1,999
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Optical simulation of various phenomena in curved space on photonic chips

, &
Article: 2153626 | Received 29 Mar 2022, Accepted 16 Nov 2022, Published online: 07 Dec 2022

References

  • Hasan MZ, Kane CL. Colloquium: topological insulators. Rev. Mod. Phys. 2010;82:3045.
  • Vonklitzing K, Dorda G, Pepper M. New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys. Rev. Lett. 1980;45:494.
  • Lu L, Joannopoulos JD, Soljacic M. Topological photonics. Nat. Photonics. 2014;8:821.
  • Ozawa T, Price HM, Amo A, et al. Topological photonics. Rev. Mod. Phys. 2019;91:015006.
  • Huber SD. Topological mechanics. Nat. Phys. 2016;12:621.
  • Ma G, Xiao M, Chan CT. Topological phases in acoustic and mechanical systems. Nat. Rev. Phys. 2019;1:281.
  • Gordon W. Light propagation according to the relativity theory. Ann. Phys. 1923;72:421.
  • Plebanski J. Electromagnetic waves in gravitational fields. Phys. Rev. 1960;118:1396.
  • Pendry JB, Schurig D, Smith DR. Controlling electromagnetic fields. Science. 2006;312:1780.
  • Leonhardt U. Optical conformal mapping. Science. 2006;312:1777.
  • Pendry JB, Holden AJ, Robbins DJ, et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory Tech. 1999;47:2075.
  • Shelby RA, Smith DR, Schultz S. Experimental verification of a negative index of refraction. Science. 2001;292:77.
  • Pendry JB. Negative refraction makes a perfect lens. Phys. Rev. Lett. 2000;85:3966.
  • Fang N, Lee H, Sun C, et al. Sub-diffraction-limited optical imaging with a silver superlens. Science. 2005;308:534.
  • Liu Z, Lee H, Xiong Y, et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science. 2007;315:1686.
  • Schurig D, Mock JJ, Justice BJ, et al. Metamaterial electromagnetic cloak at microwave frequencies. Science. 2006;314:977.
  • Li J, Pendry JB. Hiding under the carpet: a new strategy for cloaking. Phys. Rev. Lett. 2008;101:203901.
  • Liu R, Ji C, Mock JJ, et al. Broadband ground-plane cloak. Science. 2009;323:366.
  • Ma HF, Cui TJ. Three-dimensional broadband ground-plane cloak made of metamaterials. Nat. Commun. 2010;1:21.
  • Valentine J, Li J, Zentgraf T, et al. An optical cloak made of dielectrics. Nat. Matter. 2009;8:568.
  • Gabrielli LH, Cardenas J, Poitras CB, et al. Silicon nanostructure cloak operating at optical frequencies. Nat. Photonics. 2009;3:461.
  • Chen H, Zheng B, Shen L, et al. Ray-optics cloaking devices for large objects in incoherent natural light. Nat. Commun 2013;4:2652.
  • Narimanov EE, Kildishev AV. Optical black hole: broadband omnidirectional light absorber. Appl. Phys. Lett. 2009;95:041106.
  • Cheng Q, Cui TJ, Jiang WX, et al. An omnidirectional electromagnetic absorber made of metamaterials. New J. Phys. 2010;12:063006.
  • Genov DA, Zhang S, Zhang X. Mimicking celestial mechanics in metamaterials. Nat. Phys. 2009;5:687.
  • Chen H, Miao R-X, Li M. Transformation optics that mimics the system outside a Schwarzschild black hole. Opt. Express. 2010;18:15183.
  • Smolyaninov II, Narimanov EE. Metric signature transitions in optical metamaterials. Phys. Rev. Lett. 2010;105:067402.
  • Greenleaf A, Kurylev Y, Lassas M, et al. Electromagnetic wormholes and virtual magnetic monopoles from metamaterials. Phys. Rev. Lett. 2007;99:183901.
  • Li M, Miao R-X, Pang Y. Casimir energy, holographic dark energy and electromagnetic metamaterial mimicking de Sitter. Phys. Lett. B. 2010;689:55.
  • Smolyaninov II, Hung Y-J. Modeling of time with metamaterials. J. Opt. Soc. Am. B. 2011;28:1591.
  • Ginis V, Tassin P, Craps B, et al. Frequency converter implementing an optical analogue of the cosmological redshift. Opt. Express. 2010;18:5350.
  • Rechtsman MC, Zeuner JM, Plotnik Y, et al. Photonic Floquet topological insulators. Nature. 2013;496:196.
  • Cerjan A, Huang S, Wang M, et al. Experimental realization of a Weyl exceptional ring. Nat. Photonics. 2019;13:623.
  • Rechtsman MC, Zeuner JM, Tuennermann A, et al. Strain-induced pseudomagnetic field and photonic Landau levels in dielectric structures. Nat. Photonics. 2013;7:153.
  • Mukherjee S, Di Liberto M, Oehberg P, et al. Experimental observation of aharonov-Bohm cages in photonic lattices. Phys. Rev. Lett. 2018;121:075502.
  • Mukherjee S, Spracklen A, Choudhury D, et al. Observation of a localized flat-band state in a photonic lieb lattice. Phys. Rev. Lett. 2015;114:245504.
  • Weimann S, Perez-Leija A, Lebugle M, et al. Implementation of quantum and classical discrete fractional Fourier transforms. Nat. Commun. 2016;7:11027.
  • Zeuner J, Sharma AN, Tillmann M, et al. Integrated-optics heralded controlled-NOT gate for polarization-encoded qubits. NPJ Quantum Inf. 2018;4:13.
  • Longhi S. Quantum-optical analogies using photonic structures. Laser Photonics Rev. 2009;3:243.
  • Szameit A, Nolte S. Discrete optics in femtosecond-laser-written photonic structures. J. Phys. B. 2010;43:163001.
  • Weinfurtner S, Tedford EW, Penrice MCJ, et al. Measurement of stimulated hawking emission in an analogue system. Phys. Rev. Lett. 2011;106:021302.
  • Torres T, Patrick S, Coutant A, et al. Rotational superradiant scattering in a vortex flow. Nat. Phys. 2017;13:833.
  • Zou D, Chen T, He W, et al. Observation of hybrid higher-order skin-topological effect in non-hermitian topolectrical circuits. Nat. Commun. 2021;12:7201.
  • Feynman RP. Simulating physics with computers. Int. J. Theor. Phys. 1982;21:467.
  • Georgescu IM, Ashhab S, Nori F. Quantum simulation. Rev. Mod. Phys. 2014;86:153.
  • Regal CA, Greiner M, Jin DS. Observation of resonance condensation of fermionic atom pairs. Phys. Rev. Lett. 2004;92:040403.
  • Buchler HP, Hermele M, Huber SD, et al. Atomic quantum simulator for lattice gauge theories and ring exchange models. Phys. Rev. Lett. 2005;95:040402.
  • Kassal I, Jordan SP, Love PJ, et al. Polynomial-time quantum algorithm for the simulation of chemical dynamics. Proc. Natl. Acad. Sci. USA. 2008;105:18681.
  • Fischer UR, Schutzhold R. Quantum simulation of cosmic inflation in two-component bose-Einstein condensates. Phys. Rev. A. 2004;70:063615.
  • Hawking SW. Black-hole explosions. Nature. 1974;248:30.
  • Hu J, Feng L, Zhang Z, et al. Quantum simulation of Unruh radiation. Nat. Phys. 2019;15:785.
  • Steinhauer J. Observation of quantum Hawking radiation and its entanglement in an analogue black hole. Nat. Phys. 2016;12:959.
  • Horstmann B, Reznik B, Fagnocchi S, et al. Hawking radiation from an acoustic black hole on an ion ring. Phys. Rev. Lett. 2010;104:250403.
  • Giovanazzi S. Hawking radiation in sonic black holes. Phys. Rev. Lett. 2005;94:061302.
  • Nation PD, Blencowe MP, Rimberg AJ, et al. Analogue hawking radiation in a dc-SQUID array transmission line. Phys. Rev. Lett. 2009;103:087004.
  • Drori J, Rosenberg Y, Bermudez D, et al. Observation of stimulated hawking radiation in an optical analogue. Phys. Rev. Lett. 2019;122:010404.
  • Philbin TG, Kuklewicz C, Robertson S, et al. Fiber-optical analog of the event horizon. Science. 2008;319:1367.
  • Jaksch D, Bruder C, Cirac JI, et al. Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 1998;81:3108.
  • Yang B, Sun H, Ott R, et al. Observation of gauge invariance in a 71-site bose-Hubbard quantum simulator. Nature. 2020;587:392.
  • Lidar DA, Biham O. Simulating ising spin glasses on a quantum computer. Physl. Rev. E. 1997;56:3661.
  • Greiner M, Mandel O, Esslinger T, et al. Quantum phase transition from a superfluid to a mott insulator in a gas of ultracold atoms. Nature. 2002;415:39.
  • Arute F, Arya K, Babbush R, et al. Quantum supremacy using a programmable superconducting processor. Nature. 2019;574:505.
  • Zhong H-S, Wang H, Deng Y-H, et al. Quantum computational advantage using photons. Science. 2020;370:1460.
  • Wu Y, Bao W-S, Cao S, et al. Strong quantum computational advantage using a superconducting quantum processor. Phys. Rev. Lett. 2021;127:180501.
  • Leonhardt U, Philbin TG. General relativity in electrical engineering. New J. Phys. 2006;8:247.
  • Wang J, Sciarrino F, Laing A, et al. Integrated photonic quantum technologies. Nat. Photonics. 2020;14:273.
  • Politi A, Cryan MJ, Rarity JG, et al. Silica-on-silicon waveguide quantum circuits. Science. 2008;320:646.
  • Crespi A, Ramponi R, Osellame R, et al. Integrated photonic quantum gates for polarization qubits. Nat. Commun. 2011;2:566.
  • Lu X, Li Q, Westly DA, et al. Chip-integrated visible-telecom entangled photon pair source for quantum communication. Nat.Phys. 2019;15:373.
  • Wang C, Zhang M, Chen X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature. 2018;562:101.
  • Wang J, Santamato A, Jiang P, et al. Gallium arsenide (GaAs) quantum photonic waveguide circuits. Opt. Commun. 2014;327:49.
  • Abellan C, Amaya W, Domenech D, et al. Quantum entropy source on an InP photonic integrated circuit for random number generation. Optica. 2016;3:989.
  • Xu H, Dai D, Shi Y. Ultra-broadband and ultra-compact on-chip silicon polarization beam splitter by using hetero-anisotropic metamaterials. Laser Photonics Rev. 2019;13:1800349.
  • Wu S, Xiao J. Compact polarization rotator for silicon-based cross-slot waveguides using subwavelength gratings. Appl. Opt. 2017;56:4892.
  • Xu H, Shi Y. Subwavelength-grating-assisted silicon polarization rotator covering all optical communication bands. Opt. Express. 2019;27:5588.
  • Gabrielli LH, Liu D, Johnson SG, et al. On-chip transformation optics for multimode waveguide bends. Nat. Commun. 2012;3:1217.
  • Wang Y, Sheng C, Liu H, et al. Transformation bending device emulated by graded-index waveguide. Opt. Express. 2012;20:13006.
  • Li Z, Kim M-H, Wang C, et al. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces. Nature Nanotech. 2017;12:675.
  • Liu Y, Xu K, Wang S, et al. Arbitrarily routed mode-division multiplexed photonic circuits for dense integration. Nat. Commun. 2019;10:3263.
  • Mohanty A, Zhang M, Dutt A, et al. Quantum interference between transverse spatial waveguide modes. Nat. Commun. 2017;8:14010.
  • Zentgraf T, Liu Y, Mikkelsen MH, et al. Plasmonic luneburg and Eaton lenses. Nature Nanotech. 2011;6:151.
  • Li S, Zhou Y, Dong J, et al. Universal multimode waveguide crossing based on transformation optics. Optica. 2018;5:1549.
  • Zentgraf T, Valentine J, Tapia N, et al. An optical “Janus” device for integrated photonics. Adv. Mater. 2010;22:2561.
  • Choo H, Kim M-K, Staffaroni M, et al. Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper. Nat. Photonics. 2012;6;838.
  • Wang X, Chen H, Liu H, et al. Self-focusing and the Talbot effect in conformal transformation optics. Phys. Rev. Lett. 2017;119:033902.
  • Smolyaninov II, Smolyaninova VN, Kildishev AV, et al. Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking. Phys. Rev. Lett. 2009;102:213901.
  • Cang H, Salandrino A, Wang Y, et al. Adiabatic far-field sub-diffraction imaging. Nat. Commun. 2015;6:7942.
  • Sheng C, Liu H, Wang Y, et al. Trapping light by mimicking gravitational lensing. Nat. Photonics. 2013;7:902.
  • Sheng C, Bekenstein R, Liu H, et al. Wavefront shaping through emulated curved space in waveguide settings. Nat. Commun. 2016;7:10747.
  • Smolyaninov II. Unruh effect in a waveguide. Phys. Lett. A. 2008;372:5861.
  • Smolyaninov II. Giant Unruh effect in hyperbolic metamaterial waveguides. Opt. Lett. 2019;44:2224.
  • Ge H, Sheng C, Zhu S, et al. Observation of the acceleration of light in a tapered optical fiber. Opt. Express. 2021;29:27212.
  • Wang X, Liu H, Sheng C, et al. Reversible wavefront shaping between gaussian and airy beams by mimicking gravitational field. J. Opt. 2018;20:024015.
  • Meng Y, Chen Y, Lu L, et al. Optical meta-waveguides for integrated photonics and beyond. Light-Science & Applications. 2021;10:235.
  • Sheng C, Liu H, Zhu S. Transformation optics based on metasurfaces. Sci. Bull. 2019;64:793.
  • Abbott BP, Abbott R, Abbott TD, et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 2016;116:061102.
  • Abbott BP, Abbott R, Abbott TD, et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 2017;119:161101.
  • Blasi S, Brdar V, Schmitz K. Has NANOGrav found first evidence for cosmic strings? Phys. Rev. Lett. 2021;126:041305.
  • Ellis J, Lewicki M. Cosmic string interpretation of NANOGrav pulsar timing data. Phys. Rev. Lett. 2021;126:041304.
  • Liu J, Cai R-G, Guo Z-K. Large anisotropies of the stochastic gravitational wave background from cosmic domain walls. Phys. Rev. Lett. 2021;126:141303.
  • Zhang Y-L, Pendry JB, Lei DY. Radial anisotropy from a geometric viewpoint: topological singularity and effective medium realization. Phys. Rev. B. 2017;96:035430.
  • Fernandez-Nunez I, Bulashenko O. Emergence of fresnel diffraction zones in gravitational lensing by a cosmic string. Phys. Lett. A. 2017;381:1764.
  • Zhang Y-L, Dong X-Z, Zheng M-L, et al. Steering electromagnetic beams with conical curvature singularities. Opt. Lett. 2015;40:4783.
  • Fernandez-Nunez I, Bulashenko O. Wave propagation in metamaterials mimicking the topology of a cosmic string. J. Opt. 2018;20:045603.
  • Alford MG, Wilczek F. Aharonov-Bohm interaction of cosmic strings with matter. Phys. Rev. Lett. 1989;62:1071.
  • Yang Y. Cosmic strings in a product abelian gauge field theory. Nucl. Phys. B. 2014;885:25.
  • Gerbert PD. Fermions in an aharonov-Bohm field and cosmic strings. Phys. Rev. D. 1989;40:1346.
  • Mackay TG, Lakhtakia A. Towards a metamaterial simulation of a spinning cosmic string. Phys. Lett. A. 2010;374:2305.
  • Sheng C, Liu H, Chen H, et al. Definite photon deflections of topological defects in metasurfaces and symmetry-breaking phase transitions with material loss. Nat. Commun. 2018;9:4271.
  • Genevet P, Wintz D, Ambrosio A, et al. Controlled steering of Cherenkov surface plasmon wakes with a one-dimensional metamaterial. Nature Nanotech. 2015;10:804.
  • Zhong F, Li J, Liu H, et al. Controlling surface plasmons through covariant transformation of the spin-dependent geometric phase between curved metamaterials. Phys. Rev. Lett. 2018;120:243901.
  • Dacosta RCT. Quantum-mechanics of a constrained particle. Phys. Rev. A. 1981;23:1982.
  • Batz S, Peschel U. Linear and nonlinear optics in curved space. Phys. Rev. A. 2008;78:043821.
  • Schultheiss VH, Batz S, Szameit A, et al. Optics in curved space. Phys. Rev. Lett. 2010;105:143901.
  • Schultheiss VH, Batz S, Peschel U. Hanbury brown and Twiss measurements in curved space. Nat. Photonics. 2016;10:106.
  • Bekenstein R, Nemirovsky J, Kaminer I, et al. Shape-preserving accelerating electromagnetic wave packets in curved space. Phys. Rev. X. 2014;4,:011038.
  • Patsyk A, Bandres MA, Bekenstein R, et al. Observation of accelerating wave packets in curved space. Phys. Rev. X. 2018;8:011001.
  • Xu C, Wang L-G. Gouy and spatial-curvature-induced phase shifts of light in two-dimensional curved space. New J. Phys. 2019;21:113013.
  • Liang G-H, Cai RG, Ma Y-Z, et al. Mimicking an expanding universe by optical interference in a helicoid waveguide. Opt. Express. 2020;28:11406.
  • Ding W, Wang Z. Laser propagation in a Rindler accelerated reference frame based on matrix optics. Opt. Express. 2021;29:28631.
  • Bekenstein R, Kabessa Y, Sharabi Y, et al. Control of light by curved space in nanophotonic structures. Nat. Photonics. 2017;11:664.
  • He GHLRQ, Zhu SN, Liu H. Simulation of giant tidal force of wormhole using curved optical spaces. Physcial Review Research. 2020;2:013237.
  • Zhu J, Liu Y, Liang Z, et al. Elastic waves in curved space: mimicking a wormhole. Phys. Rev. Lett. 2018;121:234301.
  • Xu L, He R, Yao K, et al. Conformal singularities and topological defects from inverse transformation optics. Phys. Rev. Appl. 2019;11:034072.
  • Xu L, Wang X, Tyc T, et al. Light rays and waves on geodesic lenses. Photon. Res. 2019;7:1266.
  • Dreisow F, Heinrich M, Keil R, et al. Classical simulation of relativistic zitterbewegung in photonic lattices. Phys. Rev. Lett. 2010;105:143902.
  • Zeuner JM, Efremidis NK, Keil R, et al. Optical analogues for massless dirac particles and conical diffraction in one dimension. Phys. Rev. Lett. 2012;109:023602.
  • Dreisow F, Longhi S, Nolte S, et al. Vacuum instability and pair production in an optical setting. Phys. Rev. Lett. 2012;109:110401.
  • Koke C, Noh C, Angelakis DG. Dirac equation in 2-dimensional curved spacetime, particle creation, and coupled waveguide arrays. Ann. Phys. 2016;374:162.
  • Marini A, Longhi S, Biancalana F. Optical simulation of neutrino oscillations in binary waveguide arrays. Phys. Rev. Lett. 2014;113:150401.
  • Keil R, Noh C, Rai A, et al. Optical simulation of charge conservation violation and Majorana dynamics. Optica. 2015;2:454.
  • Wang Y, Sheng C, Lu Y-H, et al. Quantum simulation of particle pair creation near the event horizon. Natl. Sci. Rev. 2020;7:1476.
  • Sheng C, Huang C, Yang R, et al. Simulating the escape of entangled photons from the event horizon of black holes in nonuniform optical lattices. Phys. Rev. A. 2021;103:033703.
  • Galiffi E, Tirole R, Yin S, et al. Photonics of time-varying media. Advanced Photonics. 2022;4:014002.