2,790
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Disordered optical metasurfaces: from light manipulation to energy harvesting

, &
Article: 2234136 | Received 23 Feb 2023, Accepted 03 Jul 2023, Published online: 20 Jul 2023

References

  • Yu N, Capasso F. Flat optics with designer metasurfaces. Nature Mater. 2014;13:139–150. doi: 10.1038/nmat3839
  • Chen H-T, Taylor AJ, Yu N. A review of metasurfaces: physics and applications. Rep Prog Phys. 2016;79:076401. doi: 10.1088/0034-4885/79/7/076401
  • Li G, Zhang S, Thomas Z. Nonlinear photonic metasurfaces. Nat Rev Mater. 2017;2:17010. doi: 10.1038/natrevmats.2017.10
  • Chen WT, Zhu AY, Capasso F. Flat optics with dispersion-engineered metasurfaces. Nature Rev Mater. 2020;5:604–620. doi: 10.1038/s41578-020-0203-3
  • Qiu C-W, Zhang T, Hu G, et al. Quo vadis, metasurfaces? Nano Lett. 2021;21:5461–5474. doi: 10.1021/acs.nanolett.1c00828
  • Zhang S, Wong CL, Zeng S, et al. Metasurfaces for biomedical applications: imaging and sensing from a nanophotonics perspective. Nanophotonics. 2020;10:259–293. doi: 10.1515/nanoph-2020-0373
  • Cortés E, Wendisch FJ, Sortino L, et al. Optical metasurfaces for energy conversion. Chem Rev. 2022;122:15082–15176. doi: 10.1021/acs.chemrev.2c00078
  • Lalanne P, Astilean S, Chavel P, et al. Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings. Optics Lett. 1998;23:1081–1083. doi: 10.1364/OL.23.001081
  • Ni X, Ishii S, Kildishev AV, et al. Ultra-thin, planar, babinet-inverted plasmonic metalenses. Light Sci Appl. 2013;2:e72. doi: 10.1038/lsa.2013.28
  • Khorasaninejad M, Chen WT, Devlin RC, et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science. 2016;352:1190–1194. doi: 10.1126/science.aaf6644
  • Zheng G, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency. Nature Nanotechnol. 2015;10:308–312. doi: 10.1038/nnano.2015.2
  • Li G, Wu L, Li KF, et al. Nonlinear metasurface for simultaneous control of spin and orbital angular momentum in second harmonic generation. Nano Lett. 2017;17:7974–7979. doi: 10.1021/acs.nanolett.7b04451
  • Chen S, Li K, Deng J, et al. High-order nonlinear spin–orbit interaction on plasmonic metasurfaces. Nano Lett. 2020;20:8549–8555. doi: 10.1021/acs.nanolett.0c03100
  • McDonnell C, Deng J, Sideris S, et al. Functional thz emitters based on pancharatnam-berry phase nonlinear metasurfaces. Nat Commun. 2021;12:30. doi: 10.1038/s41467-020-20283-0
  • Redit C, Ommo C. Metasurfaces go mainstream. Nat Photonics. 2023;17:1. doi: 10.1038/s41566-022-01137-1
  • Anderson PW. Absence of diffusion in certain random lattices. Phys Rev. 1958;109:1492. doi: 10.1103/PhysRev.109.1492
  • Wiersma DS. Disordered photonics. Nat Photonics. 2013;7:188–196. doi: 10.1038/nphoton.2013.29
  • Vynck K, Pierrat R, Carminati R. Light in correlated disordered media. Preprint at arXiv:2106.13892. 2021.
  • Sebbah P, Sebbah P. Waves and imaging through complex media. Springer Science & Business Media. 2001. doi: 10.1007/978-94-010-0975-1
  • Xu X, Liu H, Wang LV. Time-reversed ultrasonically encoded optical focusing into scattering media. Nat Photonics. 2011;5:154–157. doi: 10.1038/nphoton.2010.306
  • Pratesi F, Burresi M, Riboli F, et al. Disordered photonic structures for light harvesting in solar cells. Opt Express. 2013;21:A460–A468. doi: 10.1364/OE.21.00A460
  • Liu J, Garcia PD, Ek S, et al. Random nanolasing in the Anderson localized regime. Nature Nanotechnol. 2014;9:285–289. doi: 10.1038/nnano.2014.34
  • Arbabi A, Faraon A. Advances in optical metalenses. Nat Photonics. 2022;17:16–25. doi: 10.1038/s41566-022-01108-6
  • Neshev DN, Miroshnichenko AE. Enabling smart vision with metasurfaces. Nat Photonics. 2022;17:26–35. doi: 10.1038/s41566-022-01126-4
  • Johansen VE, Onelli OD, Steiner LM, etal. Photonics in nature: from order to disorder. Funct Surf Biol III. 2017;10:53–89. doi: 10.1007/978-3-319-74144-4_3
  • Yu S, Qiu C-W, Chong Y, et al. Engineered disorder in photonics. Nature Rev Mater. 2021;6:226–243. doi: 10.1038/s41578-020-00263-y
  • Rothammer M, Zollfrank C, Busch K, et al. Tailored disorder in photonics: Learning from nature. Adv Opt Mater. 2021;9:2100787. doi: 10.1002/adom.202100787
  • Cao H, Eliezer Y. Harnessing disorder for photonic device applications. Appl Phys Rev. 2022;9:011309. doi: 10.1063/5.0076318
  • Kivshar Y. The rise of mie-tronics. Nano Lett. 2022;22:3513–3515. doi: 10.1021/acs.nanolett.2c00548
  • Albooyeh M, Kruk S, Menzel C, et al. Resonant metasurfaces at oblique incidence: interplay of order and disorder. Sci Rep. 2014;4:4484. doi: 10.1038/srep04484
  • Yang Q, Zhang X, Li S, et al. Near-field surface plasmons on quasicrystal metasurfaces. Sci Rep. 2016;6:26. doi: 10.1038/s41598-016-0027-y
  • Bouabdellaoui M, Checcucci S, Wood T, et al. Self-assembled antireflection coatings for light trapping based on sige random metasurfaces. Phys Rev Mater. 2018;2:035203. doi: 10.1103/PhysRevMaterials.2.035203
  • Zakomirnyi VI, Karpov SV, Ågren H, et al. Collective lattice resonances in disordered and quasi-random all-dielectric metasurfaces. JOSA B. 2019;36:E21–E29. doi: 10.1364/JOSAB.36.000E21
  • Andryieuski A, Lavrinenko AV, Petrov M, et al. Homogenization of metasurfaces formed by random resonant particles in periodical lattices. Phys Rev B. 2016;93:205127. doi: 10.1103/PhysRevB.93.205127
  • Kruk SS, Helgert C, Decker M, et al. Optical metamaterials with quasicrystalline symmetry: Symmetry-induced optical isotropy. Phys Rev B. 2013;88:201404. doi: 10.1103/PhysRevB.88.201404
  • Yang Q, Gu J, Xu Y, et al. Transmission and plasmonic resonances on quasicrystal metasurfaces. Opt Express. 2017;25:24173–24182. doi: 10.1364/OE.25.024173
  • Babicheva VE, Petrov MI, Baryshnikova KV, et al. Reflection compensation mediated by electric and magnetic resonances of all-dielectric metasurfaces [Invited]. JOSA B. 2017;34:D18–D28. doi: 10.1364/JOSAB.34.000D18
  • Wang L, Kruk S, Koshelev K, et al. Nonlinear wavefront control with all-dielectric metasurfaces. Nano Lett. 2018;18:3978–3984. doi: 10.1021/acs.nanolett.8b01460
  • Ye W, Zeuner F, Li X, et al. Spin and wavelength multiplexed nonlinear metasurface holography. Nat Commun. 2016;7:11930. doi: 10.1038/ncomms11930
  • Veksler D, Maguid E, Shitrit N, et al. Multiple wavefront shaping by metasurface based on mixed random antenna groups. ACS Photonics. 2015;2:661–667. doi: 10.1021/acsphotonics.5b00113
  • Wang B, Rong K, Maguid E, et al. Probing nanoscale fluctuation of ferromagnetic meta-atoms with a stochastic photonic spin hall effect. Nature Nanotechnol. 2020;15:450–456. doi: 10.1038/s41565-020-0670-0
  • Fasold S, Linß S, Kawde T, et al. Disorder-enabled pure chirality in bilayer plasmonic metasurfaces. ACS Photonics. 2018;5:1773–1778. doi: 10.1021/acsphotonics.7b01460
  • Yannai M, Maguid E, Faerman A, et al. Order and disorder embedded in a spectrally interleaved metasurface. ACS Photonics. 2018;5:4764–4768. doi: 10.1021/acsphotonics.8b01138
  • Xiong B, Liu Y, Xu Y, et al. Breaking the limitation of polarization multiplexing in optical metasurfaces with engineered noise. Science. 2023;379:294–299. doi: 10.1126/science.ade5140
  • Chu H, Xiong X, Gao Y-J, et al. Diffuse reflection and reciprocity-protected transmission via a random-flip metasurface. Sci Adv. 2021;7:eabj0935. doi: 10.1126/sciadv.abj0935
  • Xu M, He Q, Pu M, et al. Emerging long-range order from a freeform disordered metasurface. Adv Mater. 2022;34:2108709. doi: 10.1002/adma.202108709
  • Arslan D, Rahimzadegan A, Fasold S, et al. Toward perfect optical diffusers: dielectric Huygens’ metasurfaces with critical positional disorder. Adv Mater. 2022;34:2105868. doi: 10.1002/adma.202105868
  • Yulevich I, Maguid E, Shitrit N, et al. Optical mode control by geometric phase in quasicrystal metasurface. Phys Rev Lett. 2015;115:205501. doi: 10.1103/PhysRevLett.115.205501
  • Hu J, Zhao X, Lin Y, et al. All-dielectric metasurface circular dichroism waveplate. Sci Rep. 2017;7:41893. doi: 10.1038/srep41893
  • Chen S, Zeuner F, Weismann M, et al. Giant nonlinear optical activity of achiral origin in planar metasurfaces with quadratic and cubic nonlinearities. Adv Mater. 2016;28:2992–2999. doi: 10.1002/adma.201505640
  • Wang M, Li Y, Tang Y, et al. Nonlinear chiroptical holography with pancharatnam–berry phase controlled plasmonic metasurface. Laser Photonics Rev. 2022;16:2200350. doi: 10.1002/lpor.202200350
  • Siddiqui M, Amin O, Tahir FA, et al. Quasi-crystal metasurface for simultaneous half-and quarter-wave plate operation. Sci Rep. 2018;8:15743. doi: 10.1038/s41598-018-34142-y
  • Dupré M, Hsu L, Kanté B. On the design of random metasurface based devices. Sci Rep. 2018;8:7162. doi: 10.1038/s41598-018-25488-4
  • Roubaud G, Bondareff P, Volpe G, et al. Far-field wavefront control of nonlinear luminescence in disordered gold metasurfaces. Nano Lett. 2020;20:3291–3298. doi: 10.1021/acs.nanolett.0c00089
  • Haghtalab M, Tamagnone M, Zhu AY, et al. Ultrahigh angular selectivity of disorder-engineered metasurfaces. ACS Photonics. 2020;7:991–1000. doi: 10.1021/acsphotonics.9b01655
  • Chen H, Zhao J, Fang Z, et al. Visible light metasurfaces assembled by quasiperiodic dendritic cluster sets. Adv Mater Interfaces. 2019;6:1801834. doi: 10.1002/admi.201801834
  • Zhang H, Cheng Q, Chu H, et al. Hyperuniform disordered distribution metasurface for scattering reduction. Appl Phys Lett. 2021;118:101601. doi: 10.1063/5.0041911
  • Kristensen A, Yang JKW, Bozhevolnyi SI, et al. Plasmonic colour generation. Nature Rev Mater. 2016;2:16088. doi: 10.1038/natrevmats.2016.88
  • Daqiqeh Rezaei S, Dong Z, You En Chan J, et al. Nanophotonic structural colors. ACS Photonics. 2020;8:18–33. doi: 10.1021/acsphotonics.0c00947
  • Xuan Z, Li J, Liu Q, et al. Artificial structural colors and applications. The Innovation. 2021;2:100081. doi: 10.1016/j.xinn.2021.100081
  • Mao P, Liu C, Song F, et al. Manipulating disordered plasmonic systems by external cavity with transition from broadband absorption to reconfigurable reflection. Nat Commun. 2020;11:1538. doi: 10.1038/s41467-020-15349-y
  • Jung C, Kim S-J, Jang J, et al. Disordered-nanoparticle–based etalon for ultrafast humidity-responsive colorimetric sensors and anti-counterfeiting displays. Sci Adv. 2022;8:eabm8598. doi: 10.1126/sciadv.abm8598
  • Vynck K, Pacanowski R, Agreda A, et al. The visual appearances of disordered optical metasurfaces. Nature Mater. 2022;21:1035–1041. doi: 10.1038/s41563-022-01255-9
  • Mao P, Liu C, Niu Y, et al. Disorder-induced material-insensitive optical response in plasmonic nanostructures: Vibrant structural colors from noble metals. Adv Mater. 2021;33:2007623. doi: 10.1002/adma.202007623
  • Franklin D, He Z, Mastranzo Ortega P, et al. Self-assembled plasmonics for angle-independent structural color displays with actively addressed black states. Proc Nat Acad Sci. 2020;117:13350–13358. doi: 10.1073/pnas.2001435117
  • Li S, Panmai M, Tie S, et al. Regulating disordered plasmonic nanoparticles into polarization sensitive metasurfaces. Nanophotonics. 2021;10:1553–1563. doi: 10.1515/nanoph-2020-0651
  • Wu Z, Zhang Y, Du B, et al. Disordered metasurface-enhanced perovskite composite films with ultra-stable and wide color gamut used for backlit displays. Nano Energy. 2022;100:107436. doi: 10.1016/j.nanoen.2022.107436
  • Ko B, Kim J, Yang Y, et al. Humidity-responsive rgb-pixels via swelling of 3d nanoimprinted polyvinyl alcohol. Adv Sci. 2022;10:2204469. doi: 10.1002/advs.202204469
  • Cencillo-Abad P, Franklin D, Mastranzo-Ortega P, et al. Ultralight plasmonic structural color paint. Sci Adv. 2023;9:eadf7207. doi: 10.1126/sciadv.adf7207
  • Sterl F, Herkert E, Both S, et al. Shaping the color and angular appearance of plasmonic metasurfaces with tailored disorder. ACS Nano. 2021;15:10318–10327. doi: 10.1021/acsnano.1c02538
  • Ma H, Dalloz N, Habrard A, et al. Predicting laser-induced colors of random plasmonic metasurfaces and optimizing image multiplexing using deep learning. ACS Nano. 2022;16:9410–9419. doi: 10.1021/acsnano.2c02235
  • Elbahri M, Abdelaziz M, Homaeigohar S, et al. Plasmonic metaparticles on a blackbody create vivid reflective colors for naked-eye environmental and clinical biodetection. Adv Mater. 2018;30:1704442. doi: 10.1002/adma.201704442
  • Destouches N, Sharma N, Vangheluwe M, et al. Laser-empowered random metasurfaces for white light printed image multiplexing. Adv Funct Mater. 2021;31:2010430. doi: 10.1002/adfm.202010430
  • Galinski H, Favraud G, Dong H, et al. Scalable, ultra-resistant structural colors based on network metamaterials. Light Sci Appl. 2017;6:e16233–e16233. doi: 10.1038/lsa.2016.233
  • Moyroud E, Wenzel T, Middleton R, et al. Disorder in convergent floral nanostructures enhances signalling to bees. Nature. 2017;550:469–474. doi: 10.1038/nature24285
  • Burg SL, Parnell AJ. Self-assembling structural colour in nature. J Phys. 2018;30:413001. doi: 10.1088/1361-648X/aadc95
  • Hess O, Pendry JB, Maier SA, et al. Active nanoplasmonic metamaterials. Nature Mater. 2012;11:573–584. doi: 10.1038/nmat3356
  • Burresi M, Pratesi F, Riboli F, et al. Complex photonic structures for light harvesting. Adv Opt Mater. 2015;3:722–743. doi: 10.1002/adom.201400514
  • Liu C, Di Falco A, Molinari D, et al. Enhanced energy storage in chaotic optical resonators. Nat Photonics. 2013;7:473–478. doi: 10.1038/nphoton.2013.108
  • Mubeen S, Lee J, Liu D, et al. Panchromatic photoproduction of H 2 with surface plasmons. Nano Lett. 2015;15:2132–2136. doi: 10.1021/acs.nanolett.5b00111
  • Huang J, Liu C, Zhu Y, et al. Harnessing structural darkness in the visible and infrared wavelengths for a new source of light. Nature Nanotechnol. 2016;11:60–66. doi: 10.1038/nnano.2015.228
  • Chevalier P, Bouchon P, Jaeck J, et al. Absorbing metasurface created by diffractionless disordered arrays of nanoantennas. Appl Phys Lett. 2015;107:251108. doi: 10.1063/1.4938472
  • Giordano MC, Longhi S, Barelli M, et al. Plasmon hybridization engineering in self-organized anisotropic metasurfaces. Nano Res. 2018;11:3943–3956. doi: 10.1007/s12274-018-1974-3
  • Chang C-C, Kuo S-C, Cheng H-E, et al. Broadband titanium nitride disordered metasurface absorbers. Opt Express. 2021;29:42813–42826. doi: 10.1364/OE.445247
  • Kim W, Simpkins BS, Guo H, et al. Hyperuniform disordered metal-insulator-metal gap plasmon metasurface near perfect light absorber. Opt Mater Express. 2021;11:4083–4092. doi: 10.1364/OME.439586
  • Reyes-Coronado A, Pirruccio G, González-Alcalde AK, et al. Enhancement of light absorption by leaky modes in a random plasmonic metasurface. J Phys Chem C. 2022;126:3163–3170. doi: 10.1021/acs.jpcc.1c08325
  • Tavakoli N, Spalding R, Lambertz A, et al. Over 65% sunlight absorption in a 1 μm si slab with hyperuniform texture. ACS Photonics. 2022;9:1206–1217. doi: 10.1021/acsphotonics.1c01668
  • Torquato S, Stillinger FH. Local density fluctuations, hyperuniformity, and order metrics. Phys Rev E. 2003;68:041113. doi: 10.1103/PhysRevE.68.041113
  • Vynck K, Burresi M, Riboli F, et al. Photon management in two-dimensional disordered media. Nature Mater. 2012;11:1017–1022. doi: 10.1038/nmat3442
  • Petoukhoff CE, Carroll O’, M D. Absorption-induced scattering and surface plasmon out-coupling from absorber-coated plasmonic metasurfaces. Nat Commun. 2015;6:7899. doi: 10.1038/ncomms8899
  • Shi X, Ueno K, Oshikiri T, et al. Enhanced water splitting under modal strong coupling conditions. Nature Nanotechnol. 2018;13:953–958. doi: 10.1038/s41565-018-0208-x
  • Fusella MA, Saramak R, Bushati R, et al. Plasmonic enhancement of stability and brightness in organic light-emitting devices. Nature. 2020;585:379–382. doi: 10.1038/s41586-020-2684-z
  • Mao P, Liu C, Li X, et al. Single-step-fabricated disordered metasurfaces for enhanced light extraction from leds. Light Sci Appl. 2021;10:180. doi: 10.1038/s41377-021-00621-7
  • Yildirim DU, Ghobadi A, Soydan MC, et al. Disordered and densely packed ito nanorods as an excellent lithography-free optical solar reflector metasurface. ACS Photonics. 2019;6:1812–1822. doi: 10.1021/acsphotonics.9b00636
  • Imani M F, Smith DR, Del Hougne P. Perfect absorption in a disordered medium with programmable meta-atom inclusions. Adv Funct Mater. 2020;30:2005310. doi: 10.1002/adfm.202005310
  • Cao H, Wiersig J. Dielectric microcavities: Model systems for wave chaos and non-hermitian physics. Rev Mod Phys. 2015;87:61–111. doi: 10.1103/RevModPhys.87.61
  • Haechler I, Ferru N, Schnoering G, et al. Transparent sunlight-activated antifogging metamaterials. Nature Nanotechnol. 2023;18:137–144. doi: 10.1038/s41565-022-01267-1
  • Burresi M, Pratesi F, Vynck K, et al. Two-dimensional disorder for broadband, omnidirectional and polarization-insensitive absorption. Opt Express. 2013;21:A268–A275. doi: 10.1364/OE.21.00A268
  • Riboli F, Caselli N, Vignolini S, et al. Engineering of light confinement in strongly scattering disordered media. Nature Mater. 2014;13:720–725. doi: 10.1038/nmat3966
  • Paetzold UW, Smeets M, Meier M, et al. Disorder improves nanophotonic light trapping in thin-film solar cells. Appl Phys Lett. 2014;104. doi: 10.1063/1.4869289.
  • Branham MS, Hsu W-C, Yerci S, et al. Empirical comparison of random and periodic surface light-trapping structures for ultrathin silicon photovoltaics. Adv Opt Mater. 2016;4:858–863. doi: 10.1002/adom.201500667
  • Nanz S, Abass A, Piechulla PM, et al. Strategy for tailoring the size distribution of nanospheres to optimize rough backreflectors of solar cells. Opt Express. 2018;26:A111–A123. doi: 10.1364/OE.26.00A111
  • Hauser H, Mühlbach K, Höhn O, et al. Tailored disorder: a self-organized photonic contact for light trapping in silicon-based tandem solar cells. Opt Express. 2020;28:10909–10918. doi: 10.1364/OE.390312
  • Camarillo Abad E, Joyce HJ, Hirst LC. Transparent quasi-random structures for multimodal light trapping in ultrathin solar cells with broad engineering tolerance. ACS Photonics. 2022;9:2724–2735. doi: 10.1021/acsphotonics.2c00472
  • Ulusoy Ghobadi TG, Ghobadi A, Odabasi O, et al. Subwavelength densely packed disordered semiconductor metasurface units for photoelectrochemical hydrogen generation. ACS Appl Energy Mater. 2022;5:2826–2837. doi: 10.1021/acsaem.1c03363
  • Schlickriede C, Kruk SS, Wang L, et al. Nonlinear imaging with all-dielectric metasurfaces. Nano Lett. 2020;20:4370–4376. doi: 10.1021/acs.nanolett.0c01105
  • Mao N, Zhang G, Tang Y, et al. Nonlinear vectorial holography with quad-atom metasurfaces. Proc Nat Acad Sci. 2022;119:e2204418119. doi: 10.1073/pnas.2204418119
  • Roubaud G, Bidault S, Gigan S, et al. Statistical nonlinear optical mapping of localized and delocalized plasmonic modes in disordered gold metasurfaces. ACS Photonics. 2021;8:1937–1943. doi: 10.1021/acsphotonics.1c00776
  • Tang Y, Deng J, Li KF, et al. Quasicrystal photonic metasurfaces for radiation controlling of second harmonic generation. Adv Mater. 2019;31:1901188. doi: 10.1002/adma.201901188
  • Maguid E, Yannai M, Faerman A, et al. Disorder-induced optical transition from spin hall to random rashba effect. Science. 2017;358:1411–1415. doi: 10.1126/science.aap8640
  • Wang J-J, Xu Y-Z, Mazzarello R, et al. A review on disorder-driven metal–insulator transition in crystalline vacancy-rich gesbte phase-change materials. Materials. 2017;10:862. doi: 10.3390/ma10080862
  • Ji H, Liu H, Jiang H, et al. Disorder effects on quantum transport and quantum phase transition in low-dimensional superconducting and topological systems. Adv Phys: X. 2021;6:1884133. doi: 10.1080/23746149.2021.1884133
  • Liu C, Gao W, Yang B, et al. Disorder-induced topological state transition in photonic metamaterials. Phys Rev Lett. 2017;119:183901. doi: 10.1103/PhysRevLett.119.183901
  • Stützer S, Plotnik Y, Lumer Y, et al. Photonic topological Anderson insulators. Nature. 2018;560:461–465. doi: 10.1038/s41586-018-0418-2
  • Zhou P, Liu G-G, Ren X, et al. Photonic amorphous topological insulator. Light Sci Appl. 2020;9:133. doi: 10.1038/s41377-020-00368-7
  • Liu C, Zhang S, Maier SA, et al. Disorder-induced topological state transition in the optical skyrmion family. Phys Rev Lett. 2022;129:267401. doi: 10.1103/PhysRevLett.129.267401
  • Rahimzadegan A, Arslan D, Suryadharma RNS, et al. Disorder-induced phase transitions in the transmission of dielectric metasurfaces. Phys Rev Lett. 2019;122:015702. doi: 10.1103/PhysRevLett.122.015702
  • Zhang F, Tang F, Xu X, et al. Influence of order-to-disorder transitions on the optical properties of the aluminum plasmonic metasurface. Nanoscale. 2020;12:23173–23182. doi: 10.1039/D0NR06334G
  • Jensen JS, Sigmund O. Topology optimization for nano-photonics. Laser Photonics Rev. 2011;5:308–321. doi: 10.1002/lpor.201000014
  • Jiang J, Chen M, Fan JA. Deep neural networks for the evaluation and design of photonic devices. Nat Rev Mater. 2021;6:679–700.
  • Wiecha PR, Arbouet A, Girard C, et al. Deep learning in nano-photonics: inverse design and beyond. Photonics Res. 2021;9:B182–B200. doi: 10.1364/PRJ.415960
  • Lin H-C, Wang Z, Hsu CW. Fast multi-source nanophotonic simulations using augmented partial factorization. Nat Compu Sci. 2022;2:815–822. doi: 10.1038/s43588-022-00370-6
  • Wiecha PR, Muskens OL. Deep learning meets nanophotonics: a generalized accurate predictor for near fields and far fields of arbitrary 3d nanostructures. Nano Lett. 2019;20:329–338.
  • Getman F, Makarenko M, Burguete-Lopez A, et al. Broadband vectorial ultrathin optics with experimental efficiency up to 99% in the visible region via universal approximators. Light Sci Appli. 2021;10:47. doi: 10.1038/s41377-021-00489-7
  • Wang Q, Rogers ETF, Gholipour B, et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat Photonics. 2016;10:60–65. doi: 10.1038/nphoton.2015.247
  • Gu T, Kim HJ, Rivero-Baleine C, et al. Reconfigurable metasurfaces towards commercial success. Nat Photonics. 2023;17:48–58. doi: 10.1038/s41566-022-01099-4
  • Hu G, Wang M, Mazor Y, et al. Tailoring light with layered and moiré metasurfaces. Trend Chem. 2021;3:342–358. doi: 10.1016/j.trechm.2021.02.004
  • Han Z, Wang F, Sun J, et al. Recent advances in ultrathin chiral metasurfaces by twisted stacking. Adv Mater. 2023;35:2206141. doi: 10.1002/adma.202206141
  • Neshev D, Aharonovich I. Optical metasurfaces: new generation building blocks for multi-functional optics. Light Sci Appli. 2018;7:58. doi: 10.1038/s41377-018-0058-1
  • Solntsev AS, Agarwal GS, Kivshar YS. Metasurfaces for quantum photonics. Nat Photonics. 2021;15:327–336. doi: 10.1038/s41566-021-00793-z
  • Shastri K, Monticone F. Nonlocal flat optics. Nat Photonics. 2023;17:36–47. doi: 10.1038/s41566-022-01098-5
  • Overvig A, Alù A. Diffractive nonlocal metasurfaces. Laser Photonics Rev. 2022;16:2100633. doi: 10.1002/lpor.202100633
  • Wang Z, Chong Y, Joannopoulos JD, et al. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature. 2009;461:772–775. doi: 10.1038/nature08293
  • Lu L, Joannopoulos JD, Soljačić M. Topological photonics. Nat Photonics. 2014;8:821–829. doi: 10.1038/nphoton.2014.248
  • Zhirihin DV, Kivshar YS. Topological photonics on a small scale. Small Sci. 2021;1:2100065. doi: 10.1002/smsc.202100065
  • Mansha S, Chong YD. Robust edge states in amorphous gyromagnetic photonic lattices. Phys Rev B. 2017;96:121405. doi: 10.1103/PhysRevB.96.121405
  • Kruk S, Poddubny A, Smirnova D, et al. Nonlinear light generation in topological nanostructures. Nature Nanotechnol. 2019;14:126–130. doi: 10.1038/s41565-018-0324-7
  • Lin L, Kruk S, Ke Y, et al. Topological states in disordered arrays of dielectric nanoparticles. Phys Rev Res. 2020;2:043233. doi: 10.1103/PhysRevResearch.2.043233
  • Proctor M, Huidobro PA, Bradlyn B, et al. Robustness of topological corner modes in photonic crystals. Phys Rev Res. 2020;2:042038. doi: 10.1103/PhysRevResearch.2.042038
  • Liu C, Maier SA. High-quality optical hotspots with topology-protected robustness ACS Photonics. ACS Photonics 2021;9:241–248.
  • Roberts N, Baardink G, Nunn J, et al. Topological supermodes in photonic crystal fiber. Sci Adv. 2022;8:eadd3522. doi: 10.1126/sciadv.add3522
  • Hsu CW, Zhen B, Stone AD, et al. Bound states in the continuum. Nature Rev Mater. 2016;1:16408. doi: 10.1038/natrevmats.2016.48
  • Koshelev K, Bogdanov A, Kivshar Y. Engineering with bound states in the continuum. Opt Photonics News. 2020;31:38–45. doi: 10.1364/OPN.31.1.000038
  • Jin J, Yin X, Ni L, et al. Topologically enabled ultrahigh-q guided resonances robust to out-of-plane scattering. Nature. 2019;574:501–504. doi: 10.1038/s41586-019-1664-7
  • Wang W, Srivastava YK, Tan TC, et al. Brillouin zone folding driven bound states in the continuum. Nat Commun. 2023;14:2811. doi: 10.1038/s41467-023-38367-y
  • Spaegele CM, Tamagnone M, Lim SWD, et al. Topologically protected optical polarization singularities in four-dimensional space. Sci Adv. 2023;9:eadh0369. doi: 10.1126/sciadv.adh0369
  • Liu C, Rybin MV, Mao P, et al. Disorder-immune photonics based on mie-resonant dielectric metamaterials. Phys Rev Lett. 2019;123:163901. doi: 10.1103/PhysRevLett.123.163901
  • Rybin MV, Filonov DS, Samusev KB, et al. Phase diagram for the transition from photonic crystals to dielectric metamaterials. Nat Commun. 2015;6:10102. doi: 10.1038/ncomms10102
  • Segev M, Silberberg Y, Christodoulides DN. Anderson localization of light. Nat Photonics. 2013;7:197–204. doi: 10.1038/nphoton.2013.30
  • Chen Z, Segev M. Highlighting photonics: looking into the next decade. eLight. 2021;1:2. doi: 10.1186/s43593-021-00002-y