2,445
Views
8
CrossRef citations to date
0
Altmetric
Reviews

Strain engineering in alloy nanoparticles

, &
Article: 2127330 | Received 16 Aug 2022, Accepted 13 Sep 2022, Published online: 29 Sep 2022

References

  • Yang S, Liu F, Chao W, et al. Tuning surface properties of low dimensional materials via strain engineering. Small. 2016;12:4028–43.
  • Mavrikakis M, Hammer B, Nørskov JK. Effect of strain on the reactivity of metal surfaces. Phys Rev Lett. 1998;81:2819.
  • Pingel TN, Jørgensen M, Yankovich AB, et al. Influence of atomic site-specific strain on catalytic activity of supported nanoparticles. Nat Commun. 2018;9:1–9.
  • Hou T, Zhang S, Chen Y, et al. Hydrogen production from ethanol reforming: catalysts and reaction mechanism. Renew Sust Energ Rev. 2015;44:132–148.
  • Mazumder V, Lee Y, Sun S. Recent development of active nanoparticle catalysts for fuel cell reactions. Adv Funct Mater. 2010;20:1224–1231.
  • Walsh MJ, Yoshida K, Kuwabara A, et al. On the structural origin of the catalytic properties of inherently strained ultrasmall decahedral gold nanoparticles. Nano Lett. 2012;12:2027–2031.
  • Wu J, Li P, Pan Y-T, et al. Surface lattice-engineered bimetallic nanoparticles and their catalytic properties. Chem Soc Rev. 2012;41:8066–8074.
  • Cai X, Wang F, Wang R, et al. Synergism of surface strain and interfacial polarization on Pd@Au core–shell cocatalysts for highly efficient photocatalytic CO2 reduction over TiO2. J Mater Chem A. 2020;8:7350–7359.
  • Daio T, Staykov A, Guo L, et al. Lattice strain mapping of platinum nanoparticles on carbon and SnO2 supports. Sci Rep. 2015;5:1–10.
  • Zhang X, Lu G. Computational design of core/shell nanoparticles for oxygen reduction reactions. J Phys Chem Lett. 2014;5:292–297.
  • Gauthier Y, Schmid M, Padovani S, et al. Adsorption sites and ligand effect for CO on an alloy surface: a direct view. Phys Rev Lett. 2001;87:36103.
  • Bai S, Wang C, Deng M, et al. Surface polarization matters: enhancing the hydrogen-evolution reaction by shrinking pt shells in Pt–Pd–graphene stack structures. Angew Chem. 2014;126:12316–12320.
  • Dhara S, Imakita K, Giri PK, et al. Strain dependence of the nonlinear optical properties of strained Si nanoparticles. Opt Lett. 2014;39:3833–3836.
  • Qian X, Park HS. The influence of mechanical strain on the optical properties of spherical gold nanoparticles. J Mech Phys Solids. 2010;58:330–345.
  • Cai W, Hofmeister H, Dubiel M. Importance of lattice contraction in surface plasmon resonance shift for free and embedded silver particles. Eur Phys J D. 2001;13:245–253.
  • Lermé J, Pellarin M, Cottancin E, et al. Influence of lattice contraction on the optical properties and the electron dynamics in silver clusters. Eur Phys J D. 2001 11;17:213–220.
  • Qian X, Park HS. Strain effects on the SERS enhancements for spherical silver nanoparticles. Nanotechnology. 2010;21:365704.
  • Dhara S, Giri P. Size dependent anisotropic strain and optical properties of strained Si nanocrystals. J Nanosci Nanotechnol. 2011;11:9215–9221.
  • Ameer FS, Varahagiri S, Benza DW, et al. Tuning localized surface plasmon resonance wavelengths of silver nanoparticles by mechanical deformation. J Phys Chem C. 2016;120:20886–20895.
  • Smith AM, Mohs AM, Nie S. Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. Nat Nanotechnol. 2009;4:56–63.
  • Satar NSA, Aziz AW, Yaakob MK, et al. Experimental and first-principles investigations of lattice strain effect on electronic and optical properties of biotemplated BiFeO3 nanoparticles. J Phys Chem C. 2016;120:26012–26020.
  • Shih P-H, Wu SY. Magnetic anisotropic energy gap and strain effect in Au nanoparticles. Nanoscale Res Lett. 2009 9;5:25–30.
  • Singh S, Khare N. Defects/strain influenced magnetic properties and inverse of surface spin canting effect in single domain CoFe2O4 nanoparticles. Appl Surf Sci. 2016;364:783–788.
  • Singh S, Khare N. Effect of intrinsic strain on the optical bandgap and magnetic properties of single domain CoFe2O4 nanoparticles. Appl Phys A. 2018;124: 1–7.
  • Ojha VH, Mohan Kant K. Investigation of structural and magnetic properties of strained CoFe2O4 nanoparticles. J Phys Chem Solids. 2021;148:109655.
  • Manna S, Kim JW, Lubarda MV. Characterization of strain and its effects on ferromagnetic nickel nanocubes. AIP Adv. 2017;7:125025.
  • Eklund C-J, Fennie CJ, Rabe KM. Strain-induced ferroelectricity in orthorhombic CaTiO3 from first principles. Phys Rev B. 2009;79:220101.
  • Zeches RJ, Rossell MD, Zhang JX, et al. A strain-driven morphotropic phase boundary in BiFeO3. Science. 2009;326:977–980.
  • Sun Y, Wang C, Chu L, et al. Ni-doping effect on the magnetic transition and correlated lattice contraction in antiperovskite Mn3ZnN compounds. Solid State Commun. 2012;152:446–449.
  • Zhou XH, Huang Y, Chen XS, et al. Effects of uniaxial strain on magnetic interactions in Co-doped ZnO nanowires: first-principles calculations. Solid State Commun. 2012;152:19–23.
  • Nelli D, Roncaglia C, Ferrando R, et al. Shape changes in AuPd alloy nanoparticles controlled by anisotropic surface stress relaxation. J Phys Chem Lett. 2021;12:4609–4615.
  • Panizon E, Ferrando R. Strain-induced restructuring of the surface in core@shell nanoalloys. Nanoscale. 2016;8:15911–15919.
  • Kim BH, Heo J, Kim S, et al. Critical differences in 3D atomic structure of individual ligand-protected nanocrystals in solution. Science. 2020;368:60–67.
  • Goris B, De Beenhouwer J, De Backer A, et al. Measuring lattice strain in three dimensions through electron microscopy. Nano Lett. 2015;15:6996–7001.
  • Reboul CF, Heo J, Machello C, et al. SINGLE: atomic-resolution structure identification of nanocrystals by graphene liquid cell EM. Sci Adv. 2021;7:eabe6679.
  • Yang Y, Chen C-C, Scott MC, et al. Deciphering chemical order/disorder and material properties at the single-atom level. Nature. 2017;542:75–79.
  • Bals S, Goris B, Liz-Marzán LM, et al. Three-dimensional characterization of noble-metal nanoparticles and their assemblies by electron tomography. Angew Chem. 2014;53:10600–10610.
  • Goris B, De Backer A, Van Aert S, et al. Three-dimensional elemental mapping at the atomic scale in bimetallic nanocrystals. Nano Lett. 2013;13:4236–4241.
  • Mukherjee D, Gamler JTL, Skrabalak SE, et al. Lattice strain measurement of core@ shell electrocatalysts with 4D scanning transmission electron microscopy nanobeam electron diffraction. ACS Catal. 2020;10:5529–5541.
  • Settem M, Kanjarla AK. On the nature of the structural transitions between anti-Mackay stacking, chiral stacking and their thermal stability in AgCu nanoalloys. Comput Mater Sci. 2020;184:109822.
  • Butt H-J, Graf K, Kappl M. Physics and chemistry of interfaces. Hoboken, New Jersey: John Wiley & Sons; 2013.
  • Ferrando R. Structure and properties of nanoalloys. Vol. 10, Amsterdam, The Netherlands: Frontiers of Nanoscience; 2016. p. 1–337. Elsevier Science.
  • Cyrot-Lackmann F, Ducastelle F. Binding energies of transition-metal atoms adsorbed on a transition metal. Phys Rev B. 1971;4:2406–2412.
  • Gupta RP. Lattice relaxation at a metal surface. Phys Rev B. 1981;23:6265.
  • Rosato V, Guillopé M, Legrand B. Thermodynamical and structural properties of f.c.c. transition metals using a simple tight-binding model. Phil Mag A. 1989;59:321.
  • Bochicchio D, Ferrando R. Size-dependent transition to high-symmetry chiral structures in AgCu, AgCo, AgNi, and AuNi nanoalloys. Nano Lett. 2010;10:4211–4216.
  • Palomares-Baez J-P, Panizon E, Ferrando R. Nanoscale effects on phase separation. Nano Lett. 2017;17:5394–5401.
  • Laasonen K, Panizon E, Bochicchio D, et al. Competition between icosahedral motifs in AgCu, AgNi, and AgCo nanoalloys: a combined atomistic-DFT study. J Phys Chem C. 2013;117:26405–26413.
  • Panizon E, Bochicchio D, Rossi G, et al. Tuning the structure of nanoparticles by small concentrations of impurities. Chem Mater. 2014;26:3354–3356.
  • Pittaway F, Paz-Borbón LO, Johnston RL, et al. Theoretical studies of palladium-gold nanoclusters: pd-Au clusters with up to 50 atoms. J Phys Chem C. 2009;113:9141–9152.
  • Smoluchowski R. Anisotropy of the electronic work function of metals. Phys Rev. 1941;60:661–674.
  • Pauling L. Atomic radii and interatomic distances in metals. J Am Chem Soc. 1947;69:542–553.
  • Finnis MW, Heine V. Theory of lattice contraction at aluminium surfaces. J Phys F. 1974;4:L37–L41.
  • Feibelman PJ. Relaxation of hcp(0001) surfaces: a chemical view. Phys Rev B. 1996;53:13740–13746.
  • Kara A, Rahman TS. Vibrational properties of metallic nanocrystals. Phys Rev Lett. 1998;81:1453–1456.
  • Sun CQ, Tay BK, Zeng XT, et al. Bond-order bond-length bond-strength (bond-OLS) correlation mechanism for the shape-and-size dependence of a nanosolid. J Phys. 2002;14:7781–7795.
  • Sun CQ. Surface and nanosolid core-level shift: impact of atomic coordination-number imperfection. Phys Rev B. 2004;69:45105.
  • Qi W, Huang B, Wang M. Bond-length and -energy variation of small gold nanoparticles. J Comput Theor Nanosci. 2009;6:635–639.
  • Zhang X, Kuo J-L, Gu M, et al. Local structure relaxation, quantum trap depression, and valence charge polarization induced by the shorter-and-stronger bonds between under-coordinated atoms in gold nanostructures. Nanoscale. 2010;2:412–417.
  • Sun CQ. Dominance of broken bonds and nonbonding electrons at the nanoscale. Nanoscale. 2010;2:1930–1961.
  • Ahmadi S, Zhang X, Gong Y, et al. Skin-resolved local bond contraction, core electron entrapment, and valence charge polarization of Ag and Cu nanoclusters. Phys Chem Chem Phys. 2014;16:8940–8948.
  • Huang WJ, Sun R, Tao J, et al. Coordination-dependent surface atomic contraction in nanocrystals revealed by coherent diffraction. Nat Mater. 2008;7:308–313.
  • Wales DJ. Energy Landscapes. Cambridge, England: Cambridge University Press; 2003.
  • Ferrando R, Jellinek J, Johnston RL. Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev. 2008;108:845–910.
  • Barrett CS. Structure of materials. New York: McGraw-Hill; 1952.
  • Denton AR, Ashcroft NW. Vegard’s law. Phys Rev A. 1991;43:3161–3164.
  • Peng Z, Yang H. Ag–Pt alloy nanoparticles with the compositions in the miscibility gap. J Solid State Chem. 2008;181:1546–1551.
  • Suzuki S, Suzuki T, Tomita Y, et al. Compositional control of AuPt nanoparticles synthesized in ionic liquids by the sputter deposition technique. CrystEngComm. 2012;14:4922–4926.
  • Leppert L, Kümmel S. The electronic structure of gold-platinum nanoparticles: collecting clues for why they are special. J Phys Chem C. 2011;115:6694–6702.
  • Liu C, Klemmer TJ, Shukla N, et al. Oxidation of FePt nanoparticles. J Magn Magn Mater. 2003;266:96–101.
  • Strasser P, Koh S, Anniyev T, et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat Chem. 2010;2:454–460.
  • Montes de Oca MG, Kumarakuru H, Cherns D, et al. Hydrogen adsorption at strained Pd nanoshells. J Phys Chem C. 2011;115:10489–10496.
  • Kumarakuru H, Cherns D, Montes de Oca MG, et al. TEM studies of stress relaxation in catalytic Au-Pd core-shell nanoparticles. J Phys. 2012 July;371:12025.
  • Gan L, Yu R, Luo J, et al. Lattice strain distributions in individual dealloyed Pt–Fe catalyst nanoparticles. J Phys Chem Lett. 2012;3:934–938.
  • Gan L, Heggen M, Rudi S, et al. Core–shell compositional fine structures of dealloyed PtxNi1–x nanoparticles and their impact on oxygen reduction catalysis. Nano Lett. 2012;12:5423–5430.
  • Bu L, Zhang N, Guo S, et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science. 2016;354:1410–1414.
  • Wang L, Gao W, Liu Z, et al. Core–shell nanostructured cobalt–platinum electrocatalysts with enhanced durability. ACS Catal. 2018;8:35–42.
  • Ellaby T, Varambhia A, Luo X, et al. Strain effects in core–shell PtCo nanoparticles: a comparison of experimental observations and computational modelling. Phys Chem Chem Phys. 2020;22:24784–24795.
  • Andreazza P, Pierron-Bohnes V, Tournus F, et al. Structure and order in cobalt/platinum-type nanoalloys: from thin films to supported clusters. Surf Sci Rep. 2015;70:188–258.
  • Andreazza P, Lemoine A, Coati A, et al. From metastability to equilibrium during the sequential growth of Co–Ag supported clusters: a real-time investigation. Nanoscale. 2021;13:6096–6104.
  • Garcia-Gutierrez D, Gutierrez-Wing C, Miki-Yoshida M, et al. HAADF study of Au-Pt core-shell bimetallic nanoparticles. Appl Phys A. 2004;79:481–487.
  • Liu C-P, Twesten RD, Gibson JM. High-angle annular dark-field imaging of self-assembled Ge islands on Si(001). Ultramicroscopy. 2001;87:79–88.
  • Perovic DD, Rossouw CJ, Howie A. Imaging elastic strains in high-angle annular dark field scanning transmission electron microscopy. Ultramicroscopy. 1993;52:353–359.
  • Galindo PL, Kret S, Sanchez AM, et al. The peak pairs algorithm for strain mapping from HRTEM images. Ultramicroscopy. 2007;107:1186–1193.
  • Urban KW, Jia C-L, Houben L, et al. Negative spherical aberration ultrahigh-resolution imaging in corrected transmission electron microscopy. Philos Trans R Soc A Math Phys Eng Sci. 2009;367:3735–3753.
  • Hÿtch MJ, Snoeck E, Kilaas R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy. 1998;74:131–146.
  • Falvo MR, Clary GJ, Taylor RM, et al. Bending and buckling of carbon nanotubes under large strain. Nature. 1997;389:582–584.
  • Li C, Wang C, Zhang F, et al. External strain effect on the electronic and mechanical properties of the superconductor Nb2InC. J Phys Chem Solids. 2015;78:28–34.
  • Li Z, Kinloch IA, Young RJ, et al. Deformation of wrinkled graphene. Acs Nano. 2015;9:3917–3925.
  • Baran JD, Molinari M, Kulwongwit N, et al. Tuning thermoelectric properties of misfit layered cobaltites by chemically induced strain. J Phys Chem C. 2015;119:21818–21827.
  • Xia MG, Zhang SL. Modulation of specific heat in graphene by uniaxial strain. Eur Phys J B. 2011;84:385–390.
  • Kulkarni AJ, Zhou M, Sarasamak K, et al. Novel phase transformation in ZnO nanowires under tensile loading. Phys Rev Lett. 2006;97:105502.
  • Haeni JH, Irvin P, Chang W, et al. Room-temperature ferroelectricity in strained SrTiO3. Nature. 2004;430:758–761.
  • Antonakos A, Liarokapis E, Aydogdu GH, et al. Strain induced phase separation on La0.5Ca0.5MnO3 thin films. J Magn Magn Mater. 2011;323:620–630.
  • Marín L, Rodríguez LA, Magén C, et al. Observation of the strain induced magnetic phase segregation in manganite thin films. Nano Lett. 2015;15:492–497.
  • Rudkevich E, Liu F, Savage DE, et al. Hydrogen induced Si surface segregation on Ge-covered Si(001). Phys Rev Lett. 1998;81:3467.
  • Doennig D, Pentcheva R. Control of orbital reconstruction in (LaAlO3)M/(SrTiO3)N(001) quantum wells by strain and confinement. Sci Rep. 2015;5:1–6.
  • Stamenkovic VR, Mun BS, Arenz M, et al. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat Mater. 2007;6:241–247.
  • Vasileff A, Xu C, Jiao Y, et al. Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction. Chem. 2018;4:1809–1831.
  • Greeley J, Stephens IEL, Bondarenko AS, et al. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat Chem. 2009;1:552–556.
  • Ling T, Yan D-Y, Wang H, et al. Activating cobalt (ii) oxide nanorods for efficient electrocatalysis by strain engineering. Nat Commun. 2017;8:1–7.
  • Wang H, Xu S, Tsai C, et al. Direct and continuous strain control of catalysts with tunable battery electrode materials. Science. 2016;354:1031–1036.
  • Voiry D, Yamaguchi H, Li J, et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat Mater. 2013;12:850–855.
  • Kim J-S, Kim H-K, Kim S-H, et al. Catalytically active Au layers grown on Pd nanoparticles for direct synthesis of H2O2: lattice strain and charge-transfer perspective analyses. ACS Nano. 2019;13:4761–4770.
  • Brankovic SR, Wang JX, Adžić RR. Metal monolayer deposition by replacement of metal adlayers on electrode surfaces. Surf Sci. 2001;474:L173–L179.
  • Bok J, Lee SY, Lee B-H, et al. Designing atomically dispersed Au on tensile-strained Pd for efficient CO2 electroreduction to formate. J Am Chem Soc. 2021;143:5386–5395.
  • Ashcroft NW, Mermin ND. Solid state physics. Philadelphia, United States: Saunders College Publishing; 1976.
  • Heisenberg W. Zur theorie des ferromagnetismus. Zeitschrift für Physik. 1928 Sep;49:619–636.
  • Dirac PAM, Fowler RH. Quantum mechanics of many-electron systems. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, London, England, 123:714–733, 1929.
  • Bochicchio D, Ferrando R. Structure and thermal stability of AgCu chiral nanoparticles. Eur Phys J D. 2012;66:115.
  • Bochicchio D, Negro F, Ferrando R. Competition between structural motifs in gold–platinum nanoalloys. Comput Theory Chem. 2013;1021:177.
  • Bochicchio D, Ferrando R. Morphological instability of core-shell metallic nanoparticles. Phys Rev B. 2013;87:165435.
  • Ferrando R. Symmetry breaking and morphological instabilities in core-shell metallic nanoparticles. J Phys Condens Matter. 2015;27:13003.
  • Pirart J, Front A, Rapetti D, et al. Reversed size-dependent stabilization of ordered nanophases. Nat Commun. 2019;10:1–7.
  • Settem M, Srivastav AK, Kanjarla AK. Understanding the strain-dependent structure of Cu nanocrystals in Ag–Cu nanoalloys. Phys Chem Chem Phys. 2021;23:26165–26177.
  • Front A, Mottet C. Stress effect on segregation and ordering in Pt–Ag nanoalloys. J Phys. 2021;33:154006.
  • Settem M, Kumar P, Adlakha I, et al. Surface reconstruction in core@shell nanoalloys: interplay between size and strain. Acta Materialia. 2022;234:118038.
  • Vitek V, Egami T. Atomic level stresses in solids and liquids. Phys Status Solidi B. 1987;144:145–156.
  • Baletto F, Mottet C, Ferrando R. Growth of three-shell onionlike bimetallic nanoparticles. Phys Rev Lett. 2003;90:135504.
  • Harris IA, Kidwell RS, Northby JA. Structure of charged argon clusters formed in a free jet expansion. Phys Rev Lett. 1984;53:2390.
  • Rossi G, Schiappelli G, Ferrando R. Formation pathways and energetic stability of icosahedral AgshellCocore nanoclusters. J Comput Theor Nanosci. 2009;6:841.
  • Settem M, Kanjarla AK. Role of core-shell energetics on anti-Mackay, chiral stacking in AgCu nanoalloys and thermally induced transition to chiral stacking. Sci Rep. 2020;10:3296.
  • Baletto F, Mottet C, Ferrando R. Growth simulations of silver shells on copper and palladium nanoclusters. Phys Rev B. 2002;66:155420.
  • Delfour L, Creuze J, Legrand B. Exotic behavior of the outer shell of bimetallic nanoalloys. Phys Rev Lett. 2009;103:205701.
  • Nash A, Nash P. The Ni-Pd (nickel-palladium) system. Bulletin Alloy Phase Diagrams. 1984;5:446–450.
  • Zhu B, Guesmi H, Creuze J, et al. Crossover among structural motifs in Pd–Au nanoalloys. Phys Chem Chem Phys. 2015;17:28129–28136.