7,374
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Quantum sensing and imaging with spin defects in hexagonal boron nitride

, , , & ORCID Icon
Article: 2206049 | Received 22 Feb 2023, Accepted 17 Apr 2023, Published online: 29 Apr 2023

References

  • Degen CL, Reinhard F, Cappellaro P. Quantum sensing. Rev Mod Phys. 2017;89:035002.
  • Budker D, Romalis M. Optical magnetometry. Nat Phys. 2007;3:227–36.
  • Pirandola S, Bardhan BR, Gehring T, et al. Advances in photonic quantum sensing. Nat Photonics. 2018;12:724–733. DOI:10.1038/s41566-018-0301-6
  • Schirhagl R, Chang K, Loretz M, et al. Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annu Rev Phys Chem. 2014;65:83–105. DOI:10.1146/annurev-physchem-040513-103659
  • Castelletto S, Boretti A. Silicon carbide color centers for quantum applications. J Phys: Photonics. 2020;2:022001.
  • Casola F, Van Der Sar T, Yacoby A. Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond. Nature Rev Mater. 2018;3:17088.
  • Kolkowitz S, Safira A, High A, et al. Probing Johnson noise and ballistic transport in normal metals with a single-spin qubit. Science. 2015;347:1129–1132. DOI:10.1126/science.aaa4298
  • Gross I, Akhtar W, Garcia V, et al. Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer. Nature. 2017;549:252–256. DOI:10.1038/nature23656
  • Du C, Van der Sar T, Zhou TX, et al. Control and local measurement of the spin chemical potential in a magnetic insulator. Science. 2017;357:195–198. DOI:10.1126/science.aak9611
  • Fu RR, Weiss BP, Lima EA, et al. Solar nebula magnetic fields recorded in the semarkona meteorite. Science. 2014;346:1089–1092. DOI:10.1126/science.1258022
  • Le Sage D, Arai K, Glenn DR, et al. Optical magnetic imaging of living cells. Nature. 2013;496:486–489. DOI:10.1038/nature12072
  • Wolfowicz G, Heremans FJ, Anderson CP, et al. Quantum guidelines for solid-state spin defects. Nature Rev Mater. 2021;6:906–925. DOI:10.1038/s41578-021-00306-y
  • Jelezko F, Wrachtrup J. Single defect centres in diamond: a review. Phys Status Solidi A. 2006;203:3207–3225.
  • Rose BC, Huang D, Zhang ZH, et al. Observation of an environmentally insensitive solid-state spin defect in diamond. Science. 2018;361:60–63. DOI:10.1126/science.aao0290
  • Koehl WF, Buckley BB, Heremans FJ, et al. Room temperature coherent control of defect spin qubits in silicon carbide. Nature. 2011;479:84–87. DOI:10.1038/nature10562
  • Widmann M, Lee S-Y, Rendler T, et al. Coherent control of single spins in silicon carbide at room temperature. Nature Mater. 2015;14:164–168. DOI:10.1038/nmat4145
  • Zhang G, Cheng Y, Chou JP, et al. Material platforms for defect qubits and single-photon emitters. Appl Phys Rev. 2020;7:031308. DOI:10.1063/5.0006075
  • Barry JF, Schloss JM, Bauch E, et al. Sensitivity optimization for NV-diamond magnetometry. Rev Mod Phys. 2020;92:015004. DOI:10.1103/RevModPhys.92.015004
  • Hong S, Grinolds MS, Pham LM, et al. Nanoscale magnetometry with NV centers in diamond. MRS Bull. 2013;38:155–161. DOI:10.1557/mrs.2013.23
  • Balasubramanian G, Neumann P, Twitchen D, et al. Ultralong spin coherence time in isotopically engineered diamond. Nature Mater. 2009;8:383–387. DOI:10.1038/nmat2420
  • Kennedy T, Colton J, Butler J, et al. Long coherence times at 300 K for nitrogen-vacancy center spins in diamond grown by chemical vapor deposition. Appl Phys Lett. 2003;83:4190–4192. DOI:10.1063/1.1626791
  • Bar-Gill N, Pham LM, Jarmola A, et al. Solid-state electronic spin coherence time approaching one second. Nat Commun. 2013;4:1743. DOI:10.1038/ncomms2771
  • Herbschleb E, Kato H, Maruyama Y, et al. Ultra-long coherence times amongst room-temperature solid-state spins. Nat Commun. 2019;10:3766. DOI:10.1038/s41467-019-11776-8
  • Romach Y, Müller C, Unden T, et al. Spectroscopy of surface-induced noise using shallow spins in diamond. Phys Rev Lett. 2015;114:017601. DOI:10.1103/PhysRevLett.114.017601
  • Sangtawesin S, Dwyer BL, Srinivasan S, et al. Origins of diamond surface noise probed by correlating single-spin measurements with surface spectroscopy. Phys Rev X. 2019;9:031052. DOI:10.1103/PhysRevX.9.031052
  • Seo H, Falk AL, Klimov PV, et al. Quantum decoherence dynamics of divacancy spins in silicon carbide. Nat Commun. 2016;7:12935. DOI:10.1038/ncomms12935
  • Gottscholl A, Kianinia M, Soltamov V, et al. Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature. Nature Mater. 2020;19:540–545. DOI:10.1038/s41563-020-0619-6
  • Gao X, Jiang B, Llacsahuanga Allcca AE, et al. High-contrast plasmonic-enhanced shallow spin defects in hexagonal boron nitride for quantum sensing. Nano Lett. 2021;21:7708–7714. DOI:10.1021/acs.nanolett.1c02495
  • Healey A, Scholten S, Yang T, et al. Quantum microscopy with van der Waals heterostructures. Nat Phys. 2023;19:87–91. DOI:10.1038/s41567-022-01815-5
  • Huang M, Zhou J, Chen D, et al. Wide field imaging of van der Waals ferromagnet Fe3GeTe2 by spin defects in hexagonal boron nitride. Nat Commun. 2022;13:5369. DOI:10.1038/s41467-022-33016-2
  • Gottscholl A, Diez M, Soltamov V, et al. Spin defects in hBN as promising temperature, pressure and magnetic field quantum sensors. Nat Commun. 2021;12:4480. DOI:10.1038/s41467-021-24725-1
  • Liu W, Li ZP, Yang YZ, et al. Temperature-dependent energy-level shifts of spin defects in hexagonal boron nitride. ACS Photonics. 2021;8:1889–1895. DOI:10.1021/acsphotonics.1c00320
  • Yang T, Mendelson N, Li C, et al. Spin defects in hexagonal boron nitride for strain sensing on nanopillar arrays. Nanoscale. 2022;14:5239–5244. DOI:10.1039/D1NR07919K
  • Lyu X, Tan Q, Wu L, et al. Strain quantum sensing with spin defects in hexagonal boron nitride. Nano Lett. 2022;22:6553–6559. DOI:10.1021/acs.nanolett.2c01722
  • Robertson IO, Scholten SC, Singh P, et al. Detection of paramagnetic spins with an ultrathin van der Waals quantum sensor. arXiv preprint arXiv:2302.10560. 2023;.
  • Gao X, Vaidya S, Ju P, et al. Quantum sensing of paramagnetic spins in liquids with spin qubits in hexagonal boron nitride. arXiv preprint arXiv:2303.02326. 2023;.
  • Gao X, Vaidya S, Li K, et al. Nuclear spin polarization and control in hexagonal boron nitride. Nature Mater. 2022;21:1024–1028. DOI:10.1038/s41563-022-01329-8
  • Rizzato R, Schalk M, Mohr S, et al. Extending the coherence time of spin defects in hbn enables advanced qubit control and quantum sensing. arXiv preprint arXiv:2212.12826. 2022;.
  • Azzam SI, Parto K, Moody G. Prospects and challenges of quantum emitters in 2D materials. Appl Phys Lett. 2021;118:240502.
  • Ren S, Tan Q, Zhang J. Review on the quantum emitters in two-dimensional materials. J Semicond. 2019;40:071903.
  • Caldwell JD, Aharonovich I, Cassabois G, et al. Photonics with hexagonal boron nitride. Nature Rev Mater. 2019;4:552–567. DOI:10.1038/s41578-019-0124-1
  • Kubanek A. Coherent quantum emitters in hexagonal boron nitride. Adv Quantum Technol. 2022;5:2200009.
  • Novoselov KS, Mishchenko A, Carvalho A, et al. 2D materials and van der Waals heterostructures. Science. 2016;353:aac9439. DOI:10.1126/science.aac9439
  • Tran TT, Bray K, Ford MJ, et al. Quantum emission from hexagonal boron nitride monolayers. Nature Nanotechnol. 2016;11:37–41. DOI:10.1038/nnano.2015.242
  • Castelletto S, Inam FA, Sato S-I, et al. Hexagonal boron nitride: a review of the emerging material platform for single-photon sources and the spin–photon interface. Beilstein J Nanotechnol. 2020;11:740–769.
  • Sajid A, Ford MJ, Reimers JR. Single-photon emitters in hexagonal boron nitride: a review of progress. Rep Prog Phys. 2020;83:044501.
  • Kianinia M, Xu ZQ, Toth M, et al. Quantum emitters in 2D materials: emitter engineering, photophysics, and integration in photonic nanostructures. Appl Phys Rev. 2022;9:011306. DOI:10.1063/5.0072091
  • Aharonovich I, Tetienne JP, Toth M. Quantum emitters in hexagonal boron nitride. Nano Lett. 2022;22:9227–9235.
  • Srivastava A, Sidler M, Allain AV, et al. Optically active quantum dots in monolayer WSe2. Nature Nanotechnol. 2015;10:491–496. DOI:10.1038/nnano.2015.60
  • He YM, Clark G, Schaibley JR, et al. Single quantum emitters in monolayer semiconductors. Nature Nanotechnol. 2015;10:497–502. DOI:10.1038/nnano.2015.75
  • Koperski M, Nogajewski K, Arora A, et al. Single photon emitters in exfoliated WSe2 structures. Nature Nanotechnol. 2015;10:503–506. DOI:10.1038/nnano.2015.67
  • Chakraborty C, Kinnischtzke L, Goodfellow KM, et al. Voltage-controlled quantum light from an atomically thin semiconductor. Nature Nanotechnol. 2015;10:507–511. DOI:10.1038/nnano.2015.79
  • Cassabois G, Valvin P, Gil B. Hexagonal boron nitride is an indirect bandgap semiconductor. Nat Photonics. 2016;10:262–266.
  • Kianinia M, Tawfik SA, Regan B, et al. Robust solid state quantum system operating at 800 K. ACS Photonics. 2017;4:768–773. DOI:10.1021/acsphotonics.7b00086
  • Jungwirth NR, Calderon B, Ji Y, et al. Temperature dependence of wavelength selectable zero-phonon emission from single defects in hexagonal boron nitride. Nano Lett. 2016;16:6052–6057. DOI:10.1021/acs.nanolett.6b01987
  • Xue Y, Wang H, Tan Q, et al. Anomalous pressure characteristics of defects in hexagonal boron nitride flakes. ACS Nano. 2018;12:7127–7133. DOI:10.1021/acsnano.8b02970
  • Vogl T, Doherty MW, Buchler BC, et al. Atomic localization of quantum emitters in multilayer hexagonal boron nitride. Nanoscale. 2019;11:14362–14371. DOI:10.1039/C9NR04269E
  • Abdi M, Chou JP, Gali A, et al. Color centers in hexagonal boron nitride monolayers: a group theory and ab initio analysis. ACS Photonics. 2018;5:1967–1976. DOI:10.1021/acsphotonics.7b01442
  • Bourrellier R, Meuret S, Tararan A, et al. Bright UV single photon emission at point defects in h-BN. Nano Lett. 2016;16:4317–4321. DOI:10.1021/acs.nanolett.6b01368
  • Chejanovsky N, Rezai M, Paolucci F, et al. Structural attributes and photodynamics of visible spectrum quantum emitters in hexagonal boron nitride. Nano Lett. 2016;16:7037–7045. DOI:10.1021/acs.nanolett.6b03268
  • Grosso G, Moon H, Lienhard B, et al. Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride. Nat Commun. 2017;8:705. DOI:10.1038/s41467-017-00810-2
  • Mendelson N, Chugh D, Reimers JR, et al. Identifying carbon as the source of visible single-photon emission from hexagonal boron nitride. Nature Mater. 2021;20:321–328. DOI:10.1038/s41563-020-00850-y
  • Chejanovsky N, Mukherjee A, Geng J, et al. Single-spin resonance in a van der Waals embedded paramagnetic defect. Nature Mater. 2021;20:1079–1084. DOI:10.1038/s41563-021-00979-4
  • Stern HL, Gu Q, Jarman J, et al. Room-temperature optically detected magnetic resonance of single defects in hexagonal boron nitride. Nat Commun. 2022;13:618. DOI:10.1038/s41467-022-28169-z
  • Ivády V, Abrikosov IA, Gali A. First principles calculation of spin-related quantities for point defect qubit research. Npj Comput Mater. 2018;4:76.
  • Tetienne JP. Quantum sensors go flat. Nat Phys. 2021;17:1074–1075.
  • Song T, Sun QC, Anderson E, et al. Direct visualization of magnetic domains and moiré magnetism in twisted 2D magnets. Science. 2021;374:1140–1144. DOI:10.1126/science.abj7478
  • Fei Z, Huang B, Malinowski P, et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nature Mater. 2018;17:778–782. DOI:10.1038/s41563-018-0149-7
  • Liu W, Guo NJ, Yu S, et al. Spin-active defects in hexagonal boron nitride. Mater Quantum Technol. 2022;2:032002. DOI:10.1088/2633-4356/ac7e9f
  • Moore A, Singer L. Electron spin resonance in carbon-doped boron nitride. J Phys Chem Solids. 1972;33:343–356.
  • Katzir A, Suss J, Zunger A, et al. Point defects in hexagonal boron nitride. I. EPR, thermoluminescence, and thermally-stimulated-current measurements. Phys Rev B. 1975;11:2370. DOI:10.1103/PhysRevB.11.2370
  • Andrei E, Katzir A, Suss J. Point defects in hexagonal boron nitride. III. EPR in electron-irradiated BN. Phys Rev B. 1976;13:2831.
  • Exarhos AL, Hopper DA, Patel RN, et al. Magnetic-field-dependent quantum emission in hexagonal boron nitride at room temperature. Nat Commun. 2019;10:222. DOI:10.1038/s41467-018-08185-8
  • Gao X, Pandey S, Kianinia M, et al. Femtosecond laser writing of spin defects in hexagonal boron nitride. ACS Photonics. 2021;8:994–1000. DOI:10.1021/acsphotonics.0c01847
  • Jin C, Lin F, Suenaga K, et al. Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys Rev Lett. 2009;102:195505. DOI:10.1103/PhysRevLett.102.195505
  • Kianinia M, White S, Fröch JE, et al. Generation of spin defects in hexagonal boron nitride. ACS Photonics. 2020;7:2147–2152. DOI:10.1021/acsphotonics.0c00614
  • Toledo J, De Jesus D, Kianinia M, et al. Electron paramagnetic resonance signature of point defects in neutron-irradiated hexagonal boron nitride. Phys Rev B. 2018;98:155203. DOI:10.1103/PhysRevB.98.155203
  • Li J, Glaser ER, Elias C, et al. Defect engineering of monoisotopic hexagonal boron nitride crystals via neutron transmutation doping. Chem Mater. 2021;33:9231–9239. DOI:10.1021/acs.chemmater.1c02849
  • Haykal A, Tanos R, Minotto N, et al. Decoherence of spin defects in monoisotopic hexagonal boron nitride. Nat Commun. 2022;13:4347. DOI:10.1038/s41467-022-31743-0
  • Guo NJ, Liu W, Li ZP, et al. Generation of spin defects by ion implantation in hexagonal boron nitride. ACS Omega. 2022;7:1733–1739. DOI:10.1021/acsomega.1c04564
  • Baber S, Malein RNE, Khatri P, et al. Excited state spectroscopy of boron vacancy defects in hexagonal boron nitride using time-resolved optically detected magnetic resonance. Nano Lett. 2021;22:461–467. DOI:10.1021/acs.nanolett.1c04366
  • Murzakhanov FF, Yavkin BV, Mamin GV, et al. Creation of negatively charged boron vacancies in hexagonal boron nitride crystal by electron irradiation and mechanism of inhomogeneous broadening of boron vacancy-related spin resonance lines. Nanomaterials. 2021;11:1373. DOI:10.3390/nano11061373
  • Doan TC, Majety S, Grenadier S, et al. Fabrication and characterization of solid-state thermal neutron detectors based on hexagonal boron nitride epilayers. Nucl Instrum Methods Phys Res A. 2014;748:84–90.
  • Murzakhanov F, Mumdzhi I, Mamin G, et al. Generation of optically addressable spin centers in hexagonal boron nitride by proton irradiation. Phys Solid State. 2022;64:210–214. DOI:10.1134/S1063783422050067
  • Ziegler JF, Ziegler MD, Biersack JP. SRIM – the stopping and range of ions in matter (2010). Beam Interact with Mater and Atoms. 2010;268:1818–1823.
  • Suzuki T, Yamazaki Y, Taniguchi T, et al. Spin property improvement of boron vacancy defect in hexagonal boron nitride by thermal treatment. Appl Phys Express. 2023;16:032006. DOI:10.35848/1882-0786/acc442
  • Yang YZ, Zhu TX, Li ZP, et al. Laser direct writing of visible spin defects in hexagonal boron nitride for applications in spin-based technologies. ACS Appl Nano Mater. 2023;6:6407–6414. DOI:10.1021/acsanm.3c01047
  • Reimers JR, Shen J, Kianinia M, et al. Photoluminescence, photophysics, and photochemistry of the V B − defect in hexagonal boron nitride. Phys Rev B. 2020;102:144105. DOI:10.1103/PhysRevB.102.144105
  • Sajid A, Thygesen KS, Reimers JR, et al. Edge effects on optically detected magnetic resonance of vacancy defects in hexagonal boron nitride. Commun Phys. 2020;3:153. DOI:10.1038/s42005-020-00416-z
  • Ivády V, Barcza G, Thiering G, et al. Ab initio theory of the negatively charged boron vacancy qubit in hexagonal boron nitride. Npj Comput Mater. 2020;6:41. DOI:10.1038/s41524-020-0305-x
  • Barcza G, Ivády V, Szilvási T, et al. DMRG on top of plane-wave Kohn–Sham orbitals: a case study of defected boron nitride. J Chem Theory Comput. 2021;17:1143–1154. DOI:10.1021/acs.jctc.0c00809
  • Chen Y, Quek SY. Photophysical characteristics of boron vacancy-derived defect centers in hexagonal boron nitride. J Phys Chem C. 2021;125:21791–21802.
  • Mathur N, Mukherjee A, Gao X, et al. Excited-state spin-resonance spectroscopy of defect centers in hexagonal boron nitride. Nat Commun. 2022;13:3233. DOI:10.1038/s41467-022-30772-z
  • Mu Z, Cai H, Chen D, et al. Excited-state optically detected magnetic resonance of spin defects in hexagonal boron nitride. Phys Rev Lett. 2022;128:216402. DOI:10.1103/PhysRevLett.128.216402
  • Yu P, Sun H, Wang M, et al. Excited-state spectroscopy of spin defects in hexagonal boron nitride. Nano Lett. 2022;22:3545–3549. DOI:10.1021/acs.nanolett.1c04841
  • Gottscholl A, Diez M, Soltamov V, et al. Room temperature coherent control of spin defects in hexagonal boron nitride. Sci Adv. 2021;7:eabf3630. DOI:10.1126/sciadv.abf3630
  • Qian C, Villafañe V, Schalk M, et al. Unveiling the zero-phonon line of the boron vacancy center by cavity-enhanced emission. Nano Lett. 2022;22:5137–5142. DOI:10.1021/acs.nanolett.2c00739
  • Gong R, He G, Gao X, et al. Coherent dynamics of strongly interacting electronic spin defects in hexagonal boron nitride. arXiv preprint arXiv:2210.11485. 2022;.
  • Auburger P, Gali A. Towards ab initio identification of paramagnetic substitutional carbon defects in hexagonal boron nitride acting as quantum bits. Phys Rev B. 2021;104:075410.
  • Guo NJ, Yang YZ, Zeng XD, et al. Coherent control of an ultrabright single spin in hexagonal boron nitride at room temperature. arXiv preprint arXiv:2112.06191. 2021;.
  • Babar R, Barcza G, Pershin A, et al. Quantum sensor in a single layer van der Waals material. arXiv preprint arXiv:2111.09589. 2021;.
  • Li S, Gali A. Identification of an oxygen defect in hexagonal boron nitride. J Phys Chem Lett. 2022;13:9544–9551.
  • Li K, Smart TJ, Ping Y. Carbon trimer as a 2 ev single-photon emitter candidate in hexagonal boron nitride: a first-principles study. Phys Rev Mater. 2022;6:L042201.
  • Huang P, Grzeszczyk M, Vaklinova K, et al. Carbon and vacancy centers in hexagonal boron nitride. Phys Rev B. 2022;106:014107. DOI:10.1103/PhysRevB.106.014107
  • Pinilla F, Vasquez N, Maze JR, et al. Carbon-based single photon emitters in hexagonal boron nitride with triplet ground state. arXiv preprint arXiv:2209.13735. 2022;.
  • Gracheva IN, Murzakhanov FF, Mamin GV, et al. Symmetry of the hyperfine and quadrupole interactions of boron vacancies in a hexagonal boron nitride. J Phys Chem C. 2023;127:3634. DOI:10.1021/acs.jpcc.2c08716
  • Sasaki K, Nakamura Y, Gu H, et al. Magnetic field imaging by hbn quantum sensor nanoarray. arXiv preprint arXiv:2301.12645. 2023;.
  • Liang H, Chen Y, Yang C, et al. High sensitivity spin defects in hBN created by high-energy He beam irradiation. Adv Opt Mater. 2022;11:2201941. DOI:10.1002/adom.202201941
  • Ramsay AJ, Hekmati R, Patrickson CJ, et al. Coherence protection of spin qubits in hexagonal boron nitride. Nat Commun. 2023;14:461. DOI:10.1038/s41467-023-36196-7
  • Liu W, Ivády V, Li ZP, et al. Coherent dynamics of multi-spin center in hexagonal boron nitride. Nat Commun. 2022;13:5713. DOI:10.1038/s41467-022-33399-2
  • Rondin L, Tetienne JP, Hingant T, et al. Magnetometry with nitrogen-vacancy defects in diamond. Rep Prog Phys. 2014;77:056503. DOI:10.1088/0034-4885/77/5/056503
  • Taylor JM, Cappellaro P, Childress L, et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nat Phys. 2008;4:810–816. DOI:10.1038/nphys1075
  • Fuchs G, Dobrovitski V, Hanson R, et al. Excited-state spectroscopy using single spin manipulation in diamond. Phys Rev Lett. 2008;101:117601. DOI:10.1103/PhysRevLett.101.117601
  • Dréau A, Lesik M, Rondin L, et al. Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced dc magnetic field sensitivity. Phys Rev B. 2011;84:195204. DOI:10.1103/PhysRevB.84.195204
  • Maze JR, Stanwix PL, Hodges JS, et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature. 2008;455:644–647. DOI:10.1038/nature07279
  • Grinolds MS, Hong S, Maletinsky P, et al. Nanoscale magnetic imaging of a single electron spin under ambient conditions. Nat Phys. 2013;9:215–219. DOI:10.1038/nphys2543
  • Steinert S, Ziem F, Hall L, et al. Magnetic spin imaging under ambient conditions with sub-cellular resolution. Nat Commun. 2013;4:1607. DOI:10.1038/ncomms2588
  • Kumar P, Fabre F, Durand A, et al. Magnetic imaging with spin defects in hexagonal boron nitride. Phys Rev Appl. 2022;18:L061002. DOI:10.1103/PhysRevApplied.18.L061002
  • Cai Q, Scullion D, Gan W, et al. High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion. Sci Adv. 2019;5:eaav0129. DOI:10.1126/sciadv.aav0129
  • Curie D, Krogel JT, Cavar L, et al. Correlative nanoscale imaging of strained hbn spin defects. ACS Appl Mater Interfaces. 2022;14:41361–41368. DOI:10.1021/acsami.2c11886
  • Murzakhanov FF, Mamin GV, Orlinskii SB, et al. Electron–nuclear coherent coupling and nuclear spin readout through optically polarized V B – spin states in hBN. Nano Lett. 2022;22:2718–2724. DOI:10.1021/acs.nanolett.1c04610
  • Tabesh F, Fani M, Pedernales J, et al. Active spin lattice hyperpolarization: application to hexagonal boron nitride color centers. arXiv preprint arXiv:2210.03334. 2022;.
  • Cai J, Retzker A, Jelezko F, et al. A large-scale quantum simulator on a diamond surface at room temperature. Nat Phys. 2013;9:168–173. DOI:10.1038/nphys2519
  • Thomas DD. Breathing new life into nitric oxide signaling: a brief overview of the interplay between oxygen and nitric oxide. Redox Biol. 2015;5:225–233.
  • Griendling KK, Touyz RM, Zweier JL, et al. Measurement of reactive oxygen species, reactive nitrogen species, and redox-dependent signaling in the cardiovascular system: a scientific statement from the American heart association. Circ Res. 2016;119:e39–75. DOI:10.1161/RES.0000000000000110
  • Sasaki K, Monnai Y, Saijo S, et al. Broadband, large-area microwave antenna for optically detected magnetic resonance of nitrogen-vacancy centers in diamond. Rev Sci Instrum. 2016;87:053904. DOI:10.1063/1.4952418
  • Glenn DR, Bucher DB, Lee J, et al. High-resolution magnetic resonance spectroscopy using a solid-state spin sensor. Nature. 2018;555:351–354. DOI:10.1038/nature25781
  • Boss JM, Cujia K, Zopes J, et al. Quantum sensing with arbitrary frequency resolution. Science. 2017;356:837–840. DOI:10.1126/science.aam7009
  • Schmitt S, Gefen T, Stürner FM, et al. Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor. Science. 2017;356:832–837. DOI:10.1126/science.aam5532
  • Xu X, Solanki AB, Sychev D, et al. Greatly enhanced emission from spin defects in hexagonal boron nitride enabled by a low-loss plasmonic nanocavity. Nano Lett. 2023;23:25–33. DOI:10.1021/acs.nanolett.2c03100
  • Fröch JE, Spencer LP, Kianinia M, et al. Coupling spin defects in hexagonal boron nitride to monolithic bullseye cavities. Nano Lett. 2021;21:6549–6555. DOI:10.1021/acs.nanolett.1c01843
  • Nonahal M, Li C, Tjiptoharsono F, et al. Coupling spin defects in hexagonal boron nitride to titanium oxide ring resonators. Nanoscale. 2022;14:14950–14955. DOI:10.1039/D2NR02522A
  • Koenderink AF. Single-photon nanoantennas. ACS Photonics. 2017;4:710–722.
  • Pelton M. Modified spontaneous emission in nanophotonic structures. Nat Photonics. 2015;9:427–435.
  • Tame MS, McEnery K, Özdemir Ş, et al. Quantum plasmonics. Nat Phys. 2013;9:329–340. DOI:10.1038/nphys2615
  • Mendelson N, Ritika R, Kianinia M, et al. Coupling spin defects in a layered material to nanoscale plasmonic cavities. Adv Mater. 2022;34:2106046. DOI:10.1002/adma.202106046
  • Zeng XD, Yang YZ, Guo NJ, et al. Reflective dielectric cavity enhanced emission from hexagonal boron nitride spin defect arrays. arXiv preprint arXiv:2209.00256. 2022;.
  • Su C, Zhang F, Kahn S, et al. Tuning colour centres at a twisted hexagonal boron nitride interface. Nature Mater. 2022;21:896–902. DOI:10.1038/s41563-022-01303-4
  • Ye M, Seo H, Galli G. Spin coherence in two-dimensional materials. Npj Comput Mater. 2019;5:44.
  • Stanwix PL, Pham LM, Maze JR, et al. Coherence of nitrogen-vacancy electronic spin ensembles in diamond. Phys Rev B. 2010;82:201201. DOI:10.1103/PhysRevB.82.201201
  • Lee J, Park H, Seo H. First-principles theory of extending the spin qubit coherence time in hexagonal boron nitride. npj 2D Mater Appl. 2022;6:60.
  • Khatri P, Edward Malein RN, Ramsay AJ, et al. Stimulated emission depletion microscopy with color centers in hexagonal boron nitride. ACS Photonics. 2021;8:2081–2087. DOI:10.1021/acsphotonics.1c00423
  • Tran TN, Gale A, Whitefield B, et al. Coupling spin defects in hexagonal boron nitride to a microwave cavity. arXiv preprint arXiv:2301.07304. 2023;.
  • Mrudul M, Tancogne-Dejean N, Rubio A, et al. High-harmonic generation from spin-polarised defects in solids. Npj Comput Mater. 2020;6:10. DOI:10.1038/s41524-020-0275-z
  • Abdi M, Hwang MJ, Aghtar M, et al. Spin-mechanical scheme with color centers in hexagonal boron nitride membranes. Phys Rev Lett. 2017;119:233602. DOI:10.1103/PhysRevLett.119.233602
  • Abdi M, Plenio MB. Quantum effects in a mechanically modulated single-photon emitter. Phys Rev Lett. 2019;122:023602.
  • Shandilya PK, Froöch JE, Mitchell M, et al. Hexagonal boron nitride cavity optomechanics. Nano Lett. 2019;19:1343–1350. DOI:10.1021/acs.nanolett.8b04956
  • Hu Z, Gao X, Li T. Stability of the discrete time-crystalline order in spin-optomechanical and open cavity QED systems. Photonics. 2022;9:61.
  • Yazdi N, Salari V, Ghobadi R. Spin-induced multipartite steady-state entanglement of motional modes in hexagonal boron nitride membranes. Phys Rev A. 2023;107:012610.
  • Li S, Thiering G, Udvarhelyi P, et al. Carbon defect qubit in two-dimensional WS2. Nat Commun. 2022;13:1210. DOI:10.1038/s41467-022-28876-7
  • Lee Y, Hu Y, Lang X, et al. Spin-defect qubits in two-dimensional transition metal dichalcogenides operating at telecom wavelengths. Nat Commun. 2022;13:7501. DOI:10.1038/s41467-022-35048-0
  • Atatüre M, Englund D, Vamivakas N, et al. Material platforms for spin-based photonic quantum technologies. Nature Rev Mater. 2018;3:38–51. DOI:10.1038/s41578-018-0008-9