignam MM, et al. Nonlinear terahertz field-induced carrier dynamics in photoexcited epitaxial monolayer graphene. Phys Rev B. 2015;91:035422.
  • Song JCW, Tielrooij K-J, Koppens FHL, et al. Photoexcited carrier dynamics and impact-excitation cascade in graphene. Phys Rev B. 2013;87:155429.
  • Mics Z, Tielrooij, K. J., Parvez, K., et al. Thermodynamic picture of ultrafast charge transport in graphene. Nat Commun. 2015;6 :1–7/7655.
  • Ivanov I, Bonn M, Mics Z, et al. Perspective on terahertz spectroscopy of graphene. Europhys. Lett. 2015;111:6 .
  • Tani S, Blanchard F, Tanaka K, et al. Ultrafast carrier dynamics in graphene under a high electric field. Phys Rev Lett. 2012;109:166603.
  • Hafez HA, Kovalev S, et al. Extremely efficient terahertz high-harmonic generation in graphene by hot dirac fermions. Nature. 2018;561:507.
  • Ikeda S, Otani C, Yamashita M. Hot carrier dynamics and electron-optical phonon coupling in photoexcited graphene via time-resolved ultrabroadband terahertz spectroscopy. Phys Rev Res. 2021;3:043143.
  • Massicotte M, Soavi G, Principi A, et al. Hot carriers in graphene-fundamentals and applications. Nanoscale. 2021;13:8376–8411.
  • Graham MW, Shi SF, Ralph DC, et al. Photocurrent measurements of supercollision cooling in graphene. Nat Phys. 2013;9:103–108.
  • Graham MW, Shi SF, Wang Z, et al. Transient absorption and photocurrent microscopy show that hot electron supercollisions describe the rate-limiting relaxation step in graphene. Nano Lett. 2013;13:5497–5502.
  • Song JC, Reizer MY, Levitov LS. Disorder-assisted electron-phonon scattering and cooling pathways in graphene. Phys Rev Lett. 2012;109:106602.
  • Dean CR, Young AF, Meric I, et al. Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol. 2010;5:722–726.
  • Alencar TV, Silva MG, Malard LM, et al. Defect-induced supercollision cooling of photoexcited carriers in graphene. Nano Lett. 2014;14:5621–5624.
  • Mihnev MT, Kadi F, Divin CJ, et al. Microscopic origins of the terahertz carrier relaxation and cooling dynamics in graphene. Nat Commun. 2016;7:1–11.
  • Lui CH, Liu L, Mak KF, et al. Ultraflat graphene. Nature. 2009;462:339–341.
  • Yang W, Berthou S, Lu X, et al. A graphene zener–klein transistor cooled by a hyperbolic substrate. Nat Nanotechnol. 2018;13:47–52.
  • Tielrooij KJ, Hesp NC, Principi A, et al. Out-of-plane heat transfer in van der waals stacks through electron–hyperbolic phonon coupling. Nat Nanotechnol. 2018;13:41–46.
  • Principi A, Lundeberg MB, Hesp NC, et al. Super-planckian electron cooling in a van der waals stack. Phys Rev Lett. 2017;118:126804.
  • Banszerus L, Sohier T, Epping A, et al. Extraordinary high room-temperature carrier mobility in graphene-WSe_2 heterostructures. arXiv preprint arXiv:190909523. 2019.
  • Block A, Principi A, Hesp NC, et al. Observation of giant and tunable thermal diffusivity of a dirac fluid at room temperature. Nat Nanotechnol. 2021;16:1195–1200.
  • Pogna EAA, Tomadin , A, Balci, O et al . (2022). Electrically Tunable Nonequilibrium Optical Response of Graphene. ACS Nano, 16(3), 3613–3624. 10.1021/acsnano.1c04937
  • Hafez HA, Lévesque PL, Al-Naib I, et al. Intense terahertz field effects on photoexcited carrier dynamics in gated graphene. Appl Phys Lett. 2015;107:251903.
  • Winzer T, Knorr A, Malic E. Carrier multiplication in graphene. Nano Lett. 2010;10:4839.
  • Plötzing T, Winzer T, Malic E, et al. Experimental verification of carrier multiplication in graphene. Nano Lett. 2014;14:5371.
  • Kovalev S, Hafez HA, Tielrooij KJ, et al. Electrical tunability of terahertz nonlinearity in graphene. Sci Adv. 2021;7:eabf9809.
  • Cha S, Sung JH, Sim S, et al. 1s-intraexcitonic dynamics in monolayer MoS2 probed by ultrafast mid-infrared spectroscopy. Nat Commun. 2016;7:10768.
  • Steinleitner P, Merkl P, Nagler P, et al. Direct observation of ultrafast exciton formation in a monolayer of WSe2. Nano Lett. 2017;17:1455–1460.
  • Hendry E, Schins JM, Candeias LP, et al. Efficiency of exciton and charge carrier photogeneration in a semiconducting polymer. Phys Rev Lett. 2004;92:196601.
  • Wang F, Shan J, Islam MA, et al. Exciton polarizability in semiconductor nanocrystals. Nat Mater. 2006;5:861–864.
  • Mak KF, Lee C, Hone J, et al. Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett. 2010;105:136805.
  • Mak KF, Keliang H, Lee C, et al. Tightly bound trions in monolayer MoS2. Nat Mater. 2013;12:207.
  • Lui CH, Frenzel AJ, Pilon DV, et al. Trion-induced negative photoconductivity in monolayer MoS2. Phys Rev Lett. 2014 Oct;113:166801.
  • Docherty CJ, Parkinson P, Joyce HJ, et al. Ultrafast transient terahertz conductivity of monolayer MoS2 and WSe2 grown by chemical vapor deposition. ACS Nano. 2014;8:11147–11153.
  • Kaindl RA, Hägele D, Carnahan MA, et al. Transient terahertz spectroscopy of excitons and unbound carriers in quasi-two-dimensional electron-hole gases. Phys Rev B. 2009;79:045320.
  • Cunningham PD, McCreary KM, Hanbicki AT, et al. Charge trapping and exciton dynamics in large-area cvd grown MoS2. J Phys Chem C. 2016;120:5819–5826.
  • Smith NV. Classical generalization of the drude formula for the optical conductivity. Phys Rev B. 2001 Sep;64:155106.
  • Kar S, Su Y, Nair RR, et al. Probing photoexcited carriers in a few-layer MoS2 laminate by time-resolved optical pump–terahertz probe spectroscopy. ACS Nano. 2015;9:12004–12010.
  • Strait JH, Nene P, Rana F. High intrinsic mobility and ultrafast carrier dynamics in multilayer metal-dichalcogenide MoS2. Phys Rev B. 2014 Dec;90:245402.
  • Xing X, Zhao L, Zhang Z, et al. Role of photoinduced exciton in the transient terahertz conductivity of few-layer WS2 laminate. J Phys Chem C. 2017;121:20451–20457.
  • Gustafson JK, Cunningham PD, McCreary KM, et al. Ultrafast carrier dynamics of monolayer WS2 via broad-band time-resolved terahertz spectroscopy. J Phys Chem C. 2019;123:30676–30683.
  • Xu S, Yang J, Jiang H, et al. Transient photoconductivity and free carrier dynamics in a monolayer WS2 probed by time resolved terahertz spectroscopy. Nanotechnology. 2019;30:265706.
  • He C, Zhu L, Zhao Q, et al. Competition between free carriers and excitons mediated by defects observed in layered WSe2 crystal with time-resolved terahertz spectroscopy. Adv Opt Mater. 2018;6:1800290.
  • Kumar S, Singh A, Kumar S, et al. Enhancement in optically induced ultrafast thz response of MoSe2MoS2 heterobilayer. Opt Express. 2021;29:4181–4190.
  • Lee K, Li J, Cheng L, et al. Sub-picosecond carrier dynamics induced by efficient charge transfer in Mote2/Wte2 van der waals heterostructures. ACS Nano. 2019;13:9587–9594.
  • Wehrenfennig C, Eperon GE, Johnston MB, et al. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv Mater. 2014;26:1584–1589.
  • Zhu XY, Podzorov V. Charge carriers in hybrid organic–inorganic lead halide perovskites might be protected as large polarons. J Chem Phys Lett. 2015;6:4758–4761.
  • Lan Y, Dringoli BJ, Valverde-Chávez DA, et al. Ultrafast correlated charge and lattice motion in a hybrid metal halide perovskite. Sci Adv. 2019;5:eaaw5558.
  • Cinquanta E, Meggiolaro D, Motti SG, et al. Ultrafast THz probe of photoinduced polarons in lead-halide perovskites. Phys Rev Lett. 2019;122:166601.
  • Ishihara T, Takahashi J, Goto T. Exciton state in two-dimensional perovskite semiconductor (C10H2InH3)2PbI4. Solid State Commun. 1989;69:933–936.
  • Neutzner S, Thouin F, Cortecchia D, et al. Exciton-polaron spectral structures in two-dimensional hybrid lead-halide perovskites. Phys Rev Mater. 2018 Jun;2:064605.
  • Thouin F, Valverde-Chávez DA, Quarti C, et al. Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites. Nat Mater. 2019 Apr;18:349–356.
  • Milot RL, Sutton RJ, Eperon GE, et al. Charge-carrier dynamics in 2d hybrid metal–halide perovskites. Nano Lett. 2016;16:7001–7007.
  • Burgos-Caminal A, Socie E, Bouduban MEF, et al. Exciton and carrier dynamics in two-dimensional perovskites. J Chem Phys. 2020;11:7692–7701.
  • Folpini G, Gatto L, Cortecchia D, et al. Ultrafast charge carrier dynamics in quantum confined 2D perovskite. J Chem Phys. 2020;152:214705.
  • Knoll B, Keilmann F, Kramer A, et al. Contrast of microwave near-field microscopy. Appl Phys Lett. 1997;70:2667–2669.
  • Hillenbrand R, Taubner T, Keilmann F. Phonon-enhanced light–matter interaction at the nanometre scale. Nature. 2002;418:159–162.
  • Chen HT, Kersting R, Cho GC. Terahertz imaging with nanometer resolution. Appl Phys Lett. 2003;83:3009–3011.
  • Keilmann F, Huber AJ, Hillenbrand R. Nanoscale conductivity contrast by scattering-type near-field optical microscopy in the visible, infrared and thz domains. J Infrared Millimet Terahertz Waves. 2009;30:1255–1268.
  • Amarie S, Keilmann F. Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy. Phys Rev B. 2011;83:045404.
  • Liewald C, Mastel S, Hesler J, et al. All-electronic terahertz nanoscopy. Optica. 2018;5:159–163.
  • McLeod A, Van Heumen E, Ramirez J, et al. Nanotextured phase coexistence in the correlated insulator V2O3. Nat Phys. 2017;13:80–86.
  • Mittleman DM. Frontiers in terahertz sources and plasmonics. Nat Photon. 2013;7:666–669.
  • Lundeberg MB, Gao Y, Asgari R, et al. Tuning quantum nonlocal effects in graphene plasmonics. Science. 2017;357:187–191.
  • Zhang J, Chen X, Mills S, et al. Terahertz nanoimaging of graphene. ACS Photonics. 2018 jul;5:2645–2651.
  • Alonso-González P, Nikitin AY, Gao Y, et al. Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy. Nat Nanotechnol. 2017;12:31–35.
  • Huber MA, Mooshammer F, Plankl M, et al. Femtosecond photo-switching of interface polaritons in black phosphorus heterostructures. Nat Nanotechnol. 2017;12:207–211.
  • Siday T, Sandner F, Brem S, et al. Ultrafast nanoscopy of high-density exciton phases in WSe2. Nano Lett. 2022;6:2561–2568.
  • Giordano MC, Mastel S, Liewald C, et al. Phase-resolved terahertz self-detection near-field microscopy. Opt Express. 2018;26:18423–18435.
  • Pogna EAA, Silvestri C, Columbo LL, et al. Terahertz near-field nanoscopy based on detectorless laser feedback interferometry under different feedback regimes. APL Photon. 2021;6:061302.
  • Adam AJL. Review of near-field terahertz measurement methods and their applications. J Infrared Millimet Terahertz Waves. 2011;32:976–1019.
  • von Ribbeck HG, Brehm M, van der Weide D, et al. Spectroscopic thz near-field microscope. Opt Express. 2008 Mar;16:3430–3438.
  • Moon K, Park H, Kim J, et al. Subsurface nanoimaging by broadband terahertz pulse near-field microscopy. Nano Lett. 2015;15:549–552.
  • Kuschewski F, von Ribbeck HG, Döring J, et al. Narrow-band near-field nanoscopy in the spectral range from 1.3 to 8.5 thz. Appl Phys Lett. 2016;108:113102.
  • Huber AJ, Keilmann F, Wittborn J, et al. Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices. Nano Lett. 2008;8:3766–3770.
  • Stiegler J, Huber A, Diedenhofen S, et al. Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy. Nano Lett. 2010;10:1387–1392.
  • Berweger S, Blanchard PT, Brubaker MD, et al. Near-field control and imaging of free charge carrier variations in gan nanowires. Appl Phys Lett. 2016;108:073101.
  • Jung L, Pries J, Maß TW, et al. Quantification of carrier density gradients along axially doped silicon nanowires using infrared nanoscopy. ACS Photonics. 2019;6:1744–1754.
  • Aghamiri NA, Huth F, Huber AJ, et al. Hyperspectral time-domain terahertz nano-imaging. Opt Express. 2019;27:24231–24242.
  • de Oliveira TV, Nörenberg T, Álvarez-Pérez G, et al. Nanoscale-confined terahertz polaritons in a van der waals crystal. Adv Mater. 2021;33:2005777.
  • Pistore V, Pogna EAA, Viti L, et al. Self-induced phase locking of terahertz frequency combs in a phase-sensitive hyperspectral near-field nanoscope. Adv Sci. 2022;2200410. DOI:10.1002/advs.202200410.
  • Schade U, Holldack K, Kuske P, et al. Thz near-field imaging employing synchrotron radiation. Appl Phys Lett. 2004;84:1422–1424.
  • Hermann P, Hoehl A, Patoka P, et al. Near-field imaging and nano-Fourier-transform infrared spectroscopy using broadband synchrotron radiation. Opt Express. 2013 Feb;21:2913–2919.
  • Govyadinov AA, Mastel S, Golmar F, et al. Recovery of permittivity and depth from near-field data as a step toward infrared nanotomography. ACS Nano. 2014;8:6911–6921.
  • Mooshammer F, Sandner F, Huber MA, et al. Nanoscale near-field tomography of surface states on (Bi0.5Sb0.5)2Te3. Nano Lett. 2018;18:7515–7523.
  • Pogna EAA, Viti L, Politano A, et al. Mapping propagation of collective modes in Bi2Se3 and Bi2Te2.2Se0.8 topological insulators by near-field terahertz nanoscopy. Nat Commun. 2021;12:1–11.
  • Chen S, Bylinkin A, Wang Z, et al. Hillenbrand RReal-space nanoimaging of THz polaritons in the topological insulator Bi2Se3. Nat Commun. 2022;13:1–9.
  • Wimmer L, Herink G, Solli DR, et al. Terahertz control of nanotip photoemission. Nat Phys. 2014;10:432–436.
  • Pogna EAA, Asgari M, Zannier V, et al. Unveiling the detection dynamics of semiconductor nanowire photodetectors by terahertz near-field nanoscopy. Light: Sci Appl. 2020;9:1–12.
  • Basov D, Fogler M, Garca de Abajo F. Polaritons in van der waals materials. Science. 2016;354:aag1992.
  • Low T, Chaves A, Caldwell JD, et al. Polaritons in layered two-dimensional materials. Nat Mater. 2017;16:182–194.
  • Fei Z, Rodin AS, Andreev GO, et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature. 2012;487:82–85.
  • Chen J, Badioli M, Alonso-González P, et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature. 2012;487:77–81.
  • Dai S, Fei Z, Ma Q, et al. Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride. Science. 2014;343:1125–1129.
  • Soltani A, Kuschewski F, Bonmann M, et al. Direct nanoscopic observation of plasma waves in the channel of a graphene field-effect transistor. Light: Sci Appl. 2020;9:97.
  • Autore M, Li P, Dolado I, et al. Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit. Light: Sci Appl. 2018;7:17172.
  • Jablan M, Buljan H, Soljačić M. Plasmonics in graphene at infrared frequencies. Phys Rev B. 2009;80:245435.
  • Wagner M, Fei Z, McLeod AS, et al. Ultrafast and nanoscale plasmonic phenomena in exfoliated graphene revealed by infrared pump–probe nanoscopy. Nano Lett. 2014;14:894–900.
  • Huber MA, Plankl M, Eisele M, et al. Ultrafast mid-infrared nanoscopy of strained vanadium dioxide nanobeams. Nano Lett. 2016 feb;16:1421–1427.
  • Ni GX, Wang L, Goldflam MD, et al. Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene. Nat Photon. 2016;10:244–247.
  • Cocker TL, Jelic V, Gupta M, et al. An ultrafast terahertz scanning tunnelling microscope. Nat Photon. 2013;7:620–625.
  • Eisele M, Cocker TL, Huber MA, et al. Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution. Nat Photon. 2014;8:841–845.
  • Plankl M, Faria Junior PE, Mooshammer F, et al. Subcycle contact-free nanoscopy of ultrafast interlayer transport in atomically thin heterostructures. Nat Photon. 2021;15:594–600.