5,431
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Topological data analysis and machine learning

&
Article: 2202331 | Received 30 Jun 2022, Accepted 08 Apr 2023, Published online: 29 Apr 2023

References

  • Hasan MZ, Kane CL. Colloquium: topological insulators. Rev Mod Phys. 2010;82:3045. DOI:10.1103/RevModPhys.82.3045
  • Ozawa T, Price HM, Amo A, et al. Topological photonics. Rev Mod Phys. 2019;91:015006. DOI:10.1103/RevModPhys.91.015006
  • Ma G, Xiao M, Chan TC. Topological phases in acoustic and mechanical systems. Nat Rev Phys. 2019;1:281. DOI:10.1038/s42254-019-0030-x
  • Kim M, Jacob Z, Rho J. Recent advances in 2D, 3D and higher-order topological photonics. Light: Sci & Appl. 2020;9:130. DOI:10.1038/s41377-020-0331-y
  • von Klitzing K, Chakraborty T, Kim P, et al. 40 years of the quantum Hall effect. Nat Rev Phys. 2020;2:397. DOI:10.1038/s42254-020-0209-1
  • Carleo G, Cirac I, Cranmer K, et al. Machine learning and the physical sciences. Rev Mod Phys. 2019;91:045002. DOI:10.1103/RevModPhys.91.045002
  • Mehta P, Bukov M, Wang C-H, et al. A high-bias, low-variance introduction to machine learning for physicists. Phys Rep. 2019;810:1. DOI:10.1016/j.physrep.2019.03.001
  • Carrasquilla J. Machine learning for quantum matter. Adv Phys: X. 2020;5:1797528. DOI:10.1080/23746149.2020.1797528
  • Yun J, Kim S, So S, et al. Deep learning for topological photonics. Adv Phys: X. 2022;7:2046156. DOI:10.1080/23746149.2022.2046156
  • Dawid A, Arnold J, Requena B, et al. Modern applications of machine learning in quantum sciences. arXiv:2204.04198. 2022. DOI:10.48550/ARXIV.2204.04198
  • Carlsson G. Topological methods for data modelling. Nat Rev Phys. 2020;2:697. DOI:10.1038/s42254-020-00249-3
  • Murugan J, Robertson D. An introduction to topological data analysis for physicists: from LGM to FRBs. arXiv:1904.11044. 2019. DOI:10.48550/ARXIV.1904.11044
  • Carlsson G. Topology and data. Bull Amer Math Soc. 2009;46:255. DOI:10.1090/S0273-0979-09-01249-X
  • Wasserman L. Topological data analysis. Annu Rev Stat Appl. 2018;5:501. DOI:10.1146/annurev-statistics-031017-100045
  • Hensel F, Moor M, Rieck B. A survey of topological machine learning methods. Front Artif Intell. 2021;4:681108. DOI:10.3389/frai.2021.681108
  • Hausmann J-C. On the Vietoris-Rips complexes and a cohomology theory for metric spaces. Ann Math Stud. 1995;138:175.
  • Robins V. Towards computing homology from finite approximations. Topology Proc. 1999;24:503.
  • Cohen-Steiner D, Edelsbrunner H, Harer J. Stability of persistence diagrams. Discrete Comput Geom. 2007;37:103. DOI:10.1007/s00454-006-1276-5
  • Chintakunta H, Gentimis T, Gonzalez-Diaz R, et al. An entropy-based persistence barcode. Pattern Recognition. 2015;48:391. DOI:10.1016/j.patcog.2014.06.023
  • Rucco M, Castiglione F, Merelli E, et al., Characterisation of the idiotypic immune network through persistent entropy, in Proceedings of ECCS 2014, editors Battiston S, Pellegrini FD, Caldarelli G, and Merelli E (Springer International Publishing, Cham, 2016) pp. 117–24.
  • Atienza N, Gonzalez-Díaz R, Soriano-Trigueros M. On the stability of persistent entropy and new summary functions for topological data analysis. Pattern Recognition. 2020;107:107509. DOI:10.1016/j.patcog.2020.107509
  • Bubenik P. Statistical topological data analysis using persistence landscapes. J Mach Learn Res. 2015;16:77.
  • Bubenik P, Dłotko P. A persistence landscapes toolbox for topological statistics. J Symb Comput. 2017;78:91. DOI:10.1016/j.jsc.2016.03.009
  • Maria C, Boissonnat J-D, Glisse M, et al. The gudhi library: simplicial complexes and persistent homology. In: Hong H Yap C, editors. Mathematical Software – ICMS 2014. Berlin Heidelberg, Berlin, Heidelberg: Springer; 2014. pp. 167–174.
  • Tralie C, Saul N, Bar-On R. Ripser.Py: a lean persistent homology library for python. J Open Source Software. 2018;3:925. DOI:10.21105/joss.00925
  • Tauzin G, Lupo U, Tunstall L, et al. Giotto-tda: a topological data analysis toolkit for machine learning and data exploration. J Mach Learn Res. 2021;22:1.
  • Bauer U. Ripser: efficient computation of Vietoris–Rips persistence barcodes. J Appl Comput. 2021;5:391. DOI:10.1007/s41468-021-00071-5
  • Otter N, Porter MA, Tillmann U, et al. A roadmap for the computation of persistent homology. EPJ Data Sci. 2017;6:17. DOI:10.1140/epjds/s13688-017-0109-5
  • Bendich P, Edelsbrunner H, Kerber M. Computing robustness and persistence for images. IEEE Trans Vis Comput Graph. 2010;16:1251. DOI:10.1109/TVCG.2010.139.
  • Robins V, Wood PJ, Sheppard AP. Theory and algorithms for constructing discrete Morse complexes from grayscale digital images. IEEE Trans Pattern Anal Mach Intell. 2011;33:1646. DOI:10.1109/TPAMI.2011.95
  • Singh G, Memoli F, Carlsson G. Topological methods for the analysis of high dimensional data sets and 3D object recognition. In: Botsch M, Pajarola R, Chen B, and Zwicker M, editors. Eurographics symposium on point-based graphics. The Eurographics Association; 2007:91. DOI:10.2312/SPBG/SPBG07/091-100
  • Yao Y, Sun J, Huang X, et al. Topological methods for exploring low-density states in biomolecular folding pathways. J Chem Phys. 2009;130:144115. DOI:10.1063/1.3103496
  • Stolz BJ, Tanner J, Harrington HA, et al. Geometric anomaly detection in data. Proc Nat Acad Sci. 2020;117:19664. DOI:10.1073/pnas.2001741117
  • Carlsson G, de Silva V. Zigzag persistence, foundations of computational mathematics. Found Comut Math. 2010;10:367. DOI:10.1007/s10208-010-9066-0
  • Carlsson G, Zomorodian A. The theory of multidimensional persistence. Discrete Comput Geom. 2009;42. DOI:10.1007/s00454-009-9176-0
  • Robins V, Rooney N, Bradley E. Topology-based signal separation. Chaos Inter J Nonlinear Sci. 2004;14:305. DOI:10.1063/1.1705852.
  • Robins V. Betti number signatures of homogeneous Poisson point processes. Phys Rev E. 2006;74:061107. DOI:10.1103/PhysRevE.74.061107
  • Horak D, Maletić S, Rajković M. Persistent homology of complex networks. J Stat Mech Theory Exp. 2009:P03034. DOI:10.1088/1742-5468/2009/03/p03034
  • Krishan K, Kurtuldu H, Schatz MF, et al. Homology and symmetry breaking in Rayleigh-Bénard convection: experiments and simulations. Phys Fluids. 2007;19:117105. DOI:10.1063/1.2800365
  • Kurtuldu H, Mischaikow K, Schatz MF. Extensive scaling from computational homology and Karhunen-Loève decomposition analysis of Rayleigh-Bénard convection experiments. Phys Rev Lett. 2011;107:034503. DOI:10.1103/PhysRevLett.107.034503
  • Rocks JW, Liu AJ, Katifori E. Hidden topological structure of flow network functionality. Phys Rev Lett. 2021;126:028102. DOI:10.1103/PhysRevLett.126.028102
  • Rocks JW, Liu AJ, Katifori E. Revealing structure-function relationships in functional flow networks via persistent homology. Phys Rev Res. 2020;2:033234. DOI:10.1103/PhysRevResearch.2.033234
  • Nakamura T, Hiraoka Y, Hirata A, et al. Persistent homology and many-body atomic structure for medium-range order in the glass. Nanotechnology. 2015;26:304001. DOI:10.1088/0957-4484/26/30/304001
  • Hiraoka Y, Nakamura T, Hirata A, et al. Hierarchical structures of amorphous solids characterized by persistent homology. Proc Nat Acad Sci. 2016;113:7035. DOI:10.1073/pnas.1520877113
  • Hong S, Kim D. Medium-range order in amorphous ices revealed by persistent homology. J Phys Cond Mat. 2019;31:455403. DOI:10.1088/1361-648x/ab3820
  • Ardanza-Trevijano S, Zuriguel I, Arévalo R, et al. Topological analysis of tapped granular media using persistent homology. Phys Rev E. 2014;89:052212. DOI:10.1103/PhysRevE.89.052212
  • Saadatfar M, Takeuchi H, Robins V, et al. Pore configuration landscape of granular crystallization. Nat Commun. 2017;8:15082, DOI:10.1038/ncomms15082
  • Olsthoorn B, Hellsvik J, Balatsky AV. Finding hidden order in spin models with persistent homology. Phys Rev Res. 2020;2:043308. DOI:10.1103/PhysRevResearch.2.043308
  • Sehayek D, Melko RG. Persistent homology of Z2 gauge theories. Phys Rev B. 2022;106:085111. DOI:10.1103/PhysRevB.106.085111
  • Ormrod Morley D, Salmon PS, Wilson M. Persistent homology in two-dimensional atomic networks. J Chem Phys. 2021;154:124109. DOI:10.1063/5.0040393
  • Muldoon M, MacKay R, Huke J, et al. Topology from time series. Phys D. 1993;65:1–16. DOI:10.1016/0167-2789(92)00026-U
  • Maletić S, Zhao Y, Rajković M. Persistent topological features of dynamical systems. Chaos Inter J Nonlinear Sci. 2016;26:053105. DOI:10.1063/1.4949472
  • Mittal K, Gupta S. Topological characterization and early detection of bifurcations and chaos in complex systems using persistent homology. Chaos Inter J Nonlinear Sci. 2017;27:051102. DOI:10.1063/1.4983840
  • Tran QH, Hasegawa Y. Topological time-series analysis with delay-variant embedding. Phys Rev E. 2019;99:032209. DOI:10.1103/PhysRevE.99.032209
  • Tempelman JR, Khasawneh FA. A look into chaos detection through topological data analysis. Phys D. 2020;406:132446. DOI:10.1016/j.physd.2020.132446
  • Makarenko N, Karimova L, Novak M. Investigation of global solar magnetic field by computational topology methods. Phys A. 2007;380:98. DOI:10.1016/j.physa.2007.02.052
  • Kondic L, Goullet A, O’Hern CS et al. Topology of force networks in compressed granular media. EPL (Europhysics Letters). 2012;97:54001. DOI:10.1209/0295-5075/97/54001
  • Pugnaloni LA, Carlevaro CM, Kramár M, et al. Structure of force networks in tapped particulate systems of disks and pentagons. I. clusters and loops. Phys Rev E. 2016;93:062902. DOI:10.1103/PhysRevE.93.062902
  • Cole A, Shiu G. Persistent homology and non-Gaussianity. J Cosmol Astropart Phys. 2018;025:025. DOI:10.1088/1475-7516/2018/03/025
  • Leykam D, Angelakis DG. Photonic band structure design using persistent homology. APL Photonics. 2021;6:030802. DOI:10.1063/5.0041084
  • Spitz D, Berges J, Oberthaler M, et al. Finding self-similar behavior in quantum many-body dynamics via persistent homology. SciPost Phys. 2021;11:60. DOI:10.21468/SciPostPhys.11.3.060
  • Leykam D, Rondón I, Angelakis DG. Dark soliton detection using persistent homology. Chaos Inter J Nonlinear Sci. 2022;32:073133. DOI:10.1063/5.0097053
  • Cole A, Loges GJ, Shiu G. Quantitative and interpretable order parameters for phase transitions from persistent homology. Phys Rev B. 2021;104:104426. DOI:10.1103/PhysRevB.104.104426
  • Sale N, Giansiracusa J, Lucini B. Quantitative analysis of phase transitions in two-dimensional XY models using persistent homology. Phys Rev E. 2022;105:024121. DOI:10.1103/PhysRevE.105.024121
  • Membrillo Solis I, Orlova T, Bednarska K, et al. Tracking the time evolution of soft matter systems via topological structural heterogeneity. Commun Mater. 2022;3:1. DOI:10.1038/s43246-021-00223-1
  • He Y, Xia S, Angelakis DG, et al. Persistent homology analysis of a generalized Aubry-André-Harper model. Phys Rev B. 2022;106:054210. DOI:10.1103/PhysRevB.106.054210
  • Suzuki A, Miyazawa M, Minto JM, et al. Flow estimation solely from image data through persistent homology analysis. Sci Rep. 2021;11:17948. DOI:10.1038/s41598-021-97222-6
  • Cirafici M. Persistent homology and string vacua. J High Energy Phys. 2016;2016:45. DOI:10.1007/JHEP03(2016)045
  • Cole A, Shiu G. Topological data analysis for the string landscape. J High Energy Phys. 2019;2019:54. DOI:10.1007/JHEP03(2019)054
  • Hirakida T, Kashiwa K, Sugano J, et al. Persistent homology analysis of deconfinement transition in effective Polyakov-line model. Int J Mod Physics A. 2020;35:2050049. DOI:10.1142/S0217751X20500499
  • di Pierro A, Mancini S, Memarzadeh L, et al. Homological analysis of multi-qubit entanglement. EPL (Europhysics Letters). 2018;123:30006. DOI:10.1209/0295-5075/123/30006
  • Mengoni R, Di Pierro A, Memarzadeh L, et al. Persistent homology analysis of multiqubit entanglement. Quantum Inf Computation. 2020;20:375. DOI:10.26421/QIC20.5-6-2
  • Olsthoorn B. Persistent homology of quantum entanglement. Phys Rev B. 2021;107:115174. DOI:10.1103/PhysRevB.107.115174
  • Tran QH, Chen M, Hasegawa Y. Topological persistence machine of phase transitions. Phys Rev E. 2021;103:052127. DOI:10.1103/PhysRevE.103.052127
  • Donato I, Gori M, Pettini M, et al. Persistent homology analysis of phase transitions. Phys Rev E. 2016;93:052138. DOI:10.1103/PhysRevE.93.052138
  • Park S, Hwang Y, Yang B-J. Unsupervised learning of topological phase diagram using topological data analysis. Phys Rev B. 2022;105:195115. DOI:10.1103/PhysRevB.105.195115
  • Tirelli A, Costa NC. Learning quantum phase transitions through topological data analysis. Phys Rev B. 2021;104:235146. DOI:10.1103/PhysRevB.104.235146
  • Tirelli A, Carvalho DO, Oliveira LA, et al. Unsupervised machine learning approaches to the q-state Potts model. Eur Phys J B. 2022;95:189. DOI:10.1140/epjb/s10051-022-00453-3
  • Rodriguez-Nieva JF, Scheurer MS. Identifying topological order through unsupervised machine learning. Nat Phys. 2019;15:790. DOI:10.1038/s41567-019-0512-x
  • Long Y, Ren J, Chen H. Unsupervised manifold clustering of topological phononics. Phys Rev Lett. 2020;124:185501. DOI:10.1103/PhysRevLett.124.185501
  • Scheurer MS, Slager R-J. Unsupervised machine learning and band topology. Phys Rev Lett. 2020;124:226401. DOI:10.1103/PhysRevLett.124.226401
  • Che Y, Gneiting C, Liu T, et al. Topological quantum phase transitions retrieved through unsupervised machine learning. Phys Rev B. 2020;102:134213. DOI:10.1103/PhysRevB.102.134213
  • Lustig E, Yair O, Talmon R, et al. Identifying topological phase transitions in experiments using manifold learning. Phys Rev Lett. 2020;125:127401. DOI:10.1103/PhysRevLett.125.127401
  • Lidiak A, Gong Z. Unsupervised machine learning of quantum phase transitions using diffusion maps. Phys Rev Lett. 2020;125:225701. DOI:10.1103/PhysRevLett.125.225701
  • Long Y, Zhang B. Unsupervised data-driven classification of topological gapped systems with symmetries. Phys Rev Lett. 2023;130:036601. DOI:10.1103/PhysRevLett.130.036601
  • Albertsson K, Altoe P, Anderson D, et al. Machine learning in high energy physics community white paper. J Phys Conf Series. 2018;1085:022008. DOI:10.1088/1742-6596/1085/2/022008
  • Zahavy T, Dikopoltsev A, Moss D et al . Deep learning reconstruction of ultrashort pulses. Optica. 2018;5:666. DOI:10.1364/OPTICA.5.000666
  • Guo S, Fritsch AR, Greenberg C, et al. Machine-learning enhanced dark soliton detection in Bose–Einstein condensates. Mach Learn: Sci Technol. 2021;2:035020. DOI:10.1088/2632-2153/abed1e
  • Baum Y, Amico M, Howell S, et al. Experimental deep reinforcement learning for error-robust gate-set design on a superconducting quantum computer. PRX Quantum. 2021;2:040324. DOI:10.1103/PRXQuantum.2.040324
  • Itabashi K, Tran QH, Hasegawa Y. Evaluating the phase dynamics of coupled oscillators via time-variant topological features. Phys Rev E. 2021;103:032207. DOI:10.1103/PhysRevE.103.032207
  • Bhaskar D, Manhart A, Milzman J et al . Analyzing collective motion with machine learning and topology. Chaos Inter J Nonlinear Sci. 2019;29:123125. DOI:10.1063/1.5125493
  • Tran QH, Vo VT, Hasegawa Y. Scale-variant topological information for characterizing the structure of complex networks. Phys Rev E. 2019;100:032308. DOI:10.1103/PhysRevE.100.032308
  • Adams H, Emerson T, Kirby M, et al. Persistence images: a stable vector representation of persistent homology. J Mach Learn Res. 2017;18:218–252.
  • Rem BS, Käming N, Tarnowski M et al . Identifying quantum phase transitions using artificial neural networks on experimental data. Nat Phys. 2019;15:917. DOI:10.1038/s41567-019-0554-0
  • Tibaldi S, Magnifico G, Vodola D et al . Unsupervised and supervised learning of interacting topological phases from single-particle correlation functions. SciPost Physics. 2022;14. DOI:10.21468/SciPostPhys.14.1.005
  • Le MQ, Taylor D. Persistent homology of convection cycles in network flows. Phys Rev E. 2022;105:044311. DOI:10.1103/PhysRevE.105.044311
  • Myers A, Khasawneh F, Munch E. Temporal network analysis using zigzag persistence. EPJ Data Sci. 2022;12. DOI:10.1140/epjds/s13688-023-00379-5
  • Skinner DJ, Song B, Jeckel H, et al. Topological metric detects hidden order in disordered media. Phys Rev Lett. 2021;126:048101. DOI:10.1103/PhysRevLett.126.048101
  • Lloyd S, Garnerone S, Zanardi P. Quantum algorithms for topological and geometric analysis of data. Nat Commun. 2016;7:10138. DOI:10.1038/ncomms10138
  • Huang H-L, Wang X-L, Rohde PP, et al. Demonstration of topological data analysis on a quantum processor, Optica. Optica. 2018;5:193. DOI:10.1364/OPTICA.5.000193
  • Neumann N, den Breeijen S. Limitations of clustering using quantum persistent homology. arXiv:1911.10781. 2019. DOI:10.48550/ARXIV.1911.10781
  • McArdle S, Gilyén A, Berta M. A streamlined quantum algorithm for topological data analysis with exponentially fewer qubits. arXiv:2209.12887. 2022. DOI:10.48550/ARXIV.2209.12887
  • Berry DW, Su Y, Gyurik C et al . Quantifying quantum advantage in topological data analysis. arXiv:2209.13581. 2022. DOI:10.48550/ARXIV.2209.13581
  • Vlasic A, Pham A. Understanding the mapping of encode data through an implementation of quantum topological analysis. arXiv:2209.10596. 2022. DOI:10.48550/ARXIV.2209.10596
  • Ameneyro B, Maroulas V, Siopsis G. Quantum persistent homology. arXiv:2202.12965. 2022. DOI:10.48550/ARXIV.2202.12965
  • Hayakawa R. Quantum algorithm for persistent Betti numbers and topological data analysis. Quantum. 2022;6:873. DOI:10.22331/q-2022-12-07-873
  • Berwald JJ, Gottlieb JM, Munch E. Computing Wasserstein distance for persistence diagrams on a quantum computer. arXiv:1809.06433. 2018. DOI:10.48550/ARXIV.1809.06433
  • Ubaru S, Akhalwaya IY, Squillante MS, et al. Quantum topological data analysis with linear depth and exponential speedup. arXiv:2108.02811. 2021. DOI:10.48550/ARXIV.2108.02811
  • Akhalwaya IY, He Y-H, Horesh L, et al. Representation of the fermionic boundary operator. Phys Rev A. 2022;106:022407. DOI:10.1103/PhysRevA.106.022407
  • Kerenidis I, Prakash A. Quantum machine learning with subspace states. arXiv:2202.00054. 2022. DOI:10.48550/ARXIV.2202.00054
  • Akhalwaya IY, Ubaru S, Clarkson KL et al . Towards quantum advantage on noisy quantum computers. arXiv:2209.09371. 2022. DOI:10.48550/ARXIV.2209.09371
  • Gyurik C, Cade C, Dunjko V. Towards quantum advantage via topological data analysis. Quantum. 2022;6:855. DOI:10.22331/q-2022-11-10-855
  • Schmidhuber A, Lloyd S. Complexity-theoretic limitations on quantum algorithms for topological data analysis. arXiv:2209.14286. 2022. DOI:10.48550/ARXIV.2209.14286
  • Apers S, Sen S, Szabó D. A (simple) classical algorithm for estimating Betti numbers. arXiv:2211.09618. 2022. DOI:10.48550/ARXIV.2211.09618