1,885
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Atomic force microscopy and other scanning probe microscopy methods to study nanoscale domains in model lipid membranes

, , &
Article: 2197623 | Received 19 Nov 2022, Accepted 25 Feb 2023, Published online: 02 May 2023

References

  • Calderon RO, Attema B, DeVries GH. Lipid composition of neuronal cell bodies and neurites from cultured dorsal root ganglia. J Neurochem. 2002;64:424–35.
  • Dinkla S, Eijk LTV, Fuchs B, et al. Inflammation-associated changes in lipid composition and the organization of the erythrocyte membrane. BBA Clin. 2016;5:186–192.
  • Fabelo N, Martín V, Marín R, et al. Altered lipid composition in cortical lipid rafts occurs at early stages of sporadic alzheimer’s disease and facilitates APP/BACE1 interactions. Neurobiol Aging. 2014;35:1801–1812.
  • Söderberg M, Edlund C, Kristensson K, et al. Fatty acid composition of brain phospholipids in aging and in alzheimer’s disease. Lipids. 1991;26:421–425.
  • Rilfors L, Lindblom G, Wieslander Å, et al. Lipid bilayer stability in biological membranes. In: Kates M Manson LA editors. Membrane Fluidity. Biomembranes; Springer US: Boston, MA. 1984pp. 205–245. DOI:10.1007/978-1-4684-4667-8_6
  • Singer SJ, Nicolson GL. The fluid mosaic model of the structure of cell membranes. Science. 1972;175:720–731.
  • Stier A, Sackmann E. Spin labels as enzyme substrates heterogeneous lipid distribution in liver microsomal membranes. Biochim Biophys Acta BBA - Biomembr. 1973;311:400–408.
  • Simons K, Ikonen E. Functional rafts in cell membranes. Nature. 1997;387:569–572.
  • Nicolson GL. Update of the 1972 singer-Nicolson fluid-mosaic model of membrane structure. Discoveries. 1:e3. DOI:10.15190/d.2013.3.
  • Hossain MM, Suzuki T, Iimura KI, et al. Kinetic appearance of first-order gas-liquid expanded and liquid expanded-liquid condensed phase transitions below the triple point. Langmuir. 2006;22:1074–1078.
  • Frey SL, Lee KYC. Number of sialic acid residues in ganglioside headgroup affects interactions with neighboring lipids. Biophys J. 2013;105:1421–1431.
  • Veatch SL, Keller SL. Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys J. 2003;85:3074–3083.
  • LaRocca TJ, Pathak P, Chiantia S, et al. Proving lipid rafts exist: membrane domains in the prokaryote Borrelia burgdorferi have the same properties as eukaryotic lipid rafts. PLOS Pathog. 2013;9:e1003353.
  • López D, Kolter R. Functional microdomains in bacterial membranes. Genes Dev. 2010;24:1893–1902.
  • Smokvarska M, Francis C, Platre MP, et al. A plasma membrane nanodomain ensures signal specificity during osmotic signaling in plants. Curr Biol CB. 2020;30:4654–4664.e4.
  • Lefebvre B, Furt F, Hartmann M-A, et al. Characterization of lipid rafts from Medicago truncatula root plasma membranes: a proteomic study reveals the presence of a raft-associated redox system. Plant Physiol. 2007;144:402–418.
  • Hou Q, Huang Y, Amato S, et al. Regulation of AMPA receptor localization in lipid rafts. Mol Cell Neurosci. 2008;38:213–223.
  • Barnett-Norris J, Lynch D, Reggio PH. Lipids, lipid rafts and caveolae: their importance for GPCR signaling and their centrality to the endocannabinoid system. Life Sci. 2005;77:1625–1639.
  • Nickels JD, Chatterjee S, Stanley CB, et al. The in vivo structure of biological membranes and evidence for lipid domains. PLoS Biol. 2017;15:1–22.
  • Edidin M. The state of lipid rafts: from model membranes to cells. Annu Rev Biophys Biomol Struct. 2003;32:257–283.
  • Dinic J, Riehl A, Adler J, et al. The T cell receptor resides in ordered plasma membrane nanodomains that aggregate upon patching of the receptor. Sci Rep. 2015;5:10082.
  • Horejsi V, Hrdinka M. Membrane microdomains in immunoreceptor signaling. FEBS Lett. 2014;588:2392–2397.
  • Mañes S, Del Real G, Martínez-A C. Pathogens: raft hijackers. Nat Rev Immunol. 2003;3:557–568.
  • Riethmüller J, Riehle A, Grassmé H, et al. Membrane rafts in host–pathogen interactions. Biochim Biophys Acta BBA - Biomembr. 2006;1758:2139–2147.
  • Lu Y, Liu DX, Tam JP. Lipid rafts are involved in SARS-Cov entry into Vero E6 cells. Biochem Biophys Res Commun. 2008;369:344–349.
  • Mollinedo F, Gajate C. Lipid rafts as signaling hubs in cancer cell survival/death and invasion: implications in tumor progression and therapy: thematic review series: biology of lipid rafts. J Lipid Res. 2020;61:611–635.
  • Zhuang L, Lin J, Lu ML, et al. Cholesterol-rich lipid rafts mediate akt-regulated survival in prostate cancer cells1. Cancer Res. 2002;62:2227–2231.
  • Rushworth JV, Hooper NM. Lipid rafts: linking alzheimer’s amyloid-β production, aggregation, and toxicity at neuronal membranes. Int J Alzheimers Dis. 2010;2011:603052.
  • Hicks DA, Nalivaeva NN, Turner AJ. Lipid rafts and alzheimer’s disease: protein-lipid interactions and perturbation of signaling. Front Physiol 2012;3 : JUN: 10.3389/fphys.2012.00189.
  • Rinia HA, Snel MME, Eerden JPJMVD, et al. Visualizing detergent resistant domains in model membranes with atomic force microscopy. FEBS Lett. 2001;501:92–96.
  • Almeida RFMD, Fedorov A, Prieto M. Sphingomyelin/Phosphatidylcholine/Cholesterol phase diagram: boundaries and composition of lipid rafts. Biophys J. 2003;85:2406–2416.
  • Leonenko ZV, Finot E, Ma H, et al. Investigation of temperature-induced phase transitions in DOPC and DPPC phospholipid bilayers using temperature-controlled scanning force microscopy. Biophys J. 2004;86:3783–3793.
  • Pike LJ. Rafts defined: a report on the keystone symposium on lipid rafts and cell function. J Lipid Res. 2006;47:1597–1598.
  • Rinia HA, Kruijff BD. Imaging domains in model membranes with atomic force microscopy. FEBS Lett. 2001;504:194–199.
  • Goksu EI, Vanegas JM, Blanchette CD, et al. AFM for structure and dynamics of biomembranes. Biochim Biophys Acta BBA - Biomembr. 2009;1788:254–266.
  • Wu H-M, Lin Y-H, Yen T-C, et al. Nanoscopic substructures of raft-mimetic liquid-ordered membrane domains revealed by high-speed single-particle tracking. Sci Rep. 2016;6:20542.
  • Levental I, Levental KR, Heberle FA. Lipid rafts: controversies resolved, mysteries remain. Trends Cell Biol. 2020;30:341–353.
  • Lorizate M, Terrones O, Nieto-Garai JA, et al. Super-resolution microscopy using a bioorthogonal-based cholesterol probe provides unprecedented capabilities for imaging nanoscale lipid heterogeneity in living cells. Small Methods. 2021;5:2100430.
  • Heberle FA, Petruzielo RS, Pan J, et al. Bilayer thickness mismatch controls domain size in model membranes. 2013. 2013;135:6853–6859.
  • García-Sáez AJ, Chiantia S, Schwille P. Effect of Line tension on the lateral organization of lipid membranes*. J Biol Chem. 2007;282:33537–33544.
  • Almeida PFF, Pokorny A, Hinderliter A. Thermodynamics of membrane domains. Biochim Biophys Acta. 2005;1720:1–13.
  • Mei N, Robinson M, Davis JH, et al. Melatonin Alters fluid phase coexistence in POPC/DPPC/Cholesterol membRanes. Biophys J. 2020;119:12.
  • Elson EL, Fried E, Dolbow JE, et al. Phase Separation in biological membranes: integration of theory and experiment. Annu Rev Biophys. 2010;39:207–226.
  • Davis JH, Clair JJ, Juhasz J. Phase equilibria in DOPC/DPPC-d 62/cholesterol mixtures. Biophysj. 2009;96:521–539.
  • Sheikh K, Giordani C, McManus JJ, et al. Differing modes of interaction between monomeric Aβ1–40 Peptides and model lipid membranes: an AFM study. Chem Phys Lipids. 2012;165:142–150.
  • Leonenko ZV, Carnini A, Cramb DT. Supported Planar bilayer formation by vesicle fusion: the interaction of phospholipid vesicles with surfaces and the effect of gramicidin on bilayer properties using atomic force microscopy. Biochim Biophys Acta - Biomembr. 2000;1509:131–147.
  • Roldan N, Pérez-Gil J, Morrow MR, et al. Divide & conquer: surfactant protein SP-C and cholesterol modulate phase segregation in lung surfactant. Biophys J. 2017;113:847–859.
  • Binnig G, Quate CF, Gerber C. Atomic Force microscope. Phys Rev Lett. 1986;56:930–933.
  • Drolle E, Hane F, Lee B, et al. Atomic force microscopy to study molecular mechanisms of amyloid fibril formation and toxicity in alzheimer’s disease. Drug Metab Rev. 2014;46:207–223.
  • Hoh JH, Hansma PK. Atomic force microscopy for high-resolution imaging in cell biology. Trends Cell Biol. 1992;2:208–213.
  • Mehrazma B, Robinson M, Opare SKA, et al. Pseudo-peptide amyloid-β blocking inhibitors: molecular dynamics and single molecule force spectroscopy study. Biochim Biophys Acta. 2017;1865:11.
  • Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett. 1986;56:930.
  • Leonenko Z, Finot E, Cramb D. AFM Study of interaction forces in supported planar DPPC bilayers in the presence of general anesthetic halothane. Biochim Biophys Acta BBA - Biomembr. 2006;1758:487–492.
  • Nievergelt AP, Erickson BW, Hosseini N, et al. Studying Biological membranes with extended range high-speed atomic force microscopy. Sci Rep. 2015;5:11987.
  • Nonnenmacher M, O’boyle MP, Wickramasinghe HK. Kelvin probe force microscopy. Appl Phys Lett. 1991;58:2921–2923.
  • Melitz W, Shen J, Kummel AC, et al. Kelvin Probe force microscopy and its application. Surf Sci Rep. 2011;66:1–27.
  • Lee G, Lee W, Lee H, et al. Mapping the surface charge distribution of amyloid fibril. Appl Phys Lett. 2012;101:043703.
  • Leung C, Kinns H, Hoogenboom BW, et al. Imaging Surface charges of individual biomolecules. Nano Lett. 2009;9:2769–2773.
  • Moores B, Hane F, Eng L, et al. Kelvin probe force microscopy in application to biomolecular films: frequency modulation, amplitude modulation, and lift mode. Ultramicroscopy. 2010;110:708–711.
  • Drolle E, Gaikwad RM, Leonenko Z. Nanoscale electrostatic domains in cholesterol-laden lipid membranes create a target for amyloid binding. Biophys J. 2012;103:27–29.
  • Drolle E, Bennett DWF, Hammond K, et al. MoleculaR dynamics simulations and kelvin probe force microscopy to study of cholesterol-induced electrostatic nanodomains in complex lipid mixtures. Soft Matter. 2017;13:355–362.
  • Henderson RD, Filice CT, Wettig S, et al. Kelvin probe force microscopy to study electrostatic interactions of DNA with lipid–Gemini surfactant monolayers for gene delivery. Soft Matter. 2021;17:826–833.
  • Drolle E, Ngo W, Leonenko Z, et al. Nanoscale Characteristics of ocular lipid thin films using kelvin probe force microscopy. Transl Vis Sci Technol. 2020;9:41.
  • Drolle E, Negoda A, Hammond K, et al. Changes in lipid membranes may trigger amyloid toxicity in alzheimer’s disease. PLoS ONE. 2017;12:e0182194.
  • Tsai C-C, Hung H-H, Liu C-P, et al. Changes In plasma membrane surface potential of PC12 cells as measured by kelvin probe force microscopy. PLoS ONE. 2012;7:e33849.
  • Ando T, Kodera N, Takai E, et al. A high-speed atomic force microscope for studying biological macromolecules. Proc Natl Acad Sci U S A. 2001;98:12468–12472.
  • Picco LM, Bozec L, Ulcinas A, et al. Breaking the speed limit with atomic force microscopy. Nanotechnology. 2007;18:44030.
  • Giocondi M-C, Yamamoto D, Lesniewska E, et al. Surface topography of membrane domains. Biochim Biophys Acta BBA - Biomembr. 2010;1798:703–718.
  • Attwood SJ, Choi Y, Leonenko Z. Preparation of DOPC and DPPC supported planar lipid bilayers for atomic force microscopy and atomic force spectroscopy. Int J Mol Sci. 2013;14:3514–3539.
  • Garcia-Manyes S, Sanz F. Nanomechanics of lipid bilayers by force spectroscopy with AFM: A perspective. Biochim Biophys Acta BBA - Biomembr. 2010;1798:741–749.
  • Bhojoo U, Chen M, Zou S. Temperature induced lipid membrane restructuring and changes in nanomechanics. Biochim Biophys Acta BBA - Biomembr. 2018;1860:700–709.
  • Sullan RMA, Li JK, Hao C, et al. Cholesterol-dependent nanomechanical stability of phase-segregated multicomponent lipid bilayers. Biophys J. 2010;99:507–516.
  • Butt H-J, Franz V. Rupture of molecular thin films observed in atomic force microscopy. i. theory. Phys Rev E. 2002;66:031601.
  • Loi S, Sun G, Franz V, et al. Rupture of molecular thin films observed in atomic force microscopy. ii. experiment. Phys Rev E. 2002;66:031602.
  • Garcia-Manyes S, Redondo-Morata L, Oncins G, et al. Nanomechanics of lipid bilayers: heads or tails?. J Am Chem Soc. 2010;132:12874–12886.
  • Li JK, Sullan RMA, Zou S. Atomic force microscopy force mapping in the study of supported lipid bilayers. Langmuir. 2011;27:1308–1313.
  • Opilik L, Bauer T, Schmid T, et al. Nanoscale chemical imaging of segregated lipid domains using tip-enhanced raman spectroscopy. Phys Chem Chem Phys. 2011;13:9978–9981.
  • Böhme R, Cialla D, Richter M, et al. Biochemical imaging below the diffraction limit – probing cellular membrane related structures by tip-enhanced raman spectroscopy (TERS). J Biophotonics. 2010;3:455–461.
  • Pandey Y, Kumar N, Goubert G, et al. Nanoscale chemical imaging of supported lipid monolayers using tip-enhanced raman spectroscopy. Angew Chem Int Ed. 2021;60:19041–19046.
  • Lipiec E, Wnętrzak A, Chachaj-Brekiesz A, et al. High-resolution label-free studies of molecular distribution and orientation in ultrathin, multicomponent model membranes with infrared nano-spectroscopy AFM-IR. J Colloid Interface Sci. 2019;542:347–354.
  • Gruszecki WI, Kulik AJ, Janik E, et al. Nanoscale resolution in infrared imaging of protein-containing lipid membranes. Nanoscale. 2015;7:14659–14662.
  • Feuillie C, Lambert E, Ewald M, et al. High speed AFM and nanoinfrared spectroscopy investigation of Aβ1-42 peptide variants and their interaction with POPC/SM/Chol/GM1 model membranes. Front Mol Biosci. 2020;7:571696.
  • Ramachandran S, Arce FT, Patel NR, et al. Structure and permeability of ion-channels by integrated AFM and waveguide TIRF microscopy. Sci Rep. 2014;4:1–5.
  • Oliveira ON, Caseli L, Ariga K. The past and the future of Langmuir and Langmuir–Blodgett films. Chem Rev. 2022;122:6459–6513.
  • Stottrup BL, Stevens DS, Keller SL. Miscibility of ternary mixtures of phospholipids and cholesterol in monolayers, and application to bilayer systems. Biophys J. 2005;88:269–276.
  • Szoka F, Papahadjopoulos D. Comparative properties and methods of preparation of lipid vesicles (Liposomes). Annu Rev Biophys Bioeng. 1980;9:467–508.
  • Lapinski MM, Castro-Forero A, Greiner AJ, et al. Comparison of liposomes formed by sonication and extrusion: rotational and translational diffusion of an embedded chromophore. Langmuir. 2007;23:11677–11683.
  • Cho N-J, Hwang LY, Solandt J, et al. Comparison of extruded and sonicated vesicles for planar bilayer self-assembly. Materials. 2013;6:3294–3308.
  • Maulucci G, De Spirito M, Arcovito G, et al. Particle size distribution in DMPC vesicles solutions undergoing different sonication times. Biophys J. 2005;88:3545–3550.
  • Choi EJ, Dimitriadis EK. Cytochrome c adsorption to supported, anionic lipid bilayers studied via atomic force microscopy. Biophys J. 2004;87:3234–3241.
  • Swana KW, Camesano TA, Nagarajan R. Formation of a fully anionic supported lipid bilayer to model bacterial inner membrane for QCM-D studies. Membranes (Basel). 2022;12:558.
  • Simons K, Vaz WLC. Model systems, lipid rafts, and cell membranes. Annu Rev Biophys Biomol Struct. 2004;33:269–295.
  • Ernst R, Ejsing CS, Antonny B. Homeoviscous adaptation and the regulation of membrane lipids. J Mol Biol. 2016;428:4776–4791.
  • Christie WW. Rapid separation and quantification of lipid classes by high performance liquid chromatography and mass (light-scattering) detection. J Lipid Res. 1985;26:507–512.
  • Frankel D, Davies M, Bhushan B, et al. Cholesterol-rich naked mole-rat brain lipid membranes are susceptible to amyloid beta-induced damagein vitro. Aging. 2020;12:22266–22290.
  • Chen KL, Bothun GD. Nanoparticles meet cell membranes: probing nonspecific interactions using model membranes. Environ Sci Technol. 2014;48:873–880.
  • Sarkis J, Vié V. Biomimetic models to investigate membrane biophysics affecting lipid–protein interaction. Front Bioeng Biotechnol. 2020;8. DOI:10.3389/fbioe.2020.00270
  • Davis JH. The description of membrane lipid conformation, order and dynamics By2H-NMR. BBA - Rev Biomembr. 1983;737:117–171.
  • Pandit SA, Vasudevan S, Chiu SW, et al. Sphingomyelin-cholesterol domains in phospholipid membranes: atomistic simulation. Biophys J. 2004;87:1092–1100.
  • Quinn PJ. Structure of sphingomyelin bilayers and complexes with cholesterol forming membrane rafts. Langmuir. 2013;29:9447–9456.
  • Yuan C, Furlong J, Burgos P, et al. The size of lipid rafts: an atomic force microscopy study of ganglioside GM1 domains in sphingomyelin/DOPC/cholesterol membranes. Biophys J. 2002;82:2526–2535.
  • Kergomard J, Carrière F, Paboeuf G, et al. Modulation of gastric lipase adsorption onto mixed galactolipid-phospholipid films by addition of phytosterols. Colloids Surf B Biointerfaces. 2022;220:112933.
  • Kergomard J, Carrière F, Paboeuf G, et al. InterfaciaL organization and phase behavior of mixed galactolipid-DPPC-phytosterol assemblies at the air-water interface and in hydrated mesophases. Colloids Surf B Biointerfaces. 2022;217:112646.
  • Vanegas JM, Contreras MF, Faller R, et al. Role of unsaturated lipid and ergosterol in ethanol tolerance of model yeast biomembranes. Biophys J. 2012;102:507–516.
  • Gunstone FD, Harwood JL. The Lipid Handbook with CD-ROM. New York: CRC Press; 2007.
  • Verkleij AJ, Zwaal RFA, Roelofsen B, et al. The asymmetric distribution of phospholipids in the human red cell membrane. a combined study using phospholipases and freeze-etch electron microscopy. Biochim Biophys Acta BBA - Biomembr. 1973;323:178–193.
  • van Meer G, de Kroon AIPM. Lipid map of the mammalian cell. J Cell Sci. 2011;124:5–8.
  • Lee J, Kim YH, Arce F, et al. Amyloid β Ion channels in a membrane comprising brain total lipid extracts. ACS Chem Neurosci. 2017;8:1348–1357.
  • Giocondi M-C, Boichot S, Plénat T, et al. Structural diversity of sphingomyelin microdomains. Ultramicroscopy. 2004;100:135–143.
  • Åkesson A, Lind T, Ehrlich N, et al. Composition and structure of mixed phospholipid supported bilayers formed by POPC and DPPC. Soft Matter. 2012;8:5658–5665.
  • Khadka NK, Timsina R, Rowe E, et al. Mechanical properties of the high cholesterol-containing membrane: an AFM study. Biochim Biophys Acta BBA - Biomembr. 2021;1863:183625.
  • Dietrich C, Bagatolli LA, Volovyk ZN, et al. Lipid rafts reconstituted in model membranes. Biophys J. 2001;80:1417–1428.
  • Benfenati F, Greengard P, Brunner J, et al. Electrostatic and hydrophobic interactions of synapsin i and synapsin i fragments with phospholipid bilayers. J cell Biol. 1989;108:1851–1862.
  • Klausen LH, Fuhs T, Dong M. Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy. Nat Commun. 2016;7:12447.
  • Canale C, Seghezza S, Vilasi S, et al. Different effects of alzheimer’s peptide Aβ(1–40) oligomers and fibrils on supported lipid membranes. Biophys Chem. 2013;182:23–29.
  • Veatch SL, Keller SL. A closer look at the canonical ‘raft mixture’ in model membrane studies. Biophys J. 2003;84:725–726.
  • Bertrand B, Munusamy S, Espinosa-Romero J-F, et al. Biophysical characterization of the insertion of two potent antimicrobial peptides-Pin2 and its variant pin2[GVG] in biological model membranes. Biochim Biophys Acta BBA - Biomembr. 2020;1862:183105.
  • Tharad S, Promdonkoy B, Toca-Herrera JL. Protein-lipid interaction of cytolytic toxin Cyt2Aa2 on model lipid bilayers of erythrocyte cell membrane. Toxins (Basel). 2020;12:226.
  • Cai M, Zhao W, Shang X, et al. H. direct evidence of lipid rafts by in situ atomic force microscopy. Small. 2012;8:1243–1250.
  • Ravandeh M, Coliva G, Kahlert H, et al. Protective role of sphingomyelin in eye lens cell membrane model against oxidative stress. Biomolecules. 2021;11:276.
  • Lorite GS, Nobre TM, Zaniquelli MED, et al. Dibucaine effects on structural and elastic properties of lipid bilayers. Biophys Chem. 2009;139:75–83.
  • Bochicchio A, Brandner AF, Engberg O, et al. Spontaneous membrane nanodomain formation in the absence or presence of the neurotransmitter serotonin. Front Cell Dev Biol. 2020;8. DOI:10.3389/fcell.2020.601145
  • Dey S, Surendran D, Engberg O, et al. Altered membrane mechanics provides a receptor-independent pathway for serotonin action. Chem – Eur J. 2021;27:7533–7541.
  • McRae DM, Herz E, Robinson M, et al. Atomic force microscopy and force spectroscopy to study the effect of melatonin on the physical properties of phase-segregated model lipid membranes [abstract]. In: Joint 7th Annual Biophysical Society of Canada/IUPAB Ion Channel Biophysics Meeting, 2022 May 23-27; University of Ottawa, Ottawa, ON, Canada. 2022.
  • Sacchi M, Balleza D, Vena G, et al. Effect of neurosteroids on a model lipid bilayer including cholesterol: an atomic force microscopy study. Biochim Biophys Acta BBA - Biomembr. 2015;1848:1258–1267.
  • Marquês JT, Viana AS, De Almeida RFM. Ethanol effects on binary and ternary supported lipid bilayers with gel/fluid domains and lipid rafts. Biochim Biophys Acta BBA - Biomembr. 2011;1808:405–414.
  • Mrdenovic D, Zarzycki P, Majewska M, et al. Inhibition of amyloid β-induced lipid membrane permeation and amyloid β aggregation by K162. ACS Chem Neurosci. 2021;12:531–541.
  • Mrdenovic D, Majewska M, Pieta IS, et al. Size-dependent interaction of amyloid β oligomers with brain total lipid extract bilayer—fibrillation versus membrane destruction. Langmuir. 2019;35:11940–11949.
  • Yip CM, Darabie AA, McLaurin J. Aβ42-peptide assembly on lipid bilayers. J Mol Biol. 2002;318:97–107.
  • Tian Y, Li J, Cai M, et al. High resolution imaging of mitochondrial membranes by in situ atomic force microscopy. RSC Adv. 2013;3:708–712.
  • Sennato S, Bordi F, Cametti C, et al. Evidence of domain formation in cardiolipin−glycerophospholipid mixed monolayers. A thermodynamic and AFM study. J Phys Chem B. 2005;109:15950–15957.
  • Unsay JD, Cosentino K, Subburaj Y, et al. Cardiolipin effects on membrane structure and dynamics. Langmuir. 2013;29:15878–15887.
  • Majewska M, Zamlynny V, Pieta IS, et al. Interaction of LL-37 human cathelicidin peptide with a model microbial-like lipid membrane. Bioelectrochemistry Amst Neth. 2021;141:107842.
  • Lopes S, Neves CS, Eaton P, et al. Cardiolipin, a key component to mimic the E. Coli bacterial membrane in model systems revealed by dynamic light scattering and steady-state fluorescence anisotropy. Anal Bioanal Chem. 2010;398:1357–1366.
  • Lopes SC, Neves CS, Eaton P, et al. Improved model systems for bacterial membranes from differing species: the importance of varying composition in PE/PG/cardiolipin ternary mixtures. Mol Membr Biol. 2012;29:207–217.
  • Galván-Hernández A, Kobayashi N, Hernández-Cobos J, et al. Morphology and dynamics of domains in ergosterol or cholesterol containing membranes. Biochim Biophys Acta BBA - Biomembr. 2020;1862:183101.
  • Mamode Cassim A, Grison M, Ito Y, et al. Sphingolipids in plants: a guidebook on their function in membrane architecture, cellular processes, and environmental or developmental responses. FEBS Lett. 2020;594:3719–3738.
  • Finot E, Leonenko Y, Moores B, et al. Effect of cholesterol on electrostatics in lipid−protein films of a pulmonary surfactant. Langmuir. 2010;26:1929–1935.
  • Hane F, Moores B, Amrein M, et al. Effect of SP-C on surface potential distribution in pulmonary surfactant: atomic force microscopy and kelvin probe force microscopy study. Ultramicroscopy. 2009;109:968–973.
  • Leonenko Z, Gill S, Baoukina S, et al. An elevated level of cholesterol impairs self-assembly of pulmonary surfactant into a functional film. Biophys J. 2007;93:674–683.
  • Leonenko Z, Rodenstein M, Döhner J, et al. Electrical surface potential of pulmonary surfactant. Langmuir. 2006;22:10135–10139.
  • Geng Y, Cao Y, Zhao Q, et al. Potential hazards associated with interactions between diesel exhaust particulate matter and pulmonary surfactant. Sci Total Environ. 2022;807:151031.
  • Stenger PC, Alonso C, Zasadzinski JA, et al. Environmental tobacco smoke effects on lung surfactant film organization. Biochim Biophys Acta BBA - Biomembr. 2009;1788:358–370.
  • Wang EY, Zhang H, Fan Q, et al. Biophysical interaction between corticosteroids and natural surfactant preparation: implications for pulmonary drug delivery using surfactant as a carrier. Soft Matter. 2012;8:504–511.
  • Hane F, Drolle E, Leonenko Z. Effect of cholesterol and amyloid-β peptide on structure and function of mixed-lipid films and pulmonary surfactant BLES: an atomic force microscopy study. Nanomed Nanotechnol Biol Med. 2010;6:808–814.
  • Lanteri N, Rolandi R, Cavatorta P, et al. Myelin basic protein–lipid complex: an atomic force microscopy study. Colloids Surf Physicochem Eng Asp. 2000;175:3–9.
  • Mueller H, Butt H-J, Bamberg E. Adsorption of membrane-associated proteins to lipid bilayers studied with an atomic force microscope: myelin basic protein and cytochrome c. J Phys Chem B. 2000;104:4552–4559.
  • Lee DW, Banquy X, Kristiansen K, et al. Lipid domains control myelin basic protein adsorption and membrane interactions between model myelin lipid bilayers. Proc Natl Acad Sci. 2014;111:E768–775.
  • Pullmannová P, Pavlíková L, Kováčik A, et al. Permeability and microstructure of model stratum corneum lipid membranes containing ceramides with long (C16) and very long (C24) Acyl chains. Biophys Chem. 2017;224:20–31.
  • Norlén L, Gil IP, Simonsen A, et al. Human Stratum Corneum Lipid Organization as Observed by Atomic Force Microscopy on Langmuir–Blodgett Films. J Struct Biol. 2007;158:386–400.
  • Hagedorn S, Drolle E, Lorentz H, et al. Atomic force microscopy and Langmuir–Blodgett monolayer technique to assess contact lens deposits and human meibum extracts. J Optom. 2015;8:187–199.
  • Pérez-Guillén I, Domènech Ò, Botet-Carreras A, et al. Studying lipid membrane interactions of a super-cationic peptide in model membranes and living bacteria. Pharmaceutics. 2022;14:2191.
  • Lee T-H, Hofferek V, Sani M-A, et al. The impact of antibacterial peptides on bacterial lipid membranes depends on stage of growth. Faraday Discuss. 2021;232:399–418.
  • Lee T-H, Hofferek V, Separovic F, et al. The role of bacterial lipid diversity and membrane properties in modulating antimicrobial peptide activity and drug resistance. Curr Opin Chem Biol. 2019;52:85–92.
  • Li G, Hu X, Nie P, et al. Lipid-raft-targeted molecular self-assembly inactivates YAP to treat ovarian cancer. Nano Lett. 2021;21:747–755.
  • Yilmaz N, Kodama Y, Numata K. Lipid membrane interaction of peptide/DNA complexes designed for gene delivery. Langmuir. 2021;37:1882–1893.
  • Raghupathy R, Anilkumar AA, Polley A, et al. Transbilayer lipid interactions mediate nanoclustering of lipid-anchored proteins. Cell. 2015;161:581–594.
  • Irvine GB, El-Agnaf OM, Shankar GM, et al. Protein aggregation in the brain: the molecular basis for alzheimer’s and parkinson’s diseases. Mol Med. 2008;14:451–564.
  • Sulzer D, Edwards RH. The Physiological role of α-synuclein and its relationship to parkinson’s disease. J Neurochem. 2019;150:475–486.
  • Fessler MB, Parks JS. Intracellular lipid flux and membrane microdomains as organizing principles in inflammatory cell signaling. J Immunol Baltim Md. 2011;1950:1529–1535.
  • Eckert GP, Wood WG, Müller WE. Lipid membranes and beta-amyloid: a harmful connection. pii Curr Protein Pept Sci. 2010;11:319–325. 10.2174/138920310791330668
  • Hertel C, Terzi E, Hauser N, et al. Inhibition of the electrostatic interaction between β-amyloid peptide and membranes prevents β-amyloid-induced toxicity. Proc Natl Acad Sci U A. 1997;94:9412–9416.
  • Kim SI, Yi JS, Ko YG. Amyloid-β oligomerization is induced by brain lipid rafts. J Cell Biochem. 2006;99:878–889.
  • Yip CM, Elton EA, Darabie AA, et al. Cholesterol, a modulator of membrane-associated abeta-fibrillogenesis and neurotoxicity. J Mol Biol. 2001;311:723–734.
  • Hane F, Drolle E, Gaikwad R, et al. Amyloid-β aggregation on model lipid membranes: an atomic force microscopy study. J Alzheimers Dis. 2011;26:485–494.
  • Kakio A, Nishimoto SI, Yanagisawa K, et al. Cholesterol-dependent formation of GM1 ganglioside-bound amyloid β-protein, an endogenous seed for Alzheimer amyloid. J Biol Chem. 2001;276:24985–24990.
  • Williams TL, Johnson BRG, Urbanc B, et al. Aβ42 oligomers, but not fibrils, simultaneously bind to and cause damage to ganglioside-containing lipid membranes. Biochem J. 2011;439:67–77.
  • Choucair A, Chakrapani M, Chakravarthy B, et al. Preferential accumulation of Aβ(1-42) on gel phase domains of lipid bilayers: an AFM and fluorescence study. Biochim Biophys Acta - Biomembr. 2007;1768:146–154.
  • Sciacca MFM, Kotler SA, Brender JR, et al. Two-step mechanism of membrane disruption by aβ through membrane fragmentation and pore formation. Biophys J. 2012;103:702–710.
  • Demuro A, Mina E, Kayed R, et al. Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J Biol Chem. 2005;280:17294–17300.
  • Lin HAI, Bhatia R, Lal R. Amyloid β protein forms ion channels: implications for alzheimer’s disease pathophysiology. FASEB J. 2001;15:2433–2444.
  • Azouz M, Cullin C, Lecomte S, et al. Membrane domain modulation of aβ 1–42 oligomer interactions with supported lipid bilayers: an atomic force microscopy investigation. Nanoscale. 2019;11:20857–20867.
  • Gao Q, Wu G, Lai KWC. Cholesterol modulates the formation of the aβ ion channel in lipid bilayers. Biochemistry. 2020;59:992–998.
  • Bucciantini M, Nosi D, Forzan M, et al. Toxic effects of amyloid fibrils on cell membranes: the importance of ganglioside GM1. FASEB J. 2012;26:818–831.
  • Banerjee S, Sun Z, Hayden EY, et al. Nanoscale dynamics of amyloid β-42 oligomers as revealed by high-speed atomic force microscopy. ACS Nano. 2017;11:12202–12209.
  • Tashiro R, Taguchi H, Hidaka K, et al. Effects of physical damage in the intermediate phase on the progression of amyloid β fibrillization. Chem – Asian J. 2019;14:4140–4145.
  • Watanabe-Nakayama T, Ono K, Itami M, et al. High-speed atomic force microscopy reveals structural dynamics of amyloid β1–42 aggregates. Proc Natl Acad Sci. 2016;113:5835–5840.
  • Ewald M, Henry S, Lambert E, et al. High speed atomic force microscopy to investigate the interactions between toxic aβ 1-42 peptides and model membranes in real time: impact of the membrane composition. Nanoscale. 2019;11:7229–7238.
  • Robinson M, Lou J, Mehrazma B, et al. Pseudopeptide amyloid aggregation inhibitors: in silico, single molecule and cell viability studies. Int J Mol Sci. 2021;22:3.
  • Albert W, Pilkington IV, Schupp J, et al. Acetylation of aβ40 alters aggregation in the presence and absence of lipid membranes. ACS Chem Neurosci. 2019;11:146–161.
  • Perissinotto F, Stani C, Cecco ED, et al. Iron-mediated interaction of alpha synuclein with lipid raft model membranes. Nanoscale. 2020;12:7631–7640.
  • Stefanis L. α-synuclein in parkinson’s disease. Cold Spring Harb Perspect Med. 2012;2:a009399.
  • Musteikytė G, Jayaram AK, Xu CK, et al. Interactions of α-synuclein oligomers with lipid membranes. Biochim Biophys Acta BBA - Biomembr. 2021;1863:183536.
  • Jo E, McLaurin J, Yip CM, et al. α-synuclein membrane interactions and lipid specificity *. J Biol Chem. 2000;275:34328–34334.
  • Hane FT, Hayes R, Lee BY, et al. Effect of copper and zinc on the single molecule self-affinity of alzheimer’s amyloid-β peptides. PLoS ONE. 2016;11:e0147488.
  • Adegbuyiro A, Stonebraker AR, Sedighi F, et al. Oxidation promotes distinct huntingtin aggregates in the presence and absence of membranes. Biochemistry. 2022;61:1517–1530.
  • Tian X, Azpurua J, Hine C, et al. High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat. Nature. 2013;499:346–349.