4,119
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Opportunities in the design of metal@oxide core-shell nanoparticles

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2175623 | Received 01 Dec 2022, Accepted 27 Jan 2023, Published online: 28 Feb 2023

References

  • Zhang Z, Ouyang Y, Cheng Y, et al. Size-dependent phononic thermal transport in low-dimensional nanomaterials. Phys Rep. 2020;860:1–50.
  • Li Y, Li Z, Chi C, et al. Plasmonics of 2D nanomaterials: properties and applications. Adv Sci. 2017;4:1600430.
  • Lakshmana Reddy N, Navakoteswara Rao V, Mamatha Kumari M, et al. Nanostructured semiconducting materials for efficient hydrogen generation. Environ Chem Lett. 2018;16:765–796.
  • Gao C, Lyu F, Yin Y. Encapsulated metal nanoparticles for catalysis. Chem Rev. 2021;121:834–881.
  • Li Z, Fan Q, Yin Y. Colloidal self-assembly approaches to smart nanostructured materials. Chem Rev. 2022;122:4976–5067.
  • Altug H, Oh S-H, Maier SA, et al. Advances and applications of nanophotonic biosensors. Nat Nanotechnol. 2022;17:5–16.
  • Modi S, Prajapati R, Inwati GK, et al. Recent trends in fascinating applications of nanotechnology in allied health sciences. Crystals. 2021;12:39.
  • Valerini D, Tammaro L, Vigliotta G, et al. Ag functionalization of Al-Doped ZnO nanostructured coatings on PLA substrate for antibacterial applications. Coatings. 2020;10:1238.
  • Benetti G, Cavaliere E, Brescia R, et al. Tailored Ag–Cu–Mg multielemental nanoparticles for wide-spectrum antibacterial coating. Nanoscale. 2019;11:1626–1635.
  • Stankic S, Suman S, Haque F, et al. Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties. J Nanobiotechnol. 2016;14:73.
  • Calderon Velasco S, Cavaleiro A, Carvalho S. Functional properties of ceramic-Ag nanocomposite coatings produced by magnetron sputtering. Pro Mater Sci. 2016;84:158–191.
  • Chaikittisilp W, Yamauchi Y, Ariga K. Material evolution with nanotechnology, nanoarchitectonics, and materials informatics: what will be the next paradigm shift in nanoporous materials? Adv Mater. 2022;34:2107212.
  • Li Z, Li M, Bian Z, et al. Design of highly stable and selective core/yolk–shell nanocatalysts—A review. Appl Catal B Environ. 2016;188:324–341.
  • Wu Z, Cheng H, Jin C, et al. Dimensional design and core–shell engineering of nanomaterials for electromagnetic wave absorption. Adv Mater. 2022;34:2107538.
  • Su H, Tian Q, Hurd Price C-A, et al. Nanoporous core@shell particles: design, preparation, applications in bioadsorption and biocatalysis. Nano Today. 2020;31:100834.
  • Shao Q, Wang P, Liu S, et al. Advanced engineering of core/shell nanostructures for electrochemical carbon dioxide reduction. J Mater Chem A. 2019;7:20478–20493.
  • Ferrando R, Jellinek J, Johnston RL. Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev. 2008;108:846–904.
  • Elhalawany N, Mantey K, Hoang T, et al. Iron oxide–Si nanoparticle magnetic core–shell induced by the interaction of d-orbitals of Fe2+ with reconstructed Si dimer-like defects. AIP Adv. 2020;10:055221.
  • Thanh Tran D, Kshetri T, Dinh Chuong N, et al. Emerging core-shell nanostructured catalysts of transition metal encapsulated by two-dimensional carbon materials for electrochemical applications. Nano Today. 2018;22:100–131.
  • Feng H, Tang L, Zeng G, et al. Carbon-based core–shell nanostructured materials for electrochemical energy storage. J Mater Chem A. 2018;6:7310–7337.
  • Hanske C, Sanz-Ortiz MN, Liz-Marzán LM. Silica-coated plasmonic metal nanoparticles in action. Adv Mater. 2018;30:1707003.
  • Rai P. Plasmonic noble metal@metal oxide core–shell nanoparticles for dye-sensitized solar cell applications. Sustainable Energy Fuels. 2019;3:63–91.
  • Li Y, Zhang Y, Qian K, et al. Metal-Support interactions in Metal/Oxide catalysts and oxide-metal interactions in oxide/metal inverse catalysts. ACS Catal. 2022;12:1268–1287.
  • Zhang J, Medlin JW. Catalyst design using an inverse strategy: from mechanistic studies on inverted model catalysts to applications of oxide-coated metal nanoparticles. Surf Sci Rep. 2018;73:117–152.
  • Mondal K, Sharma A. Recent advances in the synthesis and application of photocatalytic metal–metal oxide core–shell nanoparticles for environmental remediation and their recycling process. RSC Adv. 2016;6:83589–83612.
  • Colussi S, Fornasiero P, Trovarelli A. Structure-activity relationship in Pd/CeO2 methane oxidation catalysts. Chin J Catal. 2020;41:938–950.
  • Wang D, Xu G, Tan T, et al. The oxidation process and methods for improving reactivity of Al. Crystals. 2022;12:1187.
  • Zhang P, Li L, Nordlund D, et al. Dendritic core-shell nickel-iron-copper metal/metal oxide electrode for efficient electrocatalytic water oxidation. Nat Commun. 2018;9:381.
  • Wu CH, Liu C, Su D, et al. Bimetallic synergy in cobalt–palladium nanocatalysts for CO oxidation. Nat Catal. 2019;2:78–85.
  • Luo Z, Zhao G, Pan H, et al. Strong metal–support interaction in heterogeneous catalysts. Adv Energy Mater. 2022;12:2201395.
  • Sehested J. Industrial and scientific directions of methanol catalyst development. J Catal. 2019;371:368–375.
  • Song S, Wang X, Zhang H. CeO2-encapsulated noble metal nanocatalysts: enhanced activity and stability for catalytic application. NPG Asia Mater. 2015;7:e179–e179.
  • Nbelayim P, Ashida Y, Maegawa K, et al. Preparation and characterization of stable and active Pt@TiO2 Core–shell nanoparticles as electrocatalyst for application in PEMFCs. ACS Appl Energy Mater. 2020;3:3269–3281.
  • Fatimah I, Fadillah G, Purwiandono G, et al. Magnetic-silica nanocomposites and the functionalized forms for environment and medical applications: a review. Inorg Chem Commun. 2022;137:109213.
  • Belessiotis GV, Falara PP, Ibrahim I, et al. Magnetic metal oxide-based photocatalysts with integrated silver for water treatment. Materials. 2022;15:4629.
  • Long Y, Li J, Wu L, et al. Construction of trace silver modified core@shell structured Pt-Ni nanoframe@CeO2 for semihydrogenation of phenylacetylene. Nano Res. 2019;12:869–875.
  • Neyman KM, Kozlov SM. Quantifying interactions on interfaces between metal particles and oxide supports in catalytic nanomaterials. NPG Asia Mater. 2022;14:59.
  • Ishida T, Murayama T, Taketoshi A, et al. Importance of size and contact structure of gold nanoparticles for the genesis of unique catalytic processes. Chem Rev. 2020;120:464–525.
  • Rupprechter G. Operando surface spectroscopy and microscopy during catalytic reactions: from clusters via nanoparticles to meso‐scale aggregates. Small. 2021;17:2004289.
  • Liu X, Iocozzia J, Wang Y, et al. Noble metal–metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation. Energy Environ Sci. 2017;10:402–434.
  • Zhang Q, Lee I, Joo JB, et al. Core–shell nanostructured catalysts. Acc Chem Res. 2013;46:1816–1824.
  • Rai P, Majhi SM, Yu Y-T, et al. Noble metal@metal oxide semiconductor core@shell nano-architectures as a new platform for gas sensor applications. RSC Adv. 2015;5:76229–76248.
  • Li G, Tang Z. Noble metal nanoparticle@metal oxide core/yolk–shell nanostructures as catalysts: recent progress and perspective. Nanoscale. 2014;6:3995–4011.
  • Mirzaei A, Janghorban K, Hashemi B, et al. Metal-core@metal oxide-shell nanomaterials for gas-sensing applications: a review. J Nanopart Res. 2015;17. DOI:10.1007/s11051-015-3164-5
  • Lunkenbein T, Schumann J, Behrens M, et al. Formation of a ZnO overlayer in industrial Cu/ZnO/Al2O3 catalysts induced by strong metal-support interactions. Angew Chem Int Ed. 2015;54:4544–4548.
  • Wang H, Wang L, Lin D, et al. Strong metal–support interactions on gold nanoparticle catalysts achieved through Le Chatelier’s principle. Nat Catal. 2021;4:418–424.
  • Wu Z, Li Y, Huang W. Size-dependent Pt-TiO2 strong metal–support interaction. J Phys Chem Lett. 2020;11:4603–4607.
  • Nong HN, Gan L, Willinger E, et al. IrOx core-shell nanocatalysts for cost- and energy-efficient electrochemical water splitting. Chem Sci. 2014;5:2955–2963.
  • Sun Y, Zhang J, Zong Y, et al. Crystalline–amorphous permalloy@iron oxide core–shell nanoparticles decorated on graphene as high-efficiency, lightweight, and hydrophobic microwave absorbents. ACS Appl Mater Interfaces. 2019;11:6374–6383.
  • Nemati Z, Alonso J, Khurshid H, et al. Core/shell iron/iron oxide nanoparticles: are they promising for magnetic hyperthermia? RSC Adv. 2016;6:38697–38702.
  • Amendola V, Amans D, Ishikawa Y, et al. Room‐temperature laser synthesis in liquid of oxide, metal‐oxide core‐shells, and doped oxide nanoparticles. Chem Eur J. 2020;26:9206–9242.
  • Amendola V, Riello P, Meneghetti M. Magnetic nanoparticles of iron carbide, iron oxide, Iron@Iron Oxide, and metal iron synthesized by laser ablation in organic solvents. J Phys Chem C. 2011;115:5140–5146.
  • Li J-F, Zhang Y-J, Ding S-Y, et al. Core–shell nanoparticle-enhanced raman spectroscopy. Chem Rev. 2017;117:5002–5069.
  • Gawande MB, Goswami A, Asefa T, et al. Core–shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chem Soc Rev. 2015;44:7540–7590.
  • Susarrey-Arce A, Czajkowski KM, Darmadi I, et al. A nanofabricated plasmonic core–shell-nanoparticle library. Nanoscale. 2019;11:21207–21217.
  • Wegner K, Piseri P, Tafreshi HV, et al. Cluster beam deposition: a tool for nanoscale science and technology. J Phys D: Appl Phys. 2006;39:R439–R459.
  • Das S, Pérez-Ramírez J, Gong J, et al. Core–shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2. Chem Soc Rev. 2020;49:2937–3004.
  • Masoumifard N, Guillet-Nicolas R, Kleitz F. Synthesis of engineered zeolitic materials: from classical zeolites to hierarchical core-shell materials. Adv Mater. 2018;30:1704439.
  • Habibullah G, Viktorova J, Ruml T. Current strategies for noble metal nanoparticle synthesis. Nanoscale Res Lett. 2021;16:47.
  • Kamat GA, Yan C, Osowiecki WT, et al. Self-limiting shell formation in Cu@Ag Core–shell nanocrystals during galvanic replacement. J Phys Chem Lett. 2020;11:5318–5323.
  • Rodrigues TS, da Silva AGM, Camargo PH. Nanocatalysis by noble metal nanoparticles: controlled synthesis for the optimization and understanding of activities. J Mater Chem A. 2019;7:5857–5874.
  • Xia Y, Xiong Y, Lim B, et al. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed. 2009;48:60–103.
  • Poerwoprajitno AR, Gloag L, Watt J, et al. Faceted branched nickel nanoparticles with tunable branch length for high-activity electrocatalytic oxidation of biomass. Angew Chem. 2020;59:15487–15491.
  • Torimoto T, Ohta Y, Enokida K, et al. Ultrathin oxide shell coating of metal nanoparticles using ionic liquid/metal sputtering. J Mater Chem A. 2015;3:6177–6186.
  • Yang G, Xing C, Hirohama W, et al. Tandem catalytic synthesis of light isoparaffin from syngas via Fischer–Tropsch synthesis by newly developed core–shell-like zeolite capsule catalysts. Catal Today. 2013;215:29–35.
  • Wang X, Yang G, Zhang J, et al. Synthesis of isoalkanes over a core (Fe–Zn–Zr)–shell (zeolite) catalyst by CO2 hydrogenation. Chem Commun. 2016;52:7352–7355.
  • Romero CP, Avila JI, Trabol RA, et al. Pd as a promoter to reduce Co cluster films at room temperature. Int J Hydrogen Energy. 2010;35:2262–2267.
  • Janssens E, Santambrogio G, Brümmer M, et al. Isomorphous substitution in bimetallic oxide clusters. Phys Rev Lett. 2006;96:233401.
  • El-Toni AM, Habila MA, Labis JP, et al. Design, synthesis and applications of core–shell, hollow core, and nanorattle multifunctional nanostructures. Nanoscale. 2016;8:2510–2531.
  • Liz-Marzán LM, Giersig M, Mulvaney P. Synthesis of nanosized gold−silica core−shell particles. Langmuir. 1996;12:4329–4335.
  • Engelbrekt C, Gargasya Y, Law M. Silica shell growth on vitreophobic gold nanoparticles probed by plasmon resonance dynamics. J Phys Chem C. 2021;125:25119–25125.
  • Ferreira-Neto EP, Ullah S, Simões MB, et al. Solvent-controlled deposition of titania on silica spheres for the preparation of SiO2@TiO2 core@shell nanoparticles with enhanced photocatalytic activity. Colloids Surf A Physicochem Eng Asp. 2019;570:293–305.
  • Yang G, Park S-J. Conventional and microwave hydrothermal synthesis and application of functional materials: a review. Materials. 2019;12:1177.
  • Zhang N, Fu X, Xu Y-J. A facile and green approach to synthesize Pt@CeO2 nanocomposite with tunable core-shell and yolk-shell structure and its application as a visible light photocatalyst. J Mater Chem. 2011;21:8152.
  • Jensen Z, Kwon S, Schwalbe-Koda D, et al. Discovering relationships between OSDAs and zeolites through data mining and generative neural networks. ACS Cent Sci. 2021;7:858–867.
  • Kwok KM, Ong SWD, Chen L, et al. Transformation of stöber silica spheres to hollow hierarchical single-crystal ZSM-5 zeolites with encapsulated metal nanocatalysts for selective catalysis. ACS Appl Mater Interfaces. 2019;11:14774–14785.
  • Cao L, Liu W, Luo Q, et al. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2. Nature. 2019;565:631–635.
  • Lu J. A perspective on new opportunities in atom-by-atom synthesis of heterogeneous catalysts using atomic layer deposition. Catal Lett. 2021;151:1535–1545.
  • Kim S, Tsang YF, Kwon EE, et al. Recently developed methods to enhance stability of heterogeneous catalysts for conversion of biomass-derived feedstocks. Korean J Chem Eng. 2019;36:1–11.
  • Finke CE, Omelchenko ST, Jasper JT, et al. Enhancing the activity of oxygen-evolution and chlorine-evolution electrocatalysts by atomic layer deposition of TiO2. Energy Environ Sci. 2019;12:358–365.
  • Asundi AS, Hoffman AS, Bothra P, et al. Understanding structure–property relationships of MoO3 -promoted Rh catalysts for syngas conversion to alcohols. J Am Chem Soc. 2019;141:19655–19668.
  • Li Z, Kathiraser Y, Kawi S. Facile synthesis of high surface area Yolk-Shell Ni@Ni Embedded SiO2 via Ni phyllosilicate with enhanced performance for CO2 reforming of CH4. ChemCatChem. 2015;7:160–168.
  • Dao DV, Nguyen TTD, Kim D-S, et al. Core and dopant effects toward hydrogen gas sensing activity using Pd@N-CeO2 core–shell nanoflatforms. J Ind Eng Chem. 2021;95:325–332.
  • Mourdikoudis S, Pallares RM, Thanh NTK. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale. 2018;10:12871–12934.
  • Das S, Ashok J, Bian Z, et al. Silica–Ceria sandwiched Ni core–shell catalyst for low temperature dry reforming of biogas: coke resistance and mechanistic insights. Appl Catal B Environ. 2018;230:220–236.
  • Li Z, Wang Z, Jiang B, et al. Sintering resistant Ni nanoparticles exclusively confined within SiO2 nanotubes for CH4 dry reforming. Catal Sci Technol. 2018;8:3363–3371.
  • Zhuang Z, Sheng W, Yan Y. Synthesis of monodispere Au@Co3O4 core-shell nanocrystals and their enhanced catalytic activity for oxygen evolution reaction. Adv Mater. 2014;26:3950–3955.
  • Li Z, Mo L, Kathiraser Y, et al. Yolk–satellite–shell structured Ni–Yolk@Ni@SiO2 nanocomposite: superb catalyst toward methane CO2 reforming reaction. ACS Catal. 2014;4:1526–1536.
  • Das S, Jangam A, Jayaprakash S, et al. Role of lattice oxygen in methane activation on Ni-phyllosilicate@Ce1-xZrxO2 core-shell catalyst for methane dry reforming: Zr doping effect, mechanism, and kinetic study. Appl Catal B Environ. 2021;290:119998.
  • Yang Y, Chen -C-C, Scott MC, et al. Deciphering chemical order/disorder and material properties at the single-atom level. Nature. 2017;542:75–79.
  • Xu R, Chen -C-C, Wu L, et al. Three-dimensional coordinates of individual atoms in materials revealed by electron tomography. Nat Mater. 2015;14:1099–1103.
  • Zhang H, Li Y, Long X, et al. Self-assembled metamaterial perfect absorbers at visible wavelengths using core–shell Au@SiO2 meta-atoms. J Mater Chem C. 2020;8:12876–12885.
  • Moularas C, Georgiou Y, Adamska K, et al. Thermoplasmonic heat generation efficiency by nonmonodisperse core–shell Ag0@SiO2 nanoparticle ensemble. J Phys Chem C. 2019;123:22499–22510.
  • Cavaliere E, Benetti G, Van Bael M, et al. exploring the optical and morphological properties of Ag and Ag/TiO2 nanocomposites grown by supersonic cluster beam deposition. nanomaterials. 2017;7:442.
  • Li Z, Jiang B, Wang Z, et al. High carbon resistant Ni@Ni phyllosilicate@SiO2 core shell hollow sphere catalysts for low temperature CH4 dry reforming. J CO2 Util. 2018;27:238–246.
  • Doh WH, Papaefthimiou V, Dintzer T, et al. Synchrotron radiation X-ray photoelectron spectroscopy as a tool to resolve the dimensions of spherical core/shell nanoparticles. J Phys Chem C. 2014;118:26621–26628.
  • Casabianca LB. Solid-state nuclear magnetic resonance studies of nanoparticles. Solid State Nucl Magn Reson. 2020;107:101664.
  • Protesescu L, Rossini AJ, Kriegner D, et al. Unraveling the core–shell structure of ligand-capped Sn/SnOx nanoparticles by surface-enhanced nuclear magnetic resonance, Mössbauer, and X-ray absorption spectroscopies. ACS Nano. 2014;8:2639–2648.
  • Rynkowski J, Rajski D, Szyszka I, et al. Effect of platinum on the hydrogenation activity of nickel catalysts. Catal Today. 2004;90:159–166.
  • Bian Z, Kawi S. Highly carbon-resistant Ni–Co/SiO2 catalysts derived from phyllosilicates for dry reforming of methane. J CO2 Util. 2017;18:345–352.
  • Bian Z, Zhong W, Yu Y, et al. Dry reforming of methane on Ni/mesoporous-Al2O3 catalysts: effect of calcination temperature. Int J Hydrogen Energy. 2021;46:31041–31053.
  • Jiang B, Li L, Bian Z, et al. Chemical looping glycerol reforming for hydrogen production by Ni@ZrO2 nanocomposite oxygen carriers. Int J Hydrogen Energy. 2018;43:13200–13211.
  • Egerton RF. Radiation damage to organic and inorganic specimens in the TEM. Micron. 2019;119:72–87.
  • Cho DH, Shen Z, Ihm Y, et al. High-throughput 3D ensemble characterization of individual core–shell nanoparticles with X-ray free electron laser single-particle imaging. ACS Nano. 2021;15:4066–4076.
  • Salmeron M. From Surfaces to Interfaces: ambient Pressure XPS and Beyond. Top Catal. 2018;61:2044–2051.
  • Powell MJ, Godfrey IJ, Quesada-Cabrera R, et al. Qualitative XANES and XPS Analysis of Substrate Effects in VO2 Thin Films: a Route to Improving Chemical Vapor Deposition Synthetic Methods? J Phys Chem C. 2017;121:20345–20352.
  • Ye K, Zhou Z, Shao J, et al. In situ reconstruction of a hierarchical Sn‐Cu/SnOx core/shell catalyst for high‐performance CO2 electroreduction. Angew Chem Int Ed. 2020;59:4814–4821.
  • Barcaro G, Fortunelli A. 2D oxides on metal materials: concepts, status, and perspectives. Phys Chem Chem Phys. 2019;21:11510–11536.
  • Shaikhutdinov S, Freund H-J. Ultrathin Oxide Films on Metal Supports: structure-Reactivity Relations. Annu Rev Phys Chem. 2012;63:619–633.
  • Wei D-Y, Yue M-F, Qin S-N, et al. In Situ Raman Observation of Oxygen Activation and Reaction at Platinum–Ceria Interfaces during CO Oxidation. J Am Chem Soc. 2021;143:15635–15643.
  • Chen G, Zhao Y, Fu G, et al. Interfacial Effects in Iron-Nickel Hydroxide–Platinum Nanoparticles Enhance Catalytic Oxidation. Science. 2014;344:495–499.
  • Li Y, Kalia RK, Nakano A, et al. Size effect on the oxidation of aluminum nanoparticle: multimillion-atom reactive molecular dynamics simulations. J Appl Phys. 2013;114:134312.
  • Hu Y, Ji C, Wang X, et al. The structural, magnetic and optical properties of TMn@(ZnO)42 (TM = Fe, Co and Ni) hetero-nanostructure. Sci Rep. 2017;7:16485.
  • Kozlov SM, Neyman KM. Catalysis from First Principles: towards Accounting for the Effects of Nanostructuring. Top Catal. 2013;56:867–873.
  • Baletto F. Structural properties of sub-nanometer metallic clusters. J Phys: Condens Matter. 2019;31:113001.
  • Kozlov SM, Kovács G, Ferrando R, et al. How to determine accurate chemical ordering in several nanometer large bimetallic crystallites from electronic structure calculations. Chem Sci. 2015;3868–3880.
  • Ferrando R. Determining the equilibrium structures of nanoalloys by computational methods. J Nanopart Res. 2018;20:179.
  • Sk MA, Kozlov SM, Lim KH, et al. Oxygen vacancies in self-assemblies of ceria nanoparticles. J Mater Chem A. 2014;2:18329–18338.
  • Chatzigoulas A, Karathanou K, Dellis D, et al. Nanocrystal: a web-based crystallographic tool for the construction of nanoparticles based on their crystal habit. J Chem Inf Model. 2018;58:2380–2386.
  • González D, Camino B, Heras-Domingo J, et al. BCN-M: a free computational tool for generating wulff-like nanoparticle models with controlled stoichiometry. J Phys Chem C. 2020;124:1227–1237.
  • Artrith N. Machine learning for the modeling of interfaces in energy storage and conversion materials. J Phys Energy. 2019;1:032002.
  • Sasikumar K, Chan H, Narayanan B, et al. Machine learning applied to a variable charge atomistic model for Cu/Hf binary alloy oxide heterostructures. Chem Mater. 2019;31:3089–3102.
  • Li C, Guo W, Kong Y, et al. First-principles study on ZnO nanoclusters with hexagonal prism structures. Appl Phys Lett. 2007;90:223102.
  • Seong S, Park I-S, Jung YC, et al. Synthesis of Ag-ZnO core-shell nanoparticles with enhanced photocatalytic activity through atomic layer deposition. Mater Des. 2019;177:107831.
  • Pan Q, Liu BH, McBriarty ME, et al. Reactivity of ultra-thin ZnO films supported by Ag(111) and Cu(111): a comparison to ZnO/Pt(111). Catal Lett. 2014;144:648–655.
  • Cheng H-X, Wang -X-X, Hu Y-W, et al. Ag@ZnO core-shell nanoparticles study by first principle: the structural, magnetic and optical properties. J Solid State Chem. 2016;244:181–186.
  • Wu P, Tan S, Moon J, et al. Harnessing strong metal–support interactions via a reverse route. Nat Commun. 2020;11:3042.
  • Chu Q, Shi B, Liao L, et al. Ignition and oxidation of core–shell Al/Al2O3 nanoparticles in an oxygen atmosphere: insights from molecular dynamics simulation. J Phys Chem C. 2018;122:29620–29627.
  • Chu Q, Shi B, Liao L, et al. Size-derived reaction mechanism of core-shell aluminum nanoparticle. Appl Phys Lett. 2020;117:133902.
  • Zeng H, Cheng X, Zhang C, et al. Responses of core–shell Al/Al2O3 nanoparticles to heating: reaxFF molecular dynamics simulations. J Phys Chem C. 2018;122:9191–9197.
  • Eom N, Messing ME, Johansson J, et al. Sintering mechanism of core@shell metal@metal oxide nanoparticles. J Phys Chem C. 2021;125:16220–16227.
  • Khatami M, Alijani H, Nejad M, et al. Core@shell nanoparticles: greener synthesis using natural plant products. Appl Sci. 2018;8:411.
  • Crane CC, Manso RH, Li J, et al. A metal-on-metal growth approach to metal–metal oxide core–shell nanostructures with plasmonic properties. J Phys Chem C. 2020;124:17191–17203.
  • Li Z, Li H, Wu Z, et al. Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature. Mater Horiz. 2019;6:470–506.
  • Bayles A, Tian S, Zhou J, et al. Al@TiO2 core–shell nanoparticles for plasmonic photocatalysis. ACS Nano. 2022;16:5839–5850.
  • Lee C, Shin K, Lee YJ, et al. Effects of shell thickness on Ag-Cu2O core-shell nanoparticles with bumpy structures for enhancing photocatalytic activity and stability. Catal Today. 2018;303:313–319.
  • Yan S, Yue Q, Ma J. Rapid fabrication of silver–cuprous oxide core–shell nanowires for visible light photocatalysts.” Cryst Eng Comm. 2021;23:24–29.
  • Song H-M, Chon B-S, Jeon S-H, et al. Synthesis of Au@SnO2 core–shell nanoparticles with controllable shell thickness and their CO sensing properties. Mater Chem Phys. 2015;166:87–94.
  • Liu W-L, Lin F-C, Yang Y-C, et al. The influence of shell thickness of Au@TiO2 core–shell nanoparticles on the plasmonic enhancement effect in dye-sensitized solar cells. Nanoscale. 2013;5:7953.
  • Wang H-J, Lin J-S, Zhang H, et al. Plasmonic core–shell materials: synthesis, spectroscopic characterization, and photocatalytic applications. Acc Mater Res. 2022;3:187–198.
  • Xie H, Wang K, Li Y, et al. Gold nanorod@ruthenium oxide core–shell heterostructures: synthesis, single‐particle characterizations, and enhanced hot electron generation. Adv Opt Mater. 2021;9:2002136.
  • Xu L, Yin M-L, (Frank) Liu S. Agx@WO3 core-shell nanostructure for LSP enhanced chemical sensors. Sci Rep. 2015;4:6745.
  • Pu J, Nishikado K, Wang N, et al. Core-shell nickel catalysts for the steam reforming of acetic acid. Appl Catal B Environ. 2018;224:69–79.
  • So S, Mun J, Rho J. Simultaneous Inverse Design of Materials and Structures via Deep Learning: demonstration of Dipole Resonance Engineering Using Core–Shell Nanoparticles. ACS Appl Mater Interfaces. 2019;11:24264–24268.
  • Peurifoy J, Shen Y, Jing L, et al. Nanophotonic particle simulation and inverse design using artificial neural networks. Sci Adv. 2018;4:eaar4206.
  • Vahidzadeh E, Shankar K. Artificial neural network-based prediction of the optical properties of spherical core–shell plasmonic metastructures. nanomaterials. 2021;11:633.
  • Ahemad MJ, Le TD, Kim D-S, et al. Bimetallic AgAu alloy@ZnO core-shell nanoparticles for ultra-high detection of ethanol: potential impact of alloy composition on sensing performance. Sens Actuators B Chem. 2022;359:131595.
  • Nelli D, Roncaglia C, Minnai C. Strain engineering in alloy nanoparticles. Adv Phys X. 2023;8:2127330.
  • Khorshidi A, Violet J, Hashemi J, et al. How strain can break the scaling relations of catalysis. Nat Catal. 2018;1:263–268.
  • Mavrikakis M, Hammer B, Nørskov JK. Effect of strain on the reactivity of metal surfaces. Phys Rev Lett. 1998;81:2819–2822.
  • Kitchin JR, Nørskov JK, Barteau MA, et al. Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Phys Rev Lett. 2004;93:156801.
  • Strasser P, Koh S, Anniyev T, et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat Chem. 2010;2:454–460.
  • Wang X, Orikasa Y, Takesue Y, et al. Quantitating the lattice strain dependence of monolayer pt shell activity toward oxygen reduction. J Am Chem Soc. 2013;135:5938–5941.
  • Sneed BT, Young AP, Tsung C-K. Building up strain in colloidal metal nanoparticle catalysts. Nanoscale. 2015;7:12248–12265.
  • Yang X, Wang Y, Tong X, et al. Strain engineering in electrocatalysts: fundamentals, progress, and perspectives. Adv Energy Mater. 2022;12:2102261.
  • Luo M, Guo S. Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat Rev Mater. 2017;2:17059.
  • Xing Y, Kong X, Guo X, et al. Bi@Sn core–shell structure with compressive strain boosts the electroreduction of CO2 into formic acid. Adv Sci. 2020;7:1902989.
  • Hunt ST, Milina M, Alba-Rubio AC, et al. Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts. Science. 2016;352:974–978.
  • Wang Z, Garg A, Wang L, et al. Enhancement of Alkyne Semi-Hydrogenation Selectivity by Electronic Modification of Platinum. ACS Catal. 2020;10:6763–6770.
  • Walsh A, Catlow CRA, Zhang KHL, et al. Control of the band-gap states of metal oxides by the application of epitaxial strain: the case of indium oxide. Phys Rev B. 2011;83:161202.
  • Liu K, Jiang L, Huang W, et al. Atomic overlayer of permeable microporous cuprous oxide on palladium promotes hydrogenation catalysis. Nat Commun. 2022;13:2597.
  • Nong HN, Reier T, Oh H-S, et al. A unique oxygen ligand environment facilitates water oxidation in hole-doped IrNiOx core–shell electrocatalysts. Nat Catal. 2018;1:841–851.
  • Meng G, Sun W, Mon AA, et al. Strain Regulation to optimize the acidic water oxidation performance of atomic‐layer irOx. Adv Mater. 2019;31:1903616.
  • Wen Y, Yang T, Cheng C, et al. Engineering Ru(IV) charge density in Ru@RuO2 core-shell electrocatalyst via tensile strain for efficient oxygen evolution in acidic media. Chin J Catal. 2020;41:1161–1167.
  • Shan J, Guo C, Zhu Y, et al. Charge-Redistribution-Enhanced Nanocrystalline Ru@IrOx Electrocatalysts for Oxygen Evolution in Acidic Media. Chem. 2019;5:445–459.
  • Ro I, Resasco J, Christopher P. Approaches for Understanding and Controlling Interfacial Effects in Oxide-Supported Metal Catalysts. ACS Catal. 2018;8:7368–7387.
  • Joo SH, Park JY, Tsung C-K, et al. Thermally stable Pt/mesoporous silica core–shell nanocatalysts for high-temperature reactions. Nat Mater. 2009;8:126–131.
  • Li Z, Wang Z, Kawi S. Sintering and Coke Resistant Core/Yolk Shell Catalyst for Hydrocarbon Reforming. ChemCatChem. 2019;11:202–224.
  • Cargnello M, Jaén JJD, Garrido JCH, et al. Exceptional Activity for Methane Combustion over Modular Pd@CeO2 Subunits on Functionalized Al2O3. Science. 2012;337:713–717.
  • Lu J, Fu B, Kung MC, et al. Coking- and Sintering-Resistant Palladium Catalysts Achieved Through Atomic Layer Deposition. Science. 2012;335:1205–1208.
  • Farrusseng D, Tuel A. Perspectives on zeolite-encapsulated metal nanoparticles and their applications in catalysis. New J Chem. 2016;40:3933–3949.
  • Li S, Tuel A, Laprune D, et al. Transition-Metal Nanoparticles in Hollow Zeolite Single Crystals as Bifunctional and Size-Selective Hydrogenation Catalysts. Chem Mater. 2015;27:276–282.
  • Zhang J, Wang B, Nikolla E, et al. Directing Reaction Pathways through Controlled Reactant Binding at Pd–TiO2 Interfaces. Angew Chem Int Ed. 2017;56:6594–6598.
  • Kim M, Park JC, Kim A, et al. Porosity Control of Pd@SiO2 Yolk–Shell Nanocatalysts by the Formation of Nickel Phyllosilicate and Its Influence on Suzuki Coupling Reactions. Langmuir. 2012;28:6441–6447.
  • Li J, Liang X, Joo JB, et al. Mass Transport across the Porous Oxide Shells of Core–Shell and Yolk–Shell Nanostructures in Liquid Phase. J Phys Chem C. 2013;117:20043–20053.
  • Li L, He S, Song Y, et al. Fine-tunable Ni@porous silica core–shell nanocatalysts: synthesis, characterization, and catalytic properties in partial oxidation of methane to syngas. J Catal. 2012;288:54–64.
  • Li Z, Kathiraser Y, Ashok J, et al. Simultaneous Tuning Porosity and Basicity of Nickel@Nickel–Magnesium Phyllosilicate Core–Shell Catalysts for CO2 Reforming of CH4. Langmuir. 2014;30:14694–14705.
  • Wang C, Wu H, Jie X, et al. Yolk–Shell Nanocapsule Catalysts as Nanoreactors with Various Shell Structures and Their Diffusion Effect on the CO2 Reforming of Methane. ACS Appl Mater Interfaces. 2021;13:31699–31709.
  • Wu M, Zhao J, Li C, et al. Heterogeneity in a metal–organic framework in situ guides engineering Co@CoO heterojunction for electrocatalytic H2 production in tandem with glucose oxidation. J Mater Chem A. 2022;10:4791–4799.
  • Van Dao D, Nguyen TTD, Le TD, et al. Plasmonically driven photocatalytic hydrogen evolution activity of a Pt-functionalized Au@CeO2 core–shell catalyst under visible light. J Mater Chem A. 2020;8:7687–7694.
  • Yanagida S, Yajima T, Takei T, et al. Removal of hexavalent chromium from water by Z-scheme photocatalysis using TiO2 (rutile) nanorods loaded with Au core–Cu2O shell particles. J Environ Sci. 2022;115:173–189.
  • Feng Y, Yang C, Fang W, et al. Anti-poisoned oxygen reduction by the interface modulated Pd@NiO core@shell. Nano Energy. 2019;58:234–243.
  • Yang X, Fu H, Zhang L, et al. Enhanced gas sensing performance based on the fabrication of polycrystalline Ag@TiO2 core-shell nanowires. Sens Actuators B Chem. 2019;286:483–492.
  • Hu Z, Mi Y, Ji Y, et al. Multiplasmon modes for enhancing the photocatalytic activity of Au/Ag/Cu2O core–shell nanorods. Nanoscale. 2019;11:16445–16454.
  • Nguyen TTD, Dao DV, Thi Thu Ha N, et al. Superhigh sensing response and selectivity for hydrogen gas using PdPt@ZnO core-shell nanoparticles: unique effect of alloyed ingredient from experimental and theoretical investigations. Sens Actuators B Chem. 2022;354:131083.
  • Song S, Li K, Pan J, et al. Achieving the Trade-Off between Selectivity and Activity in Semihydrogenation of Alkynes by Fabrication of (Asymmetrical Pd@Ag Core)@(CeO2 Shell) Nanocatalysts via Autoredox Reaction. Adv Mater. 2017;29:1605332.
  • Song S, Liu X, Li J, et al. Confining the Nucleation of Pt to In Situ Form (Pt-Enriched Cage)@CeO2 Core@Shell Nanostructure as Excellent Catalysts for Hydrogenation Reactions. Adv Mater. 2017;29:1700495.
  • Liu Y, Wang Q, Wu L, et al. Tunable bimetallic Au–Pd@CeO2 for semihydrogenation of phenylacetylene by ammonia borane. Nanoscale. 2019;11:12932–12937.
  • Nnadozie EC, Ajibade PA. Multifunctional Magnetic Oxide Nanoparticle (MNP) Core-Shell: Review of Synthesis, Structural Studies and Application for Wastewater Treatment. Molecules. 2020;25:4110.
  • Su J, Zhang Y, Xu S, et al. Highly efficient and recyclable triple-shelled Ag@Fe3O4@SiO2@TiO2 photocatalysts for degradation of organic pollutants and reduction of hexavalent chromium ions. Nanoscale. 2014;6:5181.
  • Shi R, Gao DL, Hu H, et al. Enhanced broadband spin Hall effects by core-shell nanoparticles. Opt Express. 2019;27:4808.
  • Chopra R, Kumar M, Bhalla V. Fabrication of Polythiophene-Supported Ag@Fe3O4 Nanoclusters and Their Utilization as Photocatalyst in Dehydrogenative Coupling Reactions. ACS Sustainable Chem Eng. 2018;6:7412–7419.
  • Iglesias Ò, Labarta A, Batlle X. Exchange Bias Phenomenology and Models of Core/Shell Nanoparticles. J Nanosci Nanotechnol. 2008;8:2761–2780.
  • Blachowicz T, Ehrmann A. Exchange Bias in Thin Films—An Update. Coatings. 2021;11:122.
  • Guo B, Xu Y, Zhou S. Morphology dependence of low temperatures exchange bias Co/CoO core-shell nanoparticles/spheres by eco-friendly solvothermal route. AIP Adv. 2018;8:115115.
  • Sabogal-Suárez D, Alzate-Cardona JD, Restrepo-Parra E. Influence of the shape on exchange bias in core/shell nanoparticles. J Magn Magn Mater. 2019;482:120–124.
  • Gandha K, Chaudhary RP, Mohapatra J, et al. Giant exchange bias and its angular dependence in Co/CoO core-shell nanowire assemblies. Phys Lett A. 2017;381:2092–2096.
  • Thomas S, Reethu K, Thanveer T, et al. Effect of shell thickness on the exchange bias blocking temperature and coercivity in Co-CoO core-shell nanoparticles. J Appl Phys. 2017;122:063902.
  • González JA, Andrés JP, López Antón R, et al. Maximizing Exchange Bias in Co/CoO Core/Shell Nanoparticles by Lattice Matching between the Shell and the Embedding Matrix. Chem Mater. 2017;29:5200–5206.
  • Ponti A, Ferretti AM, Capetti E, et al. Steering the magnetic properties of Ni/NiO/CoO core-shell nanoparticle films: the role of core-shell interface versus interparticle interactions. Phys Rev Mater. 2017;1:036001.
  • Sahai A, Goswami N, Kaushik SD, et al. Cu/Cu2O/CuO nanoparticles: novel synthesis by exploding wire technique and extensive characterization. Appl Surf Sci. 2016;390:974–983.
  • Chamé FK, Ojeda MM, González GF, et al. Green and red upconversion luminescence in multifunctional Ag@Fe3O4@Gd2O3: Er3+composites. J Alloys Compd. 2018;744:683–690.
  • Yang L, Chen C, Rui Z, et al. Anodic aluminum oxide supported Pd@CeO2 catalyst for organic gas pollutants removal with an enhanced performance. CatalToday. 2020;355:602–607.
  • Cai G, Luo W, Xiao Y, et al. Synthesis of a Highly Stable Pd@CeO2 Catalyst for Methane Combustion with the Synergistic Effect of Urea and Citric Acid. ACS Omega. 2018;3:16769–16776.
  • Chen C, Yeh Y-H, Cargnello M, et al. Methane Oxidation on Pd@ZrO2/Si–Al2O3 Is Enhanced by Surface Reduction of ZrO2. ACS Catal. 2014;4:3902–3909.
  • Marques FC, Azevedo GC, Senna CA, et al. Structural characterization and plasmonic properties of manganese oxide-coated gold nanorods. Spectrochim Acta A Mol Biomol Spectrosc. 2022;272:120988.
  • Rajbongshi H, Bhattacharjee S, Datta P. Photocatalytic activity of Ag/ZnO core–shell nanoparticles with shell thickness as controlling parameter under green environment. Mater Res Express. 2017;4:025501.
  • Shang L, Qu J, Wang Z, et al. Optical absorption property and photo-thermal conversion performance of Ag@Al2O3 plasmonic nanofluids with Al2O3 nano-shell fabricated by atomic layer deposition. J Mol Liq. 2021;326:115388.
  • da Silva AGM, Rodrigues TS, Wang J, et al. Plasmonic catalysis with designer nanoparticles. Chem Commun. 2022;58:2055–2074.
  • Zhang Y, Radjenovic PM, Zhou X, et al. Nanomaterials and their Applications in Spectroscopies. Adv Mater. 2021;33:2005900.
  • Garcia-Peiro JI, Bonet-Aleta J, Bueno-Alejo CJ, et al. Recent Advances in the Design and Photocatalytic Enhanced Performance of Gold Plasmonic Nanostructures Decorated with Non-Titania Based Semiconductor Hetero-Nanoarchitectures. Catalysts. 2020;10:1459.
  • Mancarella C, Sygletou M, Bricchi BR, et al. Tunable optical and plasmonic response of Au nanoparticles embedded in Ta-doped TiO2 transparent conducting films. Phys Rev Mater. 2022;6:025201.
  • Schultz J, Kirner F, Potapov P, et al. Tailoring Plasmonics of Au@Ag Nanoparticles by Silica Encapsulation. Adv Opt Mater. 2021;9:2101221.
  • Gutierrez Y, Ortiz D, Sanz JM, et al. How an oxide shell affects the ultraviolet plasmonic behavior of Ga, Mg, and Al nanostructures. Opt Express. 2016;24:20621.
  • Swaroop A, Pujari A, Thomas T. Modelling core-shell plasmonic nanoparticles as homogenous systems: an effective refractive index approach. Materialia. 2021;19:101183.
  • Yaremchuk I, Meškinis Š, Bulavinets T, et al. Effect of oxidation of copper nanoparticles on absorption spectra of DLC:Cu nanocomposites. Diam Relat Mater. 2019;99:107538.
  • Chen Y-P, Lai -C-C, Tsai W-S. Full-color based on bismuth core-shell nanoparticles in one-step fabrication. Opt Express. 2020;28:24511.
  • Knight MW, King NS, Liu L, et al. Aluminum for Plasmonics. ACS Nano. 2014;8:834–840.
  • Qian L, Li W, Gu Z, et al. Ultra‐Sensitive β‐Ga2O3 Solar‐Blind Photodetector with High‐Density Al@Al2O3 Core−Shell Nanoplasmonic Array. Adv Opt Mater. 2022;2102055.
  • Robatjazi H, Zhao H, Swearer DF, et al. Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles. Nat Commun. 2017;8:27.
  • Nasrollahzadeh M, Sajjadi M, Iravani S, et al. Green-synthesized nanocatalysts and nanomaterials for water treatment: current challenges and future perspectives. J Hazard Mater. 2021;401:123401.
  • Azizi S, Mohamad R, Rahim RA, et al. ZnO-Ag core shell nanocomposite formed by green method using essential oil of wild ginger and their bactericidal and cytotoxic effects. Appl Surf Sci. 2016;384:517–524.
  • Das B, Khan M, Jayabalan R, et al. Understanding the antifungal mechanism of Ag@ZnO core-shell nanocomposites against Candida krusei. Sci Rep. 2016;6:36403.
  • Ghaemi B, Shaabani E, Najafi-Taher R, et al. Intracellular ROS Induction by Ag@ZnO Core–Shell nanoparticles: frontiers of permanent optically active holes in breast cancer theranostic. ACS Appl Mater Interfaces. 2018;10:24370–24381.
  • Paz Herrera L, Freitas de Lima E Freitas L, Hong J, et al. Reactivity of Pd–MO2 encapsulated catalytic systems for CO oxidation. Catal Sci Technol. 2022;12:1476–1486.
  • Yang J, Fang X, Xu Y, et al. Investigation of the deactivation behavior of Co catalysts in Fischer–Tropsch synthesis using encapsulated Co nanoparticles with controlled SiO2 shell layer thickness. Catal Sci Technol. 2020;10:1182–1192.
  • Pan X, Zheng J, Zhang L, et al. Core–Shell Au@SnO2 Nanostructures Supported on Na2Ti4O9 nanobelts as a highly active and deactivation-resistant catalyst toward selective nitroaromatics reduction. Inorg Chem. 2019;58:11164–11171.
  • Kosari M, Askari S, Seayad AM, et al. Strong coke-resistivity of spherical hollow Ni/SiO2 catalysts with shell-confined high-content Ni nanoparticles for methane dry reforming with CO2. Appl Catal B Environ. 2022;310:121360.
  • Das S, Lim KH, Gani TZH, et al. Bi-functional CeO2 coated NiCo-MgAl core-shell catalyst with high activity and resistance to coke and H2S poisoning in methane dry reforming. Appl Catal B Environ. 2023;323:122141.
  • Gopalan Sibi M, Verma D, Kim J. Magnetic core–shell nanocatalysts: promising versatile catalysts for organic and photocatalytic reactions. Catalysis Rev. 2020;62:163–311.
  • Abdulrasheed A, Jalil AA, Gambo Y, et al. A review on catalyst development for dry reforming of methane to syngas: recent advances. Renew Sust Energ Rev. 2019;108:175–193.
  • Li Z, Lin Q, Li M, et al. Recent advances in process and catalyst for CO2 reforming of methane. Renew Sust Energ Rev. 2020;134:110312.
  • Kawi S, Kathiraser Y, Ni J, et al. Progress in synthesis of highly active and stable nickel-based catalysts for carbon dioxide reforming of methane. ChemSusChem. 2015;8:3556–3575.
  • Bengaard HS, Nørskov JK, Sehested J, et al. Steam reforming and graphite formation on Ni catalysts. J Catal. 2002;209:365–384.
  • Kim J-H, Suh DJ, Park T-J, et al. Effect of metal particle size on coking during CO2 reforming of CH4 over Ni–alumina aerogel catalysts. Appl Catal A Gen. 2000;197:191–200.
  • Li Z, Sibudjing K. Facile synthesis of multi-Ni-Core@Ni Phyllosilicate@CeO2 shell hollow spheres with high oxygen vacancy concentration for dry reforming of CH4. ChemCatChem. 2018;10:2994–3001.
  • Suen N-T, Hung S-F, Quan Q, et al. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev. 2017;46:337–365.
  • Li L, Wang P, Shao Q, et al. Recent progress in advanced electrocatalyst design for acidic oxygen evolution reaction. Adv Mater. 2021;33:2004243.
  • Reier T, Oezaslan M, Strasser P. Electrocatalytic Oxygen Evolution Reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials. ACS Catal. 2012;2:1765–1772.
  • Shi Q, Zhu C, Du D, et al. Robust noble metal-based electrocatalysts for oxygen evolution reaction. Chem Soc Rev. 2019;48:3181–3192.
  • Strasser P. Free electrons to molecular bonds and back: closing the energetic Oxygen Reduction (ORR)–Oxygen Evolution (OER) cycle using core–shell nanoelectrocatalysts. Acc Chem Res. 2016;49:2658–2668.
  • Ma X, Deng L, Lu M, et al. Heterostructure of core–shell IrCo@IrCoOx as efficient and stable catalysts for oxygen evolution reaction. Nanotechnology. 2022;33:125702.
  • Strickler AL, Escudero-Escribano M, Jaramillo TF. Core-Shell Au@Metal-Oxide nanoparticle electrocatalysts for enhanced oxygen evolution. Nano Lett. 2017;17:6040–6046.
  • Feng Y, Shao Q, Huang B, et al. Surface engineering at the interface of core/shell nanoparticles promotes hydrogen peroxide generation. Natl Sci Rev. 2018;5:895–906.
  • Mat N, Timmiati SN, Teh LP. Recent development in metal oxide-based core–shell material for CO2 capture and utilisation. Appl Nanosci. 2022.
  • Kosari M, Anjum U, Xi S, et al. Revamping SiO2 spheres by core–shell porosity endowment to construct a mazelike nanoreactor for enhanced catalysis in CO2 hydrogenation to methanol. Adv Funct Mater. 2021;31:2102896.
  • Han X, Li M, Chang X, et al. Hollow structured Cu@ZrO2 derived from Zr-MOF for selective hydrogenation of CO2 to methanol. J Energy Chem. 2022;71:277–287.
  • Cai Z, Zhang G, Tang Z, et al. MnFe@CeOx core–shell nanocages for the selective catalytic reduction of NO with NH3 at low temperature. ACS Appl Nano Mater. 2022;5:3619–3631.
  • Paital D, Bansal T, Khatua S. Photoelectrochemical water oxidation with plasmonic Au@MnOx core–shell nanoparticles. ACS Appl Nano Mater. 2022;5:11932–11939.
  • Sun Q, Han B, Li K, et al. The synergetic degradation of organic pollutants and removal of Cr(VI) in a multifunctional dual-chamber photocatalytic fuel cell with Ag@Fe2O3 cathode. Sep Purif Technol. 2022;281:119966.
  • Hong D, Lyu L-M, Koga K, et al. Plasmonic Ag@TiO2 Core–Shell nanoparticles for enhanced CO2 photoconversion to CH4. ACS Sustainable Chem Eng. 2019;7:18955–18964.
  • Dao DV, Nguyen TTD, Uthirakumar P, et al. Insightful understanding of hot-carrier generation and transfer in plasmonic Au@CeO2 core–shell photocatalysts for light-driven hydrogen evolution improvement. Appl Catal B Environ. 2021;286:119947.
  • Singh A, Sikarwar S, Verma A, et al. The recent development of metal oxide heterostructures based gas sensor, their future opportunities and challenges: a review. Sens Actuators A. 2021;332:113127.
  • Ji H, Zeng W, Li Y. Gas sensing mechanisms of metal oxide semiconductors: a focus review. Nanoscale. 2019;11:22664–22684.
  • Zappa D, Galstyan V, Kaur N, et al. “Metal oxide -based heterostructures for gas sensors”- A review. Anal Chim Acta. 2018;1039:1–23.
  • Xue S, Cao S, Huang Z, et al. Improving gas-sensing performance based on MOS nanomaterials: a review. Materials. 2021;14:4263.
  • Zhang Y, Luo Q, Ding K, et al. A smartphone-integrated colorimetric sensor of total volatile basic nitrogen (TVB-N) based on Au@MnO2 core-shell nanocomposites incorporated into hydrogel and its application in fish spoilage monitoring. Sens Actuators B Chem. 2021;335:129708.
  • Lee HY, Bang JH, Majhi SM, et al. Conductometric ppb-level acetone gas sensor based on one-pot synthesized Au@Co3O4 core-shell nanoparticles. Sens Actuators B Chem. 2022;359:131550.
  • Zhao S, Shen Y, Zhou P, et al. Design of Au@WO3 core−shell structured nanospheres for ppb-level NO2 sensing. Sens Actuators B Chem. 2019;282:917–926.
  • Wu C-H, Zhu Z, Chang H-M, et al. Pt@NiO core–shell nanostructure for a hydrogen gas sensor. J Alloys Compd. 2020;814:151815.
  • Liu X, Sun X, Duan X, et al. Core-shell Ag@In2O3 hollow hetero-nanostructures for selective ethanol detection in air. Sens Actuators B Chem. 2020;305:127450.
  • Chen G, Yuan Y, Lang M, et al. Core-shell Au@SiO2 nanocrystals doped PANI for highly sensitive, reproducible and flexible ammonia sensor at room temperature. Appl Surf Sci. 2022;598:153821.
  • Agarwal S, Kumar S, Navarrete Gatell E, et al. Facile synthesis of Pd@ZnO core@shell nanoparticles for selective ethanol detection. Mater Lett. 2021;10:100068.
  • Nguyen TTD, Dao DV, Kim D-S, et al. Effect of core and surface area toward hydrogen gas sensing performance using Pd@ZnO core-shell nanoparticles. J Colloid Interface Sci. 2021;587:252–259.
  • Gong Y, Wu X, Li X, et al. Enhanced acetone sensing properties of Pt@Al-doped ZnO core-shell nanoparticles. Sens Actuators B Chem. 2021;329:129153.
  • Gong Y, Wu X, Zhou X, et al. High acetone sensitive and reversible P- to N-type switching NO2 sensing properties of Pt@Ga-ZnO core-shell nanoparticles. Sens Actuators B Chem. 2019;289:114–123.
  • Nguyen TTD, Van Dao D, Lee I-H, et al. High response and selectivity toward hydrogen gas detection by In2O3 doped Pd@ZnO core-shell nanoparticles. J Alloys Compd. 2021;854:157280.
  • Shang J, Yang Q, Fan W, et al. Probing dynamic features of phagosome maturation in macrophage using Au@MnOx@SiO2 nanoparticles as pH‐sensitive plasmonic nanoprobes. Chem Asian J. 2021;16:1150–1156.
  • Liu W, Xu L, Sheng K, et al. A highly sensitive and moisture-resistant gas sensor for diabetes diagnosis with Pt@In2O3 nanowires and a molecular sieve for protection. NPG Asia Mater. 2018;10:293–308.
  • Dayakar T, Venkateswara Rao K, Park J, et al. Biosynthesis of Ag@CuO core–shell nanostructures for non-enzymatic glucose sensing using screen-printed electrode. J Mater Sci: Mater Electron. 2019;30:9725–9734.
  • Park J, Kim J, Min A, et al. Fabrication of nonenzymatic electrochemical sensor based on Zn@ZnO core-shell structures obtained via pulsed laser ablation for selective determination of hydroquinone. Environ Res. 2022;204:112340.
  • Manigandan R, Dhanasekaran T, Padmanaban A, et al. Bifunctional hexagonal Ni/NiO nanostructures: influence of the core–shell phase on magnetism, electrochemical sensing of serotonin, and catalytic reduction of 4-nitrophenol. Nanoscale Adv. 2019;1:1531–1540.
  • Mazhani M, Alula MT, Murape D. Development of a cysteine sensor based on the peroxidase-like activity of AgNPs@ Fe3O4 core-shell nanostructures. Anal Chim Acta. 2020;1107:193–202.
  • Galeano-Villar BM, Caraballo-Vivas RJ, Santos ECS, et al. Core-shell Fe@FexOy nanoring system: a versatile platform for biomedical applications. Mater Des. 2022;213:110303.
  • Díez AG, Rincón-Iglesias M, Lanceros-Méndez S, et al. Multicomponent magnetic nanoparticle engineering: the role of structure-property relationship in advanced applications. Mater Today Chem. 2022;26:101220.
  • Bansmann J, Baker S, Binns C, et al. Magnetic and structural properties of isolated and assembled clusters. Surf Sci Rep. 2005;56:189–275.
  • Nogués J, Sort J, Langlais V, et al. Exchange bias in nanostructures. Phys Rep. 2005;422:65–117.
  • Antilen Jacob G, Justin Joseyphus R. Magnetic properties of FeCo-iron oxide core–shell nanoparticles investigated through first order reversal studies. Appl Phys A. 2021;127:33.
  • Prakash T, Williams GVM, Kennedy J, et al. Formation of magnetic nanoparticles by low energy dual implantation of Ni and Fe into SiO2. J Alloys Compd. 2016;667:255–261.
  • Cowburn RP, Koltsov DK, Adeyeye AO, et al. Sensing magnetic fields using superparamagnetic nanomagnets. J Appl Phys. 2000;87:7082–7084.
  • Skumryev V, Stoyanov S, Zhang Y, et al. Beating the superparamagnetic limit with exchange bias. Nature. 2003;423:850–853.
  • Khan U, Nairan A, Irfan M, et al. Magnetic properties of Ni/BiFeO3 hybrid nanostructures. J Alloys Compd. 2022;912:165133.
  • Johnston-Peck AC, Tracy JB. Size control of cobalt nanoparticles by adjusting the linear carboxylic acid ligand chain length. J Magn Magn Mater. 2022;550:169036.
  • Goswami S, Gupta P, Nayak S, et al. Dependence of exchange bias on interparticle interactions in Co/CoO Core/shell nanostructures. Nanomaterials. 2022;12:3159.
  • Roy P, Srivastava SK. Nanostructured anode materials for lithium ion batteries. J Mater Chem A. 2015;3:2454–2484.
  • Su L, Jing Y, Zhou Z. Li ion battery materials with core–shell nanostructures. Nanoscale. 2011;3:3967.
  • Ho K-C, Lin L-Y. A review of electrode materials based on core–shell nanostructures for electrochemical supercapacitors. J Mater Chem A. 2019;7:3516–3530.
  • Nagappan S, Duraivel M, Park N, et al. Implementation of heteroatom-doped nanomaterial/core–shell nanostructure based electrocatalysts for fuel cells and metal-ion/air/sulfur batteries. Mater Adv. 2022;3:6096–6124.
  • Guo X, Zhang G, Li Q, et al. Non-noble metal-transition metal oxide materials for electrochemical energy storage. Energy Storage Mater. 2018;15:171–201.
  • Yu M, Wang W, Li C, et al. Scalable self-growth of Ni@NiO core-shell electrode with ultrahigh capacitance and super-long cyclic stability for supercapacitors. NPG Asia Mater. 2014;6:e129–e129.
  • Liu F, Wang X, Hao J, et al. High density arrayed Ni/NiO core-shell nanospheres evenly distributed on graphene for ultrahigh performance supercapacitor. Sci Rep. 2017;7:17709.
  • Sun H, Ma Z, Qiu Y, et al. Ni@NiO nanowires on nickel foam prepared via “acid hungry” strategy: high supercapacitor performance and robust electrocatalysts for water splitting reaction. Small. 2018;14:1800294.
  • Singh AK, Mandal K. High performance supercapacitor electrodes based on metal/metal-oxide core/shell nano-heterostructures. AIP Conf Proc. 2015;1665:050003.
  • Zhang L, Hu P, Zhao X, et al. Controllable synthesis of core–shell Co@CoO nanocomposites with a superior performance as an anode material for lithium-ion batteries. J Mater Chem. 2011;21:18279.
  • Cao Y, Lu H, Hong Q, et al. Synthesis of Ag/Co@CoO NPs anchored within N-doped hierarchical porous hollow carbon nanofibers as a superior free-standing cathode for Li−O2 batteries. Carbon. 2019;144:280–288.
  • Parvin N, Dhananjaya M, Mandal TK, et al. Bimetallic oxide nanoparticles contained hollow spheres with sodium as a core: a promising energy storage advanced structure. Mater Today Chem. 2022;26:101103.
  • Alikhaidarova E, Afanasyev D, Ibrayev N, et al. Plasmonic enhanced polymer solar cell with inclusion of Ag@SiO2 core‐shell nanostructures. Polym Adv Techs. 2022;33:1000–1008.
  • Shen W, Tang J, Yang R, et al. Enhanced efficiency of polymer solar cells by incorporated Ag–SiO2 core–shell nanoparticles in the active layer. RSC Adv. 2014;4:4379–4386.
  • N’Konou K, Chalh M, Monnier V, et al. Impact of Ag@SiO2 core-shell nanoparticles on the photoelectric current of plasmonic inverted organic solar cells. Synth Met. 2018;239:22–28.
  • Alkhalayfeh MA, Aziz AA, Pakhuruddin MZ. An overview of enhanced polymer solar cells with embedded plasmonic nanoparticles. Renew Sust Energ Rev. 2021;141:110726.
  • Du P, Jing P, Li D, et al. Plasmonic Ag@Oxide nanoprisms for enhanced performance of organic solar cells. Small. 2015;11:2454–2462.
  • Sun Y, Ren G, Han S, et al. Improving light harvesting and charge extraction of polymer solar cells upon buffer layer doping. Solar Energy. 2020;202:80–85.
  • Liu H, Wang X, Wu D. Innovative design of microencapsulated phase change materials for thermal energy storage and versatile applications: a review. Sustainable Energy Fuels. 2019;3:1091–1149.
  • Navarrete N, La Zara D, Goulas A, et al. Improved thermal energy storage of nanoencapsulated phase change materials by atomic layer deposition. Sol Energy Mater Sol Cells. 2020;206:110322.
  • Cingarapu S, Singh D, Timofeeva EV, et al. Nanofluids with encapsulated tin nanoparticles for advanced heat transfer and thermal energy storage: Sn/SiO2 nanofluids for advanced heat transfer and thermal storage. Int J Energy Res. 2014;38:51–59.
  • Zhang M, Hong Y, Ding S, et al. Encapsulated nano-heat-sinks for thermal management of heterogeneous chemical reactions. Nanoscale. 2010;2:2790.
  • Hong Y, Ding S, Wu W, et al. Enhancing heat capacity of colloidal suspension using nanoscale encapsulated phase-change materials for heat transfer. ACS Appl Mater Interfaces. 2010;2:1685–1691.
  • Wu W, Bostanci H, Chow LC, et al. Heat transfer enhancement of PAO in microchannel heat exchanger using nano-encapsulated phase change indium particles. Int J Heat Mass Transfer. 2013;58:348–355.
  • Darr JA, Zhang J, Makwana NM, et al. Continuous hydrothermal synthesis of inorganic nanoparticles: applications and future directions. Chem Rev. 2017;117:11125–11238.
  • Zhang B, Qin Y. Interface tailoring of heterogeneous catalysts by atomic layer deposition. ACS Catal. 2018;8:10064–10081.
  • Danks AE, Hall SR, Schnepp Z. The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis. Mater Horiz. 2016;3:91–112.
  • Bian Z, Suryawinata IY, Kawi S. Highly carbon resistant multicore-shell catalyst derived from Ni-Mg phyllosilicate nanotubes@silica for dry reforming of methane. Appl Catal B Environ. 2016;195:1–8.
  • Li Z, Li M, Ashok J, et al. NiCo@NiCo phyllosilicate@CeO2 hollow core shell catalysts for steam reforming of toluene as biomass tar model compound. Energy Convers Manag. 2019;180:822–830.
  • Bian Z, Kawi S. Sandwich-like silica@ni@silica multicore-shell catalyst for the low-temperature dry reforming of methane: confinement effect against carbon formation. ChemCatChem. 2018;10:320–328.
  • Jimenez-Izal E, Alexandrova AN. Computational design of clusters for catalysis. Annu Rev Phys Chem. 2018;69:377–400.
  • Jäger M, Schäfer R, Johnston RL. First principles global optimization of metal clusters and nanoalloys. Adv Phys X. 2018;3:S100009.
  • Ma S, Liu Z-P. Machine learning for atomic simulation and activity prediction in heterogeneous catalysis: current status and future. ACS Catal. 2020;10:13213–13226.
  • Kang P-L, Shang C, Liu Z-P. Large-scale atomic simulation via machine learning potentials constructed by global potential energy surface exploration. Acc Chem Res. 2020;53:2119–2129.