2,613
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Time-resolved experiments on gas-phase atoms and molecules with XUV and X-ray free-electron lasers

Article: 2132182 | Received 28 Mar 2022, Accepted 27 Sep 2022, Published online: 13 Oct 2022

References

  • Pellegrini C, Stöhr J. X-ray free-electron lasers—principles, properties and applications, Nucl. Instrum Methods. Phys Res Sect A. 2003;500:33.
  • Ackermann W, Asova G, Ayvazyan V, et al. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nat Photon. 2007;1:336.
  • Shintake T, Tanaka H, Hara T, et al. A compact free-electron laser for generating coherent radiation in the extreme ultraviolet region. Nat Photon. 2008;2:555.
  • McNeil BWJ, Thompson NR. X-ray free-electron lasers. Nat Photon. 2010;4:814.
  • Emma P, Akre R, Arthur J, et al. First lasing and operation of an ångstrom-wavelength free-electron laser. Nat Photon. 2010;4:641.
  • Allaria E, Appio R, Badano L, et al. Highly coherent and stable pulses from the Fermi seeded free-electron laser in the extreme ultraviolet. Nat Photon. 2012;6:699.
  • Ishikawa T, Aoyagi H, Asaka T, et al. A compact x-ray free-electron laser emitting in the sub ångström region. Nat Photon. 2012;6:540.
  • Waldrop MM. X-ray science: the big guns. Nature. 2014;505:604.
  • Pellegrini C, Marinelli A, Reiche S. The physics of x-ray free-electron lasers. Rev Mod Phys. 2016;88:015006.
  • Pellegrini C. X-ray free-electron lasers: from dreams to reality. Phys Scr. 2016;2016:014004.
  • Feng C, Wang Z, Wang X, et al. Generation of two-color ultra-short radiation pulses from two electron bunches and a chirped seeded free-electron laser. Nucl Instrum Methods Phys Res A. 2016;807:79–27.
  • Milne CJ, Schietinger T, Aiba M, et al. The Swiss x-ray free electron laser. Appl Sci. 2017;7:720.
  • Seddon EA, Clarke JA, Dunning DJ, et al. Short-wavelength free-electron laser sources and science: a review. Rep Prog Phys. 2017;80:115901.
  • Ko IS, Kang H-S, Heo H, et al. Construction and commissioning of PAL-XFEL facility. Appl Sci. 2017;7:479.
  • Kang H-S, Min C-K, Heo H, et al. Hard x-ray free-electron laser with femtosecond-scale timing jitter. Nat Photon. 2017;11:708.
  • Decking W, Abeghyan S, Abramian P, et al. A MHz-repetition-rate hard x-ray free-electron laser driven by a superconducting linear accelerator. Nat Photonics. 2020;14:391–397.
  • Liu B, Feng C, Gu D, et al. The SXFEL upgrade: from test facility to user facility. Appl Sci. 2021;12:176.
  • Zewail AH. Femtochemistry: atomic-scale dynamics of the chemical bond using ultrafast lasers, Angew. Chem, Int Ed. 2000;39:2586.
  • Amann J, Berg W, Blank V, et al. Demonstration of self-seeding in a hard-x-ray free-electron laser. Nat Photonics. 2012;6:693–698.
  • Wöstmann M, Mitzner R, Noll T, et al. The XUV split-and-delay unit at beamline BL2 at FLASH. J Phys B. 2013;46:164005.
  • Usenko S, Przystawik A, Lazzarino L, et al. Split-and-delay unit for FEL interferometry in the XUV spectral range. Appl Sci. 2017;7:544.
  • Schmid G, Schnorr K, Augustin S, et al. Reaction microscope endstation at FLASH2. J Synchrotron Radiat. 2019;26:854–867.
  • Berrah N. Molecular dynamics induced by short and intense x-ray pulses from the LCLS. Phys Scr. 2016;T169:014001.
  • Jiang YH, Pfeifer T, Rudenko A, et al. Temporal coherence effects in multiple ionization of N2 via XUV pump-probe autocorrelation. Phys Rev A. 2010;82:041403(R).
  • Chapman HN, Hau-Riege SP, Bogan MJ, et al. Femtosecond time-delay x-ray holography. Nature. 2007;448:676.
  • Sauppe M, Rompotis D, Erk B, et al. XUV double-pulses with femtosecond to 650 ps separation from a multilayer-mirror- based split-and-delay unit at FLASH. J Synchrotron Radiat. 2018;25:1517–1528.
  • Lutman AA, Coffee R, Ding Y, et al. Experimental demonstration of femtosecond two-color x-ray free-electron lasers. Phys Rev Lett. 2013;110:134801.
  • Marinelli A, Ratner D, Lutman AA, et al. High-intensity double-pulse x-ray free-electron laser. Nat Commun. 2015;6:6369.
  • Coffee RN, Cryan JP, Duris J, et al. Development of ultrafast capabilities for x-ray free-electron lasers at the Linac Coherent Light Source. Philos Trans R Soc A Math Phys Eng Sci. 2019;377:20180386.
  • Zhang Y, Kroll T, Weninger C, et al., Generation of intense phase-stable femtosecond hard x-ray pulse pairs, Proceedings of the National Academy of Sciences 119, e2119616119 (2022).
  • Picón A, Lehmann CS, Bostedt C, et al. Hetero-site-specific x-ray pump-probe spectroscopy for femtosecond intramolecular dynamics. Nat Commun. 2016;7:11652.
  • Prince KC, Allaria E, Callegari C, et al. Coherent control with a short-wavelength free-electron laser. Nat Photon. 2016;10:176.
  • Maroju PK, Grazioli C, Di Fraia M, et al. Attosecond pulse shaping using a seeded free-electron laser. Nature. 2020;578:386–391.
  • You D, Ueda K, Gryzlova EV, et al. New method for measuring angle-resolved phases in photoemission. Phys Rev X. 2020;10:031070.
  • Callegari C, Grum-Grzhimailo AN, Ishikawa KL, et al. Atomic, molecular and optical physics applications of longitudinally coherent and narrow bandwidth free-electron lasers. Phys Rep. 2021;904:1–59.
  • Wituschek A, Bruder L, Allaria E, et al. Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses. Nat Commun. 2020;11:883.
  • Mukamel S, Healion D, Zhang Y, et al. Multidimensional attosecond resonant x-ray spectroscopy of molecules: lessons from the optical regime. Annu Rev Phys Chem. 2013;64:101.
  • Rolles D, Boll R, Erk B, et al. An experimental protocol for femtosecond NIR/UV - XUV pump-probe experiments with free-electron lasers. J Visualized Exp. 2018;140:e57055–e57055.
  • Glownia JM, Cryan J, Andreasson J, et al. Time-resolved pump-probe experiments at the LCLS. Opt Express. 2010;18:17620.
  • Redlin H, Al-Shemmary A, Azima A, et al. The FLASH pump–probe laser system: setup, characterization and optical beamlines. Nucl Instrum Methods Phys Res, Sect A. 2011;635.:S88–S93.
  • Löhl F, Arsov V, Felber M, et al. Electron bunch timing with femtosecond precision in a superconducting free- electron laser. Phys Rev Lett. 2010;104:144801.
  • Schulz S, Grguraš I, Behrens C, et al. Femtosecond all-optical synchronization of an x-ray free-electron laser. Nat Commun. 2015;6:5938.
  • Savelyev E, Boll R, Bomme C, et al. Jitter-correction for IR/UV-XUV pump-probe experiments at the FLASH free-electron laser. New J Phys. 2017;19:043009.
  • Hartmann N, Helml W, Galler A, et al. Sub-femtosecond precision measurement of relative x-ray arrival time for free-electron lasers. Nat Photonics. 2014;8:706–709.
  • Frühling U, Wieland M, Gensch M, et al. Single-shot terahertz-field-driven x-ray streak camera. Nat Photon. 2009;3:523.
  • Drescher M, Frühling U, Krikunova M, et al. Time- diagnostics for improved dynamics experiments at XUV FELs. J Phys B At Mol Opt Phys. 2010;43:194010.
  • Meyer M, Costello JT, Düsterer S, et al. Two-colour experiments in the gas phase. J Phys B At Mol Opt Phys. 2010;43:194006.
  • Düsterer S, Rehders M, Al-Shemmary A, et al. Development of experimental techniques for the characterization of ultrashort photon pulses of extreme ultraviolet free-electron lasers. Phys Rev ST Accel Beams. 2014;17:120702.
  • Meyer M, Cubaynes D, O’Keeffe P, et al. Two-color photoionization in XUV free-electron and visible laser fields. Phys Rev A. 2006;74:011401.
  • Radcliffe P, Düsterer S, Azima A, et al. Single-shot characterization of independent femtosecond extreme ultraviolet free electron and infrared laser pulses. Appl Phys Lett. 2007;90:131108.
  • Meyer M, Cubaynes D, Richardson V, et al. Two-photon excitation and relaxation of the 3d − 4d resonance in atomic Kr. Phys Rev Lett. 2010;4:213001.
  • Meyer M, Cubaynes D, Dardis J, et al. Two-color experiments in the gas phase at FLASH. J Electron Spectrosc Relat Phenom. 2010;181:111.
  • Meyer M, Radcliffe P, Tschentscher T, et al. Angle-resolved electron spectroscopy of laser-assisted auger decay induced by a few-femtosecond x-ray pulse. Phys Rev Lett. 2012;108:063007.
  • Düsterer S, Rading L, Johnsson P, et al. Interference in the angular distribution of photoelectrons in superimposed XUV and optical laser fields. J Phys B At Mol Opt Phys. 2013;46:164026.
  • Düsterer S, Hartmann G, Bomme C, et al. Two-color XUV+NIR femtosecond photoionization of neon in the near-threshold region. New J Phys. 2019;21:063034.
  • Düsterer S, Radcliffe P, Bostedt C, et al. Femtosecond x-ray pulse length characterization at the linac coherent light source free-electron laser. New J Phys. 2011;13:093024.
  • Drescher M, Hentschel M, Kienberger R, et al. Time-resolved atomic inner-shell spectroscopy. Nature. 2002;419:803.
  • Grguraš I, Maier AR, Behrens C, et al. Ultrafast x-ray pulse characterization at free-electron lasers. Nat Photon. 2012;6:852.
  • Helml W, Maier AR, Schweinberger W, et al. Measuring the temporal structure of few-femtosecond free-electron laser x-ray pulses directly in the time domain. Nat Photonics. 2014;8:950–957.
  • Hartmann N, Hartmann G, Heider R, et al. Attosecond time–energy structure of x-ray free-electron laser pulses. Nat Photon. 2018;12:215.
  • Haynes DC, Wurzer M, Schletter A, et al. Clocking Auger electrons. Nat Phys. 2021.
  • Ivanov R, Bermúdez Macias IJ, Liu J, et al. Single-shot temporal characterization of XUV pulses with duration from 10 fs to 350 fs at FLASH. J Phys B. 2020;53:184004.
  • Wieland M, Kabachnik NM, Drescher M, et al. Deriving x-ray pulse duration from center-of-energy shifts in THz-streaked ionized electron spectra. Opt Express. 2021;29:32739.
  • Usenko S, Przystawik A, Jakob M, et al. Attosecond interferometry with self-amplified spontaneous emission of a free-electron laser. Nat Commun. 2017;8. DOI:10.1038/ncomms15626.
  • Usenko S, Schwickert D, Przystawik A, et al. Auger electron wave packet interferometry on extreme timescales with coherent soft x-rays. J Phys B. 2020;53:244008.
  • Stapelfeldt H, Seideman T. Colloquium: aligning molecules with strong laser pulses. Rev Mod Phys. 2003;75:543.
  • Johnsson P, Rouzée A, Siu W, et al. Field-free molecular alignment probed by the free electron laser in Hamburg (FLASH). J Phys B At Mol Opt Phys. 2009;42:134017.
  • Cryan JP, Glownia JM, Andreasson J, et al. Auger electron angular distribution of double core-hole states in the molecular reference frame. Phys Rev Lett. 2010;105:083004.
  • Rouzée A, Johnsson P, Rading L, et al. Towards imaging of ultrafast molecular dynamics using FELs. J Phys B At Mol Opt Phys. 2013;46:164029.
  • Rolles D, Boll R, Adolph M, et al. Femtosecond x-ray photoelectron diffraction on gas-phase dibromobenzene molecules. J Phys B At Mol Opt Phys. 2014;47:124035.
  • Küpper J, Stern S, Holmegaard L, et al. X-ray diffraction from isolated and strongly aligned gas-phase molecules with a free-electron laser. Phys Rev Lett. 2014;112:083002.
  • Boll R, Anielski D, Bostedt C, et al. Femtosecond photoelectron diffraction on laser-aligned molecules: towards time-resolved imaging of molecular structure. Phys Rev A. 2013;88:061402(R.
  • Boll R, Rouzée A, Adolph M, et al. Imaging molecular structure through femtosecond photoelectron diffraction on aligned and oriented gas-phase molecules. Faraday Discuss. 2014;171:57.
  • Amini K, Boll R, Lauer A, et al. Alignment, orientation, and Coulomb explosion of difluoroiodobenzene studied with the pixel imaging mass spectrometry (PImMS) camera. J Chem Phys. 2017;147:013933.
  • Kierspel T, Wiese J, Mullins T, et al. Strongly aligned gas-phase molecules at free-electron lasers. J Phys B At Mol Opt Phys. 2015;48:204002.
  • Kierspel T, Morgan A, Wiese J, et al. X-ray diffractive imaging of controlled gas-phase molecules: toward imaging of dynamics in the molecular frame. J Chem Phys. 2020;152:084307.
  • Boll R. Imaging Molecular Structure with Photoelectron Diffraction, Ph.D. thesis, Universität Heidelberg (2014).
  • Anielski D. Untersuchung der Photoelektronen-Winkelverteilungen von ausgerichteten Molekuelen in der Gasphase, Ph.D. thesis, Universität Hamburg (2020).
  • Kazama M, Fujikawa T, Kishimoto N, et al. Photoelectron diffraction from single oriented molecules: towards ultrafast structure determination of molecules using x-ray free-electron lasers. Phys Rev A. 2013;87:063417.
  • Nakajima K, Teramoto T, Akagi H, et al. Photoelectron diffraction from laser-aligned molecules with x-ray free-electron laser pulses. Sci Rep. 2015;5:14065.
  • Minemoto S, Shimada H, Komatsu K, et al. Time-resolved photoelectron angular distributions from nonadiabatically aligned CO2 molecules with SX-FEL at SACLA. J Phys Comm. 2018;2:115015.
  • Kastirke G, Schöffler MS, Weller M, et al. Double core-hole generation in O2 molecules using an x-ray free-electron laser: molecular-frame photoelectron angular distributions. Phys Rev Lett. 2020;125:163201.
  • Kastirke G, Schöffler MS, Weller M, et al. Photoelectron diffraction imaging of a molecular breakup using an x-ray free-electron laser. Phys Rev X. 2020;10:021052.
  • Schoenlein R, Boutet S, Minitti M, et al. The Linac Coherent Light Source: recent developments and future plans. Appl Sci (Switzerland). 2017;7:10.3390/app7080850.
  • Rudenko A, Inhester L, Hanasaki K, et al. Femtosecond response of polyatomic molecules to ultra-intense hard x-rays. Nature. 2017;546:129.
  • Erk B, Boll R, Trippel S, et al. Imaging charge transfer in iodomethane upon x-ray photoabsorption. Science. 2014;345:288.
  • Allum F, Anders N, Brouard M, et al. Multi-channel photodissociation and XUV-induced charge transfer dynamics in strong-field-ionized methyl iodide studied with time-resolved recoil-frame covariance imaging. Faraday Discuss. 2021;228:571–596.
  • Cheng Y-C, Oostenrijk B, Lahl J, et al. Imaging multiphoton ionization dynamics of CH3I at a high repetition rate XUV free-electron laser. J Phys B. 2021;54:014001.
  • Boll R, Erk B, Coffee R, et al. Charge transfer in dissociating iodomethane and fluoromethane molecules ionized by intense femtosecond x-ray pulses. Struct Dyn. 2016;3:043207.
  • Amini K, Savelyev E, Brauße F, et al. Photodissociation of aligned CH3I and C6H3F2I molecules probed with time-resolved Coulomb explosion imaging by site- selective extreme ultraviolet ionization. Struct Dyn. 2018;5:014301.
  • Brauße F, Goldsztejn G, Amini K, et al. Time-resolved inner-shell photoelectron spectroscopy: from a bound molecule to an isolated atom. Phys Rev A. 2018;97:043429.
  • Forbes R, Allum F, Bari S, et al. Time-resolved site-selective imaging of predissociation and charge transfer dynamics: the CH3I B-band. J Phys B. 2020;53:224001.
  • Schnorr K, Senftleben A, Kurka M, et al. Electron rearrangement dynamics in dissociating I2n+ molecules accessed by extreme ultraviolet pump-probe experiments. Phys Rev Lett. 2014;113:073001.
  • Schnorr K, Senftleben A, Schmid G, et al. Multiple ionization and fragmentation dynamics of molecular iodine studied in IR-XUV pump-probe experiments. Faraday Discuss. 2014;171:41.
  • Fisher-Levine M, Boll R, Ziaee F, et al. Time-resolved ion imaging at free-electron lasers using TimepixCam. J Synchrotron Radiat. 2018;25:336–345.
  • Köckert H, Lee J, Allum F, et al. UV-induced dissociation of CH2BrI probed by intense femtosecond XUV pulses. J Phys B. 2022;55:014001.
  • Yong H, Xu X, Ruddock JM, et al., Ultrafast x-ray scattering offers a structural view of excited-state charge transfer, Proceedings of the National Academy of Sciences 118, e2021714118 (2021).
  • Ding T, Rebholz M, Aufleger L, et al. Nonlinear coherence effects in transient-absorption ion spectroscopy with stochastic extreme-ultraviolet free-electron laser pulses. Phys Rev Lett. 2019;123:103001.
  • Rebholz M, Ding T, Despré V, et al. All-XUV pump-probe transient absorption spectroscopy of the structural molecular dynamics of di-iodomethane. Phys Rev X. 2021;11:031001.
  • Fang L, Osipov T, Murphy BF, et al. Probing ultrafast electronic and molecular dynamics with free-electron lasers. J Phys B At Mol Opt Phys. 2014;47:124006.
  • Rudenko A, Rolles D. Time-resolved studies with FELs. J Electron Spectrosc Relat Phenom. 2015;204:228.
  • Takanashi T, Golubev N, Callegari C, et al. Time-resolved measurement of interatomic Coulombic decay induced by two-photon double excitation of Ne2. Phys Rev Lett. 2017;118. DOI:10.1103/PhysRevLett.118.033202.
  • Kumagai Y, Jurek Z, Xu W, et al. Real-time observation of disintegration processes within argon clusters ionized by a hard-x-ray pulse of moderate fluence. Phys Rev A. 2020;101:023412.
  • Fukuzawa H, Takanashi T, Kukk E, et al. Real-time observation of x-ray-induced intramolecular and interatomic electronic decay in CH2I2. Nat Commun. 2019;10:2186.
  • Krikunova M, Maltezopoulos T, Wessels P, et al. Ultrafast photofragmentation dynamics of molecular iodine driven with timed XUV and near-infrared light pulses. J Chem Phys. 2011;134:024313.
  • Krikunova M, Maltezopoulos T, Wessels P, et al. Strong-field ionization of molecular iodine traced with XUV pulses from a free-electron laser. Phys Rev A. 2012;86:043430.
  • Petrović VS, Siano M, White JL, et al. Transient x-ray fragmentation: probing a prototypical photoinduced ring opening. Phys Rev Lett. 2012;108:253006.
  • Jiang YH, Senftleben A, Kurka M, et al. Ultrafast dynamics in acetylene clocked in a femtosecond XUV stopwatch. J Phys B At Mol Opt Phys. 2013;46:164027.
  • Jiang YH, Rudenko A, Herrwerth O, et al. Ultrafast extreme ultraviolet induced isomerization of acetylene cations. Phys Rev Lett. 2010;105:263002.
  • Liekhus-Schmaltz CE, Tenney I, Osipov T, et al. Ultrafast isomerization initiated by x-ray core ionization. Nat Commun. 2015;6:8199.
  • Jiang YH, Rudenko A, Pérez-Torres JF, et al. Investigating two-photon double ionization of D2 by XUV-pump–XUV-probe experiments. Phys Rev A. 2010;81:051402(R.
  • Lehmann CS, Picón A, Bostedt C, et al. Ultrafast x-ray-induced nuclear dynamics in diatomic molecules using femtosecond x-ray-pump–x-ray-probe spectroscopy. Phys Rev A. 2016;94:013426.
  • Schnorr K, Senftleben A, Kurka M, et al. Time-resolved measurement of interatomic coulombic decay in Ne2. Phys Rev Lett. 2013;111:093402.
  • Fang L, Xiong H, Kukk E, et al. X-ray pump-probe investigation of charge and dissociation dynamics in methyl iodine molecule. Appl Sci (Switzerland). 2017;7:10.3390/app7050529.
  • Berrah N, Sanchez-Gonzalez A, Jurek Z, et al. Femtosecond-resolved observation of the fragmentation of buckminsterfullerene following x- ray multiphoton ionization. Nature Phys. 2019;15:1279.
  • Krikunova M, Adolph M, Gorkhover T, et al. Ionization dynamics in expanding clusters studied by XUV pump–probe spectroscopy. J Phys B At Mol Opt Phys. 2012;45:105101.
  • Boll R, Schäfer JM, Richard B, et al. X-ray multiphoton-induced Coulomb explosion images complex single molecules. Nat Phys. 2022. DOI:10.1038/s41567-022-01507-0
  • Li X, Rudenko A, Schöffler MS, et al. Coulomb explosion imaging of small polyatomic molecules with ultrashort x-ray pulses. Phys Rev Res. 2022;4:013029.
  • Jahnke T, Guillemin R, Inhester L, et al. Inner-shell-ionization-induced femtosecond structural dynamics of water molecules imaged at an x-ray free-electron laser. Phys Rev X. 2021;11:041044.
  • Stolow A, Bragg AE, Neumark DM. Femtosecond time-resolved photoelectron spectroscopy. Chem Rev. 2004;104:1719.
  • Wernet P, Leitner T, Josefsson I, et al. Communication: direct evidence for sequential dissociation of gas-phase Fe(CO)5 via a singlet pathway upon excitation at 266 nm. J Chem Phys. 2017;146:211103.
  • Mayer D, Lever F, Picconi D, et al. Following excited-state chemical shifts in molecular ultrafast x-ray photoelectron spectroscopy. Nat Commun. 2022;13:198.
  • McFarland BK, Farrell JP, Miyabe S, et al. Ultrafast x-ray Auger probing of photoexcited molecular dynamics. Nat Commun. 2014;5:4235.
  • Wolf TJA, Myhre RH, Cryan JP, et al. Probing ultrafast π*/nπ* internal conversion in organic chromophores via K-edge resonant absorption. Nat Commun. 2017;8:29.
  • Pathak S, Ibele LM, Boll R, et al. Tracking the ultraviolet-induced photochemistry of thiophenone during and after ultrafast ring opening. Nat Chem. 2020;12:795–800.
  • Squibb RJ, Sapunar M, Ponzi A, et al. Acetylacetone photodynamics at a seeded free- electron laser. Nat Commun. 2018;9:63.
  • Driver T, Li S, Champenois EG, et al. Attosecond transient absorption spooktroscopy: a ghost imaging approach to ultrafast absorption spectroscopy. Phys Chem Chem Phys. 2020;22:2704.
  • Li S, Driver T, Haddad AA, et al. Two-dimensional correlation analysis for x-ray photoelectron spectroscopy. J Phys B. 2021;54:144005.
  • Li S, Driver T, Alexander O, et al. Time-resolved pump–probe spectroscopy with spectral domain ghost imaging. Faraday Discuss. 2021;228:488.
  • Gorkhover T, Adolph M, Rupp D, et al. Nanoplasma dynamics of single large xenon clusters irradiated with superintense x-ray pulses from the linac coherent light source free-electron laser. Phys Rev Lett. 2012;108:245005.
  • Gorkhover T, Schorb S, Coffee R, et al. Femtosecond and nanometre visualization of structural dynamics in superheated nanoparticles. Nat Photon. 2016;10:93–97.
  • Rupp D, Adolph M, Gorkhover T, et al. Identification of twinned gas phase clusters by single-shot scattering with intense soft x-ray pulses. New J Phys. 2012;14:055016.
  • Ferguson KR, Bucher M, Gorkhover T, et al. Transient lattice contraction in the solid-to- plasma transition. Sci Adv. 2016;2:e1500837.
  • Minitti M, Budarz J, Kirrander A, et al. Imaging molecular motion: femtosecond x-ray scattering of an electrocyclic chemical reaction. Phys Rev Lett. 2015;114:255501.
  • Glownia J, Natan A, Cryan J, et al. Self-referenced coherent diffraction x-ray movie of ångstrom- and femtosecond-scale atomic motion. Phys Rev Lett. 2016;117:153003.
  • Stankus B, Yong H, Zotev N, et al. Ultrafast x-ray scattering reveals vibrational coherence following Rydberg excitation. Nat Chem. 2019;11:716–721.
  • Yong H, Zotev N, Ruddock JM, et al. Observation of the molecular response to light upon photoexcitation. Nat Commun. 2020;11:2157.
  • Bucksbaum PH, Ware MR, Natan A, et al. Characterizing multiphoton excitation using time-resolved x-ray scattering. Phys Rev. 2020;X 10:011065.
  • Ruddock JM, Yong H, Stankus B, et al. A deep UV trigger for ground-state ring-opening dynamics of 1,3-cyclohexadiene. Sci Adv. 2019;5:eaax6625.
  • Young L, Ueda K, Gühr M, et al. Roadmap of ultrafast x-ray atomic and molecular physics. J Phys B At Mol Opt Phys. 2018;51:032003.
  • Ueda K, Sokell E, Schippers S, et al. Roadmap on photonic, electronic and atomic collision physics: i. light–matter interaction. J Phys B. 2019;52:171001.
  • Marinelli A, MacArthur J, Emma P, et al. Experimental demonstration of a single-spike hard-x-ray free-electron laser starting from noise. Appl Phys Lett. 2017;111:151101.
  • Duris J, Li S, Driver T, et al. Tunable isolated attosecond x-ray pulses with gigawatt peak power from a free-electron laser. Nat Photon. 2020;14:30.
  • Schwickert D, Ruberti M, Kolorenc P, et al. Electronic quantum coherence in glycine molecules probed with ultrashort x-ray pulses in real time. Sci Adv. 2022;8:eabn6848.
  • Barillot T, Alexander O, Cooper B, et al. Correlation-driven transient hole dynamics resolved in space and time in the isopropanol molecule. Phys Rev X. 2021;11:031048.
  • O’Neal JT, Champenois EG, Oberli S, et al. Electronic population transfer via impulsive stimulated x-ray Raman scattering with attosecond soft-x- ray pulses. Phys Rev Lett. 2020;125:073203.
  • Li S, Driver T, Rosenberger P, et al. and J. P. Cryan, Attosecond coherent electron motion in Auger-Meitner decay. Science. 2022;375:285–290.
  • Kowalewski M, Bennett K, Dorfman KE, et al. Catching conical intersections in the act: monitoring transient electronic coherences by attosecond stimulated X-ray Raman signals. Phys Rev Lett. 2015;115. DOI:10.1103/PhysRevLett.115.193003.
  • Kowalewski M, Bennett K, Rouxel JR, et al. Monitoring nonadiabatic electron-nuclear dynamics in molecules by attosecond streaking of photoelectrons. Phys Rev Lett. 2016;117. DOI:10.1103/PhysRevLett.117.043201.
  • Kurka M, Rudenko A, Foucar L, et al. Two-photon double ionization of Ne by free-electron laser radiation: a kinematically complete experiment. J Phys B At Mol Opt Phys. 2009;42:141002.
  • Li X, Inhester L, Osipov T, et al. Electron-ion coincidence measurements of molecular dynamics with intense x-ray pulses. Sci Rep. 2021;11:505.
  • Erk B, Rolles D, Foucar L, et al. Ultrafast charge rearrangement and nuclear dynamics upon inner-shell multiple ionization of small polyatomic molecules. Phys Rev Lett. 2013;110:053003.
  • Erk B, Rolles D, Foucar L, et al. Inner-shell multiple ionization of polyatomic molecules with an intense x-ray free-electron laser studied by coincident ion momentum imaging. J Phys B At Mol Opt Phys. 2013;46:164031.
  • Appi E, Papadopoulou CC, Mapa JL, et al. et al., A synchronized VUV light source based on high-order harmonic generation at FLASH. Sci Rep. 2020;10:6867.
  • Troß J, Pathak S, Summers A, et al. High harmonic generation in mixed XUV and NIR fields at a free-electron laser. J Opt. 2022;24:025502.