3,611
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Water adsorption and dynamics on graphene and other 2D materials: computational and experimental advances

ORCID Icon & ORCID Icon
Article: 2134051 | Received 13 Apr 2022, Accepted 27 Sep 2022, Published online: 11 Nov 2022

References

  • Maier S, Salmeron M. Adsorption of water. John Wiley & Sons, Ltd; 2016. Chapter 37; p. 357–42. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527680573.ch37.
  • Verdaguer A, Sacha GM, Bluhm H, et al. Molecular structure of water at interfaces: wetting at the nanometer scale. Chem Rev. 2006;106:1478–1510. Available from: http://pubs.acs.org/doi/abs/10.1021/cr040376l
  • Hodgson A, Haq S. Water adsorption and the wetting of metal surfaces. Surf Sci Rep. 2009;64:381–451.
  • Carrasco J, Michaelides A, Forster M, et al. A one-dimensional ice structure built from pentagons. Nat Mater. 2009;8:427–431.
  • Jones G, Jenkins SJ. Water and ammonia on Cu(110): comparative structure and bonding. Phys Chem Chem Phys. 2013;15: 4785–4798. Available from: https://dx.doi.org/10.1039/C3CP42658K
  • Carrasco J, Hodgson A, Michaelides A. A molecular perspective of water at metal interfaces. Nat Mater. 2012;11:667–674.
  • Björneholm O, Hansen MH, Hodgson A, et al. Water at Interfaces. Chem Rev. 2016;116:7698–7726.
  • Maier S, Lechner BAJ, Somorjai GA, et al. Growth and structure of the first layers of ice on Ru(0001) and Pt(111). J Am Chem Soc. 2016;138:3145–3151. Available from: https://doi.org/10.1021/jacs.5b13133
  • Shimizu TK, Maier S, Verdaguer A, et al. Water at surfaces and interfaces: from molecules to ice and bulk liquid. Prog Surf Sci Special Issue in Honor of Prof. Maki Kawai;2018 93;87–107.
  • Zhou G, Huang L. A review of recent advances in computational and experimental analysis of first adsorbed water layer on solid substrate. Mol Simul. 2021;47:925–941.
  • Kreder MJ, Alvarenga J, Kim P, et al. Design of anti-icing surfaces: smooth, textured or slippery? Nat Rev Mater. 2016;1:15003.
  • Parent O, Ilinca A. Anti-icing and de-icing techniques for wind turbines: critical review. Cold Reg Sci Technol. 2011;65:88–96.
  • Lv J, Song Y, Jiang L, et al. Bio-inspired strategies for anti-icing. ACS Nano. 2014;8:3152–3169.
  • Bartels-Rausch T. Ten things we need to know about ice and snow. Nature. 2013;494:27–29.
  • Maier S, Salmeron M. How does water wet a surface? Acc Chem Res. 2015;48:2783–2790.
  • Guo J, Meng X, Chen J, et al. Real-space imaging of interfacial water with submolecular resolution. Nat Mater. 2014;13:184–189.
  • Heidorn SC, Bertram C, Cabrera-Sanfelix P, et al. Consecutive mechanism in the diffusion of D2O on a NaCl(100) bilayer. ACS Nano. 2015;9:3572–3578. Available from: http://pubs.acs.org/doi/abs/10.1021/acsnano.5b00691
  • Auras SV, van Bree RAB, Bashlakov DL, et al. It’s not just the defects – a curved crystal study of H2O desorption from Ag. Phys Chem Chem Phys. 2019;21:15422–15430. Available from: https://dx.doi.org/10.1039/C9CP02609F
  • Duong DL, Yun SJ, Lee YH. van der waals layered materials: opportunities and challenges. ACS Nano. 2017;11:11803–11830.
  • Wehling T, Black-Schaffer A, Balatsky A. Dirac materials. Adv Phys. 2014;63:1–76.
  • Nguyen BH, Nguyen VH. Advances in graphene-based optoelectronics, plasmonics and photonics. Adv Nat Sci Nanosci Nanotechnol. 2016;7: 013002. Available from: https://doi.org/10.1088/2043-6262/7/1/013002
  • Ferrari AC, Bonaccorso F, Fal’ko V, et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale. 2015;7:4598–4810. Available from: https://dx.doi.org/10.1039/C4NR01600A
  • Song N, Gao X, Ma Z, et al. A review of graphene-based separation membrane: materials, characteristics, preparation and applications. Desalination. 2018;437:59–72.
  • Cohen-Tanugi D, Grossman JC. Water desalination across nanoporous graphene. Nano Lett. 2012;12:3602–3608.
  • Xie Q, Alibakhshi MA, Jiao S, et al. Fast water transport in graphene nanofluidic channels. Nat Nanotechnol. 2018;13:238–245.
  • Zhou X, Qiao J, Yang L, et al. A review of graphene-based nanostructural materials for both catalyst supports and metal-free catalysts in pem fuel cell oxygen reduction reactions. Adv Energy Mater. 2014;4:1301523.
  • Ambrosi A, Chua CK, Bonanni A, et al. Electrochemistry of graphene and related materials. Chem Rev. 2014;114:7150–7188. Available from: https://doi.org/10.1021/cr500023c
  • Huang C, Li C, Shi G. Graphene based catalysts. Energy Environ Sci. 2012;5: 8848–8868. Available from: https://dx.doi.org/10.1039/C2EE22238H
  • Li X, Yu J, Wageh S, et al. Graphene in photocatalysis: a review. Small. 2016;12:6640–6696. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.201600382
  • Brooks A, Jenkins SJ, Wrabetz S, et al. The dehydrogenation of butane on metal-free graphene. J Colloid Interface Sci. 2022;619:377–387.
  • Prasai D, Tuberquia JC, Harl RR, et al. Graphene: corrosion-inhibiting coating. ACS Nano. 2012;6:1102–1108.
  • Zhang Z, Liu XY. Control of ice nucleation: freezing and antifreeze strategies. Chem Soc Rev. 2018;47: 7116–7139. Available from: https://dx.doi.org/10.1039/C8CS00626A
  • Akhtar N, Thomas PJ, Svardal B, et al. Pillars or pancakes? Self-cleaning surfaces without coating. Nano Lett. 2018;18:7509–7514.
  • Kyrkjebø S, Cassidy A, Akhtar N, et al. Graphene and graphene oxide on Ir(111) are transparent to wetting but not to icing. Carbon. 2021;174:396–403.
  • Melios C, Giusca CE, Panchal V, et al. Water on graphene: review of recent progress. 2D Mater. 2018;5:022001.
  • Xu K, Cao P, Heath JR. Graphene visualizes the first water adlayers on mica at ambient conditions. Science. 2010;329:1188–1191.
  • Knopf DA, Alpert PA, Wang B. The role of organic aerosol in atmospheric ice nucleation: a review. ACS Earth Space Chem. 2018;2:168–202.
  • Hama T, Watanabe N. Surface processes on interstellar amorphous solid water: adsorption, diffusion, tunneling reactions, and nuclear-spin conversion. Chem Rev. 2013;113:8783–8839.
  • Cuppen HM, Walsh C, Lamberts T, et al. Grain surface models and data for astrochemistry. Space Sci Rev. 2017;212:1–58. Available from: https://doi.org/10.1007/s11214-016-0319-3
  • Potapov A, Jäger C, Henning T. Ice coverage of dust grains in cold astrophysical environments. Phys Rev Lett. 2020;124:221103.
  • Molpeceres G, Kästner J, Fedoseev G, et al. Carbon atom reactivity with amorphous solid water: H2O-catalyzed formation of H2CO. J Phys Chem Lett. 2021;12:10854–10860. Available from: https://doi.org/10.1021/acs.jpclett.1c02760
  • Minissale M, Aikawa Y, Bergin E, et al. thermal desorption of interstellar ices: a review on the controlling parameters and their implications from snowlines to chemical complexity. ACS Earth Space Chem. 2022;6:597–630.
  • Mitsui T, Rose MK, Fomin E. Water diffusion and clustering on Pd(111). Science. 2002;297:1850–1852. 00270.
  • Ma M, Tocci G, Michaelides A, et al Fast diffusion of water nanodroplets on graphene. Nat Mater. 2016;15:66–71.
  • Avidor N, Allison W. Helium diffraction as a probe of structure and proton order on model ice surfaces. J Phys Chem Lett. 2016;7: 4520–4523. Available from: https://dx.doi.org/10.1021/acs.jpclett.6b02221
  • Guo J, Li XZ, Peng JB, et al. Atomic-scale investigation of nuclear quantum effects of surface water: experiments and theory. Prog Surf Sci. 2017;92:203–239.
  • Nihonyanagi S, Yamaguchi S, Tahara T. Ultrafast dynamics at water interfaces studied by vibrational sum frequency generation spectroscopy. Chem Rev. 2017;117:10665–10693.
  • Smit WJ, Bakker HJ. The surface of ice is like supercooled liquid water. Angew Chem. 2017;129:15746–15750.
  • Thämer M, De Marco L, Ramasesha K, et al. Ultrafast 2D IR spectroscopy of the excess proton in liquid water. Science. 2015;350:78–82.
  • Jardine A, Hedgeland H, Alexandrowicz G, et al. Helium-3 spin-echo: Principles and application to dynamics at surfaces. Prog Surf Sci. 2009;84:323. doi: https://doi.org/10.1016/j.progsurf.2009.07.001
  • Hedgeland H, Fouquet P, Jardine AP, et al. Measurement of single-molecule frictional dissipation in a prototypical nanoscale system. Nat Phys. Aug 2009;5:561–564. 00051. Available fromhttp://www.nature.com/doifinder/10.1038/nphys1335
  • Tamtögl A, Sacchi M, Avidor N, et al. Nanoscopic diffusion of water on a topological insulator. Nat Commun. 2020;11:278. https://doi.org/10.1038/s41467-019-14064-7
  • Lin C, Corem G, Godsi O, et al. Ice nucleation on a corrugated surface. J Am Chem Soc. 2018;140:15804–15811.
  • Tamtögl A, Carter EA, Ward DJ, et al. Note: a simple sample transfer alignment for ultra-high vacuum systems. Rev Sci Instrum. 2016;87:066108. https://doi.org/10.1063/1.4954728
  • Tamtögl A, Bahn E, Zhu J, et al. Graphene on Ni(111): electronic corrugation and dynamics from helium atom scattering. J Phys Chem C. 2015;119:25983–25990. https://doi.org/10.1021/acs.jpcc.5b08284
  • Tamtögl A, Bahn E, Sacchi M, et al. Motion of water monomers reveals a kinetic barrier to ice nucleation on graphene. Nat Commun. 2021;12:3120. https://doi.org/10.1038/s41467-021-23226-5
  • Thiel PA, Madey TE. The interaction of water with solid surfaces: fundamental aspects. Surf Sci Rep. 1987;7:211–385.
  • Li J, Zhu S, Wang F. Metals supported water monomers: the bonding nature revisited. J Mater Sci Technol. 2010;26:97–105.
  • Schnur S, Groß A. Properties of metal-water interfaces studied from first principles. New J Phys. 2009;11: 125003. Available from: https://doi.org/10.1088/1367-2630/11/12/125003
  • Zhang Z, Ying Y, Xu M, et al. Atomic steps induce the aligned growth of ice crystals on graphite surfaces. Nano Lett. 2020;20:8112–8119.
  • Zhang X, Xu JY, Tu YB, et al. Hexagonal monolayer ice without shared edges. Phys Rev Lett. 2018;121:256001.
  • Ma J, Michaelides A, Alfè D, et al. Adsorption and diffusion of water on graphene from first principles. Phys Rev B. 2011;84:033402.
  • Wu Y, Wagner LK, Aluru NR. The interaction between hexagonal boron nitride and water from first principles. J Chem Phys. 2015;142:234702.
  • Al-Hamdani YS, Rossi M, Alfè D, et al. Properties of the water to boron nitride interaction: from zero to two dimensions with benchmark accuracy. J Chem Phys. 2017;147:044710.
  • Kysilka J, Rubeš M, Grajciar L, et al. Accurate description of argon and water adsorption on surfaces of graphene-based carbon allotropes. J Phys Chem A. 2011;115:11387–11393.
  • Brandenburg JG, Zen A, Fitzner M, et al. Physisorption of water on graphene: subchemical accuracy from many-body electronic structure methods. J Phys Chem Lett. 2019;10:358–368.
  • Silvestrelli PL, Ambrosetti A, Puppin E. Inclusion of van der waals interactions in DFT using wannier functions without empirical parameters. EPJ Web Conf. 2020;230:00010.
  • Michaelides A, Ranea VA, de Andres PL, et al. General model for water monomer adsorption on close-packed transition and noble metal surfaces. Phys Rev Lett. 2003;90:216102.
  • Leenaerts O, Partoens B, Peeters FM. Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study. Phys Rev B. 2008;77: 125416. Available from: http://link.aps.org/doi/10.1103/PhysRevB.77.125416
  • Ambrosetti A, Silvestrelli PL. Adsorption of rare-gas atoms and water on graphite and graphene by van der waals-corrected density functional theory. J Phys Chem C. 2011;115:3695–3702.
  • Jenness GR, Karalti O, Jordan KD. Benchmark calculations of water-acene interaction energies: extrapolation to the water-graphene limit and assessment of dispersion-corrected DFT methods. Phys Chem Chem Phys. 2010;12:6375–6381.
  • Voloshina E, Usvyat D, Schütz M, et al. On the physisorption of water on graphene: a CCSD(T) study. Phys Chem Chem Phys. 2011;13:12041–12047. Available from: https://dx.doi.org/10.1039/C1CP20609E
  • Rubeš M, Nachtigall P, Vondrášek J, et al. Structure and stability of the water-graphite complexes. J Phys Chem C. 2009;113:8412–8419. Available from: https://doi.org/10.1021/jp901410m
  • Freitas RRQ, Rivelino R, FdB M, et al. DFT studies of the interactions of a graphene layer with small water aggregates. J Phys Chem A. 2011;115:12348–12356. Available from: http://pubs.acs.org/doi/abs/10.1021/jp208279a
  • Shih CJ, Strano MS, Blankschtein D. Wetting translucency of graphene. Nat Mater. 2013;12:866–869.
  • Böttcher S, Weser M, Dedkov YS, et al. Graphene on ferromagnetic surfaces and its functionalization with water and ammonia. Nanoscale Res Lett. 2011;6:1–7.
  • Li X, Feng J, Wang E, et al. Influence of water on the electronic structure of metal-supported graphene: insights from van der Waals density functional theory. Phys Rev B. 2012;85:085425.
  • Leenaerts O, Partoens B, Peeters FM. Water on graphene: hydrophobicity and dipole moment using density functional theory. Phys Rev B. 2009;79:235440.
  • Abe S, Nagoya Y, Watari F, et al Interaction of water molecules with graphene. A density functional theory and molecular dynamics study. Jpn J Appl Phys. 2010;49:01AH07/1–01AH07/4.
  • Kuhs WF, Lehmann MS. Bond-lengths, bond angles and transition barrier in ice ih by neutron scattering. Nature. 1981;294:432–434.
  • Fortes AD. Accurate and precise lattice parameters of H2O and D2O ice I h between 1.6 and 270 K from high-resolution time-of-flight neutron powder diffraction data. Acta Crystallogr B. 2018;74: 196–216. Available from: https://doi.org/10.1107/S2052520618002159
  • Gasser TM, Thoeny AV, Fortes AD, et al. Structural characterization of ice XIX as the second polymorph related to ice VI. Nat Commun. 2021;12:1128.
  • Farias D, Rieder KH. Atomic beam diffraction from solid surfaces. Rep Prog in Phys. 1998;61:1575–1664.
  • Tamtögl A, Ruckhofer A, Campi D, et al. Atom-surface van der Waals potentials of topological insulators and semimetals from scattering measurements. Phys Chem Chem Phys. 2021;23:7637–7652. https://doi.org/10.1039/D0CP05388K
  • Thürmer K, Nie S. Formation of hexagonal and cubic ice during low-temperature growth. Proc Natl Acad Sci. 2013;110:11757–11762.
  • Braun J, Glebov A, Graham AP, et al. Structure and phonons of the ice surface. Phys Rev Lett. 1998 Mar;80:2638–2641. Available from https://link.aps.org/doi/10.1103/PhysRevLett.80.2638
  • Glebov A, Graham AP, Menzel A, et al. A helium atom scattering study of the structure and phonon dynamics of the ice surface. J Chem Phys. 2000;112:11011–11022.
  • Corem G, Kole PR, Zhu J, et al. Ordered H2O structures on a weakly interacting surface: a helium diffraction study of H2O/Au(111). J Phys Chem C. 2013;117:23657–23663. Available from: http://dx.doi.org/10.1021/jp405101q
  • Bahn E, Tamtögl A, Ellis J, et al. Structure and dynamics investigations of a partially hydrogenated graphene/Ni(111) surface. Carbon. 2017;114:504–510 http://dx.doi.org/10.1016/j.carbon.2016.12.055.
  • Traeger F, Langenberg D, Gao YK, et al. Water on a close-packed ru surface: a high-order commensurate adlayer with a high sensitivity towards electron beam damage. Phys Rev B. 2007;76:033410.
  • Avidor N, Hedgeland H, Held G, et al. Highly proton-ordered water structures on oxygen precovered Ru{0001}. J Phys Chem A. Jun 2011;115:7205–7209. 00004. Available fromhttp://pubs.acs.org/doi/abs/10.1021/jp200221b
  • McMillan JA, Los SC. Vitreous ice: irreversible transformations during warm-up. Nature. 1965;206:806–807.
  • Kondo T, Kato HS, Bonn M, et al. Morphological change during crystallization of thin amorphous solid water films on Ru(0001). J Chem Phys. 2007;126:181103.
  • Noble JA, Cuppen HM, Coussan S, et al. Infrared resonant vibrationally induced restructuring of amorphous solid water. J Phys Chem C. 2020;124:20864–20873.
  • Suter MT, Andersson PU, Pettersson JBC. Surface properties of water ice at 150–191 K studied by elastic helium scattering. J Chem Phys. 2006;125: 174704. 00000. Available from: http://scitation.aip.org/content/aip/journal/jcp/125/17/10.1063/1.2359444
  • Andersson PU, Suter MT, Marković N, et al. Water condensation on graphite studied by elastic helium scattering and molecular dynamics simulations. J Phys Chem C. 2007;111:15258–15266.
  • Löfgren P, Ahlström P, Lausma J, et al. Crystallization kinetics of thin amorphous water films on surfaces. Langmuir. 2003;19:265–274.
  • Kimmel GA, Matthiesen J, Baer M, et al. No confinement needed: observation of a metastable hydrophobic wetting two-layer ice on graphene. J Am Chem Soc. 2009;131:12838–12844.
  • Aria AI, Kidambi PR, Weatherup RS, et al. Time evolution of the wettability of supported graphene under ambient air exposure. J Phys Chem C. 2016;120:2215–2224.
  • Zhao G, Li X, Huang M, et al. The physics and chemistry of graphene-on-surfaces. Chem Soc Rev. 2017;46:4417–4449. Available from: http://dx.doi.org/10.1039/C7CS00256D
  • Standop S, Michely T, Busse C. H2O on graphene/Ir(111): a periodic array of frozen droplets. J Phys Chem C. 2015;119: 1418–1423. Available from: http://pubs.acs.org/doi/abs/10.1021/jp510140a
  • Chakarov D, Österlund L, Kasemo B. Water adsorption on graphite (0001). Vacuum. 1995;46:1109–1112.
  • Chakarov DV, Oesterlund L, Kasemo B. Water adsorption and coadsorption with potassium on graphite(0001). Langmuir. 1995;11:1201–1214.
  • Bolina AS, Wolff AJ, Brown WA. Reflection absorption infrared spectroscopy and temperature-programmed desorption studies of the adsorption and desorption of amorphous and crystalline water on a graphite surface. J Phys Chem B. 2005;109:16836–16845.
  • Ulbricht H, Zacharia R, Cindir N, et al. Thermal desorption of gases and solvents from graphite and carbon nanotube surfaces. Carbon. 2006;44:2931–2942.
  • Smith RS, Matthiesen J, Kay BD. Desorption kinetics of methanol, ethanol, and water from graphene. J Phys Chem A. 2014;118:8242–8250.
  • Souda R, Aizawa T. Crystallization kinetics of water on graphite. Phys Chem Chem Phys. 2018;20: 21856–21863. Available from: http://dx.doi.org/10.1039/C8CP03000F
  • Feng X, Maier S, Salmeron M. Water splits epitaxial graphene and intercalates. J Am Chem Soc. 2012 Mar;134:5662–5668. 00079. Available from http://pubs.acs.org/doi/abs/10.1021/ja3003809
  • Politano A, Cattelan M, Boukhvalov DW, et al. Unveiling the mechanisms leading to h2 production promoted by water decomposition on epitaxial graphene at room temperature. ACS Nano. 2016;10:4543–4549. Available from: https://doi.org/10.1021/acsnano.6b00554
  • Ferrighi L, Perilli D, Selli D, et al. Water at the interface between defective graphene and Cu or Pt (111) surfaces. ACS Appl Mater Interfaces. 2017;9:29932–29941.
  • An S, Joshi BN, Lee JG, et al. A comprehensive review on wettability, desalination, and purification using graphene-based materials at water interfaces. Catal Today. 2017;295:14–25.
  • Zhao P, Huang Y, Shen Y, et al. A modified Wenzel model for water wetting on van der Waals layered materials with topographic surfaces. Nanoscale. 2017;9:3843–3849. Available from: http://dx.doi.org/10.1039/C7NR00521K
  • Hung SW, Hsiao PY, Chen CP, et al. Wettability of graphene-coated surface: free energy investigations using molecular dynamics simulation. J Phys Chem C. 2015;119:8103–8111. Available from: https://doi.org/10.1021/jp511036e
  • Andrews JE, Sinha S, Chung PW, et al. Wetting dynamics of a water nanodrop on graphene. Phys Chem Chem Phys. 2016;18:23482–23493. Available from: http://dx.doi.org/10.1039/C6CP01936F
  • Zhang J, Jia K, Huang Y, et al Intrinsic wettability in pristine graphene. Adv Mater. 2022;34:2103620.
  • Butler SZ, Hollen SM, Cao L, et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano. Apr 2013;7:2898–2926. Available fromhttps://doi.org/10.1021/nn400280c
  • Liu Y, Weiss NO, Duan X, et al. Van der waals heterostructures and devices. Nat Rev Mater. 2016;1:16042.
  • Snapp P, Kim JM, Cho C, et al. Interaction of 2D materials with liquids: wettability, electrochemical properties, friction, and emerging directions. Npg Asia Mater. 2020;12:22.
  • Li J, Joseph T, Ghorbani-Asl M, et al. Mirror twin boundaries in MoSe2 monolayers as one dimensional nanotemplates for selective water adsorption. Nanoscale. 2021;13:1038–1047. Available from: http://dx.doi.org/10.1039/D0NR08345C
  • Chow PK, Singh E, Viana BC, et al. Wetting of mono and few-layered WS2 and MoS2 films supported on Si/SiO2 substrates. ACS Nano. Mar 2015;9:3023–3031. Available fromhttps://doi.org/10.1021/nn5072073
  • Gaur APS, Sahoo S, Ahmadi M, et al. Surface energy engineering for tunable wettability through controlled synthesis of mos2. Nano Lett. 2014;14:4314–4321. Available from: https://doi.org/10.1021/nl501106v
  • Bampoulis P, Teernstra VJ, Lohse D, et al. Hydrophobic ice confined between graphene and mos2. J Phys Chem C. 2016;120:27079–27084. Available from: https://doi.org/10.1021/acs.jpcc.6b09812
  • Kong D, Dang W, Cha JJ, et al. Few-layer nanoplates of Bi2Se3 and Bi2Te3 with highly tunable chemical potential. Nano Lett. 2010;10:2245–2250. Available from: http://dx.doi.org/10.1021/nl101260j
  • Ambrosi A, Sofer Z, Luxa J, et al. Exfoliation of layered topological insulators Bi2Se3 and Bi2Te3 via electrochemistry. ACS Nano. 2016;10:11442–11448. Available from: https://doi.org/10.1021/acsnano.6b07096
  • Benia HM, Lin C, Kern K, et al. Reactive chemical doping of the Bi2Se3 topological insulator. Phys Rev Lett. 2011;107:177602. Available from: http://link.aps.org/doi/10.1103/PhysRevLett.107.177602
  • Zhang K-W, Ding D, Yang C-L, et al. Real-space characterization of reactivity towards water at the Bi2Te3(111) surface. Phys Rev B. 2016;93:235445.
  • Yashina LV, Sánchez-Barriga J, Scholz MR, et al. Negligible surface reactivity of topological insulators Bi2Se3 and Bi2Te3 towards oxygen and water. ACS Nano. 2013;7:5181–5191. Available from: http://pubs.acs.org/doi/abs/10.1021/nn400908b
  • Frantzeskakis E, Ramankutty SV, de Jong N, et al. Trigger of the ubiquitous surface band bending in 3D topological insulators. Phys Rev X. 2017;7:041041. Available from: https://link.aps.org/doi/10.1103/PhysRevX.7.041041
  • Rajamathi CR, Gupta U, Pal K, et al. Photochemical water splitting by bismuth chalcogenide topological insulators. ChemPhysChem. 2017;18:2322–2327.
  • Politano A, Vitiello M, Viti L, et al. The role of surface chemical reactivity in the stability of electronic nanodevices based on two-dimensional materials “beyond graphene” and topological insulators. FlatChem. 2017;1:60–64.
  • Yang J, Wang C, Ju H, et al. integrated quasiplane heteronanostructures of MoSe2/Bi2Se3 hexagonal nanosheets: synergetic electrocatalytic water splitting and enhanced supercapacitor performance. Adv Funct Mater. 2017;27:1703864. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201703864
  • Wagemann E, Wang Y, Das S, et al. On the wetting translucency of hexagonal boron nitride. Phys Chem Chem Phys. 2020;22:7710–7718. Available from: http://dx.doi.org/10.1039/D0CP00200C
  • Wu Y, Wagner LK, Aluru NR. Hexagonal boron nitride and water interaction parameters. J Chem Phys. 2016;144:164118.
  • Li H, Zeng XC. Wetting and interfacial properties of water nanodroplets in contact with graphene and monolayer boron-nitride sheets. ACS Nano. 2012;6: 2401–2409. Available from: https://doi.org/10.1021/nn204661d
  • Golze D, Hutter J, Iannuzzi M. Wetting of water on hexagonal boron nitride@Rh(111): a qm/mm model based on atomic charges derived for nano-structured substrates. Phys Chem Chem Phys. 2015;17: 14307–14316. Available from: http://dx.doi.org/10.1039/C4CP04638B
  • Ruckhofer A, Sacchi M, Payne A, et al. Evolution of ordered nanoporous phases during h-BN growth: controlling the route from gas-phase precursor to 2D material by in-situ monitoring. Nanoscale Horiz. 2022; 7: 1388–1396. Available from http://dx.doi.org/10.1039/D2NH00353H
  • Ma H, Brugger T, Berner S, et al. Nano-ice on boron nitride nanomesh: accessing proton disorder. ChemPhysChem. 2010;11:399–403.
  • Ding Y, Iannuzzi M, Hutter J. Nano-ice models for the water aggregates observed on the h-BN/Rh(111) nanomesh. J Phys: Condens Matter. 2012;24: 445002. Available from: https://doi.org/10.1088/0953-8984/24/44/445002
  • Tocci G, Joly L, Michaelides A. Friction of water on graphene and hexagonal boron nitride from ab initio methods: very different slippage despite very similar interface structures. Nano Lett. 2014;14: 6872–6877. Available from: http://pubs.acs.org/doi/abs/10.1021/nl502837d
  • Zhao J, Zhu J, Cao R, et al. Liquefaction of water on the surface of anisotropic two-dimensional atomic layered black phosphorus. Nat Commun. 2019;10:4062.
  • Li L, Yu Y, Ye GJ, et al Black phosphorus field-effect transistors. 2014;9: 372–377. Nat Nanotechnology.;:. Available from: https://doi.org/10.1038/nnano.2014.35
  • Du Y, Liu H, Deng Y, et al. Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling. ACS Nano. 2014;8:10035–10042.
  • Ma M, Tocci G, Michaelides A, et al. Fast diffusion of water nanodroplets on graphene. Nat Mater. 2015;15:66–71. Available from: http://www.nature.com/doifinder/10.1038/nmat4449
  • Ala-Nissila T, Ferrando R, Ying SC. Collective and single particle diffusion on surfaces. Adv Phys. 2002;51:949–1078.
  • Bampoulis P, Sotthewes K, Dollekamp E, et al Water confined in two-dimensions: fundamentals and applications. Surf Sci Rep. 2018;73:233–264.
  • Gao Z, Giovambattista N, Sahin O. Phase diagram of water confined by graphene. Sci Rep. 2018;8:6228.
  • Kapil V, Schran C, Zen A, et al. The first-principles phase diagram of monolayer nanoconfined water. Nature. 2022;609:512–516.
  • Hu M, Mi B. Enabling graphene oxide nanosheets as water separation membranes. Environ Sci Technol. Apr 2013;47:3715–3723.
  • Nair RR, Blake P, Blake JR, et al. Graphene as a transparent conductive support for studying biological molecules by transmission electron microscopy. Appl Phys Lett. 2010;97:153102.
  • Traversi F, Raillon C, Benameur SM, et al. Detecting the translocation of DNA through a nanopore using graphene nanoribbons. 2013;8: 939–945. Nat Nanotechnology. Available from: https://doi.org/10.1038/nnano.2013.240
  • Cai X, Xie WJ, Yang Y , et al. Structure of water confined between two parallel graphene plates. J Chem Phys. 2019;150:12.
  • Calero C, Franzese G. Water under extreme confinement in graphene: oscillatory dynamics, structure, and hydration pressure explained as a function of the confinement width. J Mol Liq. 2020;317:8.
  • Cao W, Wang J, Ma M. Water diffusion in wiggling graphene membranes. J Phys Chem Lett. 2019;10:7251––7258.
  • Jiao SP, Duan CH, Xu ZP. Structures and thermodynamics of water encapsulated by graphene. Sci Rep. 2017;7. 10.1038/s41598-017-02582-7
  • Kargar M, Lohrasebi A. Water flow modeling through a graphene-based nanochannel: theory and simulation. Phys Chem Chem Phys. 2019;21:3304–3309.
  • Li F, Korotkin IA, Karabasov SA. Rheology of water flows confined between multilayer graphene walls. Langmuir. 2020;36:5633–5646.
  • Moulod M, Hwang G. Water self-diffusivity confined in graphene nanogap using molecular dynamics simulations. J Appl Phys. 2016;120:7.
  • Pan JC, Xiao SB, Zhang ZL, et al. Nanoconfined water dynamics in multilayer graphene nanopores. J Phys Chem C. 2020 Aug;124:17819–17828.
  • Qiao Z, Xie WJ, Cai X, et al. Interlayer hopping dynamics of bilayer water confined between graphene sheets. Chem Phys Lett. 2019;722:153–159.
  • Wu M, Wei W, Liu X, et al. Structure and dynamic properties of stretched water in graphene nanochannels by molecular dynamics simulation: effects of stretching extent. Phys Chem Chem Phys. 2019;21:19163–19171. Available from: http://dx.doi.org/10.1039/C9CP03981C
  • Yang L, Guo Y. Dynamics of water confined in a graphene nanochannel: dependence of friction on graphene chirality. Nanotechnology. 2020;31:235702.
  • Zhao M, Yang X, Yang X. Molecular dynamics simulation of water molecules in confined slit pores of graphene. Acta Phys-Chim Sin. 2015;31:1489–1498.
  • Abbaspour M, Akbarzadeh H, Salemi S, et al. Structure, dynamics, and morphology of nanostructured water confined between parallel graphene surfaces and in carbon nanotubes by applying magnetic and electric fields. Soft Matter. 2021;17:3085–3095.
  • Zhao YZ, Huang DC, Su JY, et al. Coupled transport of water and ions through graphene nanochannels. J Phys Chem C. 2020 Aug;124:17320–17330.
  • Chu ED, Wang PH, Hong YZ, et al. Frictional characteristics of nano-confined water mediated hole-doped single-layer graphene on silica surface. Nanotechnology. 2019;30.
  • Zhang H, Liu B, Wu M, et al. Transport of salty water through graphene bilayer in an electric field: a molecular dynamics study. Comp Mater Sci. 2017;131:100–107.
  • Yang L, Guo YJ, Diao DF. Structure and dynamics of water confined in a graphene nanochannel under gigapascal high pressure: dependence of friction on pressure and confinement. Phys Chem Chem Phys. 2017;19:14048–14054.
  • Shahbabaei M, Kim D. Molecular dynamics simulation of water transport mechanisms through nanoporous boron nitride and graphene multilayers. J Phys Chem B. 2017;121:4137–4144.
  • Guerrero-Aviles R, Orellana W. Energetics and diffusion of liquid water and hydrated ions through nanopores in graphene: ab initio molecular dynamics simulation. Phys Chem Chem Phys. 2017;19:20551–20558.
  • Khan SH, Matei G, Patil S, et al. Dynamic solidification in nanoconfined water films. Phys Rev Lett. 2010 Aug;105:106101. Available from https://link.aps.org/doi/10.1103/PhysRevLett.105.106101
  • Lee H, Ko JH, Choi JS, et al. Enhancement of friction by water intercalated between graphene and mica. J Phys Chem Lett. 2017;8:3482–3487. Available from: https://doi.org/10.1021/acs.jpclett.7b01377
  • Lee H, Ko JH, Song HC, et al. Isotope- and thickness-dependent friction of water layers intercalated between graphene and mica. Tribology Letters. 2018;66.
  • Arif T, Colas G, Filleter T. Effect of humidity and water intercalation on the tribological behavior of graphene and graphene oxide. ACS Appl Mater Interfaces. 2018;10:22537–22544.
  • Seki R, Takamatsu H, Suzuki Y, et al. Hydrophobic-to-hydrophilic affinity change of sub-monolayer water molecules at water–graphene interfaces. Colloids Surf A Physicochem Eng Asp. 2021;628:127393.
  • Zhang Z, Guo X, Tang H, et al. Unidirectional self-driving liquid droplet transport on a monolayer graphene-covered textured substrate. ACS Appl Mater Interfaces. 2019;11:28562–28570.
  • Papadopoulou E, Megaridis CM, Walther JH, et al. Ultrafast propulsion of water nanodroplets on patterned graphene. ACS Nano. 2019;13:5465–5472.
  • Zhang F, Liu Z, Gao X, et al. Ultrafast self-propelled water droplet transport on a graphene-covered nanocone. J Phys D: Appl Phys. 2021;54:505307.
  • Zhang H, Zhang Z, Guo W. Mechanistic insight into electricity generation from moving ionic droplets on graphene. Sci China Mater. 2021;64: 2242–2250. Available from: https://doi.org/10.1007/s40843-020-1615-x
  • Yin J, Li X, Yu J, et al. Generating electricity by moving a droplet of ionic liquid along graphene. Nat Nanotechnol. 2014;9:378–383.
  • Maurya M, Metya A, Singh J, et al. Effects of interfaces on structure and dynamics of water droplets on a graphene surface: a molecular dynamics study. J Chem Phys. 2021;154:12.
  • Chen S, Cheng Y, Zhang G, et al. Anisotropic wetting characteristics of water droplets on phosphorene: roles of layer and defect engineering. J Phys Chem C. 2018;122:4622–4627.
  • Tortora L, Lavrentovich O. Chiral symmetry breaking by spatial confinement in tactoidal droplets of lyotropic chromonic liquid crystals. 2011; Proc Natl Acad. 108:5163–5168.
  • Bée M. Quasielastic neutron scattering. Bristol: Adam Hilger; 1988.
  • Calvo-Almazán I, Sacchi M, Tamtögl A, et al. Ballistic diffusion in polyaromatic hydrocarbons on graphite. J Phys Chem Lett. 2016;7:5285–5290. https://doi.org/10.1021/acs.jpclett.6b02305
  • Tamtögl A, Sacchi M, Calvo-Almazán I, et al. Ultrafast molecular transport on carbon surfaces: the diffusion of ammonia on graphite. Carbon. 2018;126:23–30. https://doi.org/10.1016/j.carbon.2017.09.104
  • Benedek G, Toennies JP. Atomic scale dynamics at surfaces. Berlin Heidelberg: Springer; 2018.
  • Jones A, Tamtögl A, Calvo-Almazán I, et al. Continuous compressed sensing for surface dynamical processes with helium atom scattering. Sci Rep. 2016;6:27776. Available from: http://dx.doi.org/10.1038/srep27776
  • Ward DJ, Raghavan A, Tamtögl A, et al. Inter-adsorbate forces and coherent scattering in helium spin-echo experiments. Phys Chem Chem Phys. 2021;23:7799–7805. Available from: http://dx.doi.org/10.1039/D0CP04539J
  • Chudley CT, Elliott RJ. Neutron scattering from a liquid on a jump diffusion model. Proc Phys Soc. 1961;77:353.
  • Miret-Artés S, Pollak E. The dynamics of activated surface diffusion. J Phys: Condens Matter. 2005;17: S4133–S4150. Available from: https://doi.org/10.1088/0953-8984/17/49/009
  • Barth J. Transport of adsorbates at metal surfaces: from thermal migration to hot precursors. Surf Sci Rep. 2000;40:75–149.
  • Avidor N, Townsend P, Ward D, et al. PIGLE - Particles Interacting in Generalized Langevin Equation simulator. Comput Phys Commun. 2019;242:145–152. https://doi.org/10.1016/j.cpc.2019.04.013
  • Park JH, Aluru NR. Ordering-induced fast diffusion of nanoscale water film on graphene. J Phys Chem C. 2010;114:2595–2599.
  • Perakis F, Amann-Winkel K, Lehmkühler F, et al. Diffusive dynamics during the high-to-low density transition in amorphous ice. Proc Natl Acad Sci. 2017; Available from: https://www.pnas.org/content/early/2017/06/23/1705303114
  • Xu Y, Petrik NG, Smith RS, et al. Growth rate of crystalline ice and the diffusivity of supercooled water from 126 to 262 K. Proc Natl Acad Sci. 2016;113:14921–14925.
  • Ho TA, Striolo A. Molecular dynamics simulation of the graphene–water interface: comparing water models. Mol Simul. 2014;40:1190–1200.
  • Alexandrowicz G, Jardine AP, Hedgeland H, et al. Onset of 3D collective surface diffusion in the presence of lateral interactions: Na/Cu(001). Phys Rev Lett. 2006;97:156103.
  • Stradner A, Sedgwick H, Cardinaux F, et al. Equilibrium cluster formation in concentrated protein solutions and colloids. Nature. 2004;432:492–495.
  • Sadhukhan M, Tkatchenko A. Long-range repulsion between spatially confined van der waals dimers. Phys Rev Lett. 2017;118:210402.
  • Akhtar N, Anemone G, Farias D, et al. Fluorinated graphene provides long lasting ice inhibition in high humidity. Carbon. 2019;141:451–456.
  • Ianconescu R, Pollak E. A study of kramers’ turnover theory in the presence of exponential memory friction. J Chem Phys. 2015;143:104104.
  • Rittmeyer SP, Bukas VJ, Reuter K. Energy dissipation at metal surfaces. Adv Phys X. 2018 Jan;3:1381574. Available from https://www.tandfonline.com/doi/full/10.1080/23746149.2017.1381574
  • Tamtögl A, Campi D, Bremholm M, et al. Nanoscale surface dynamics of Bi2Te3(111): observation of a prominent surface acoustic wave and the role of van der Waals interactions. Nanoscale. 2018;10:14627–14636. Available from: http://dx.doi.org/10.1039/C8NR03102A
  • Yildiz D, Kisiel M, Gysin U, et al. Mechanical dissipation via image potential states on a topological insulator surface. Nat Mater. 2019;18:1201–1206.
  • Bertram C, Fang W, Pedevilla P, et al. Anomalously low barrier for water dimer diffusion on Cu(111). Nano Lett. 2019;19:3049–3056.
  • Matthiesen J, Hansen JO, Wendt S, et al. Formation and diffusion of water dimers on rutile TiO2(110). Phys Rev Lett. 2009;102:226101.
  • Fang W, Chen J, Pedevilla P, et al. Origins of fast diffusion of water dimers on surfaces. Nat Commun. 2020;11:1689.
  • Fang W, Meyer Auf der Heide KM, Zaum C, et al. Rapid water diffusion at cryogenic temperatures through an inchworm-like mechanism. Nano Lett. 2022;22:340–346.
  • Nie S, Bartelt NC, Thürmer K. Observation of surface self-diffusion on ice. Phys Rev Lett. 2009;102:136101.
  • Si N, Shen T, Zhou D, et al. Imaging and dynamics of water hexamer confined in nanopores. ACS Nano. 2019;13:10622–10630.
  • Meisner J, Lamberts T, Kästner J. Atom tunneling in the water formation reaction H2 + OH → H2O + H on an ice surface. ACS Earth Space Chem. 2017;1: 399–410. Available from: https://doi.org/10.1021/acsearthspacechem.7b00052
  • Slocombe L, Sacchi M, Al-Khalili J. An open quantum systems approach to proton tunnelling in DNA. Communications Physics. 2022;5:109. 10.1038/s42005-022-00881-8.
  • Jiang B, Li J, Guo H. High-fidelity potential energy surfaces for gas-phase and gas-surface scattering processes from machine learning. J Phys Chem Lett. 2020;11: 5120–5131. Available from: https://doi.org/10.1021/acs.jpclett.0c00989
  • Garrido Torres JA, Jennings PC, Hansen MH, et al. Low-scaling algorithm for nudged elastic band calculations using a surrogate machine learning model. Phys Rev Lett. 2019;122:156001.
  • Bartók AP, De S, Poelking C, et al. Machine learning unifies the modeling of materials and molecules. Sci Adv. 2017;3:e1701816.