861
Views
0
CrossRef citations to date
0
Altmetric
Reviews

External-field regulated superatoms

, , , , , , & ORCID Icon show all
Article: 2244541 | Received 15 Apr 2023, Accepted 31 Jul 2023, Published online: 11 Aug 2023

References

  • Claridge SA, Castleman AW Jr., Khanna SN, et al. Cluster-assembled materials. ACS Nano. 2009;3:244–255. doi: 10.1021/nn800820e.
  • Guo BC, Kerns KP, Castleman AW Jr. Ti8C12+-Metallo-Carbohedrenes: A new class of molecular clusters? Science. 1992;255:1411–1413. doi: 10.1126/science.255.5050.1411.
  • AW C Jr., Bowen KH. Clusters: Structure, energetics, and dynamics of intermediate states of matter. J Phys Chem. 1996;100:12911–12944. doi: 10.1021/jp961030k.
  • Bergeron DE, Roach PJ, Castleman AW Jr., et al. Al cluster superatoms as halogens in polyhalides and as alkaline earths in iodide salts. Science. 2005;307:231–235. doi: 10.1126/science.1105820.
  • Jena P, Castleman AW Jr. Clusters: A bridge across the disciplines of physics and chemistry. Proc Natl Acad Sci U S A. 2006;103:10560–10569. doi: 10.1073/pnas.0601782103.
  • Roach PJ, Woodward WH, Castleman AW Jr., et al. Complementary active sites cause size-selective reactivity of aluminum cluster anions with water. Science. 2009;323:492–495. doi: 10.1126/science.1165884.
  • Luo Z, AW C Jr. Special and general superatoms. Acc Chem Res. 2014;47:2931–2940. doi: 10.1021/ar5001583.
  • Luo Z, AW C Jr., Khanna SN. Reactivity of metal clusters. Chem Rev. 2016;116(23):14456–14492. doi: 10.1021/acs.chemrev.6b00230.
  • Cheng SB, Berkdemir C, Castleman AW Jr. Observation of d–p hybridized aromaticity in lanthanum-doped boron clusters. Phys Chem Chem Phys. 2014;16:533–539. doi: 10.1039/C3CP53245C.
  • Cheng SB, Berkdemir C, Melko JJ, et al. S-P coupling induced unusual open-shell metal clusters. J Am Chem Soc. 2014;136:4821–4824. doi: 10.1021/ja412637j.
  • Cheng SB, Berkdemir C, Castleman AW Jr. Mimicking the magnetic properties of rare earth elements using superatoms. Proc Natl Acad Sci U S A. 2015;112:4941–4945. doi: 10.1073/pnas.1504714112.
  • Cheng SB, Castleman AW Jr. Direct experimental observation of weakly-bound character of the attached electron in europium anion. Sci Rep. 2015;5:12414. doi: 10.1038/srep12414.
  • Cheng SB, Harmon CL, Yang H, et al. Electronic structure of the diatomic VO anion: A combined photoelectron-imaging spectroscopic and theoretical investigation. Phy Rev A. 2016;94:062506. doi: 10.1103/PhysRevA.94.062506.
  • Lu S, Hu K, Zuo Z, et al. Beam generation and structural optimization of size-selected Au923 clusters. Nanoscale Adv. 2020;2:2720–2725. doi: 10.1039/D0NA00304B.
  • Zhang K, Wang C, Zhang M, et al. A Gd@C82 single-molecule electret. Nat Nanotech. 2020;15:1019–1024. doi: 10.1038/s41565-020-00778-z.
  • Wei X, Kang X, Zuo Z, et al. Hierarchical structural complexity in atomically precise nanocluster frameworks. Nat Sci Rev. 2021;8:nwaa077. doi: 10.1093/nsr/nwaa077.
  • Hu KJ, Yan W, Zhang M, et al. Electrical devices designed based on inorganic clusters. Nanotechnology. 2022;33:502001. doi: 10.1088/1361-6528/ac8f4e.
  • Sun Q, Wang Q, Jena P, et al. Clustering of Ti on a C60 surface and its effect on hydrogen storage. J Am Chem Soc. 2005;127:14582–14583. doi: 10.1021/ja0550125.
  • Sun Q, Jena P, Wang Q, et al. First-principles study of hydrogen storage on Li12C60. J Am Chem Soc. 2006;128:9741–9745. doi: 10.1021/ja058330c.
  • Jena P. Beyond the periodic table of elements: The role of superatoms. J Phys Chem Lett. 2013;4:1432–1442. doi: 10.1021/jz400156t.
  • Zhang S, Zhou J, Wang Q, et al. Penta-graphene: A new carbon allotrope. Proc Natl Acad Sci U S A. 2015;112:2372–2377. doi: 10.1073/pnas.1416591112.
  • Jena P, Sun Q. Super atomic clusters: Design rules and potential for building blocks of materials. Chem Rev. 2018;118:5755–5870. doi: 10.1021/acs.chemrev.7b00524.
  • Yin B, Du Q, Geng L, et al. Anionic copper clusters reacting with NO: An open-shell superatom Cu18¯. J Phys Chem Lett. 2020;11:5807–5814. doi: 10.1021/acs.jpclett.0c01643.
  • Yin B, Du Q, Geng L, et al. Superatomic signature and reactivity of silver clusters with oxygen: double magic Ag17– with geometric and electronic shell closure. CCS Chem. 2021;3:219–229. doi: 10.31635/ccschem.020.202000719.
  • Du Q, Yin B, Zhou S, et al. The reactivity of O2 with copper cluster anions Cu− (n = 7−20): leveling effect of spin accommodation. Chin Chem Lett. 2022;33:995–1000. doi: 10.1016/j.cclet.2021.08.127.
  • Yu X, Su Y, Xu WW, et al. Efficient photoexcited charge separation at the interface of a novel 0D/2D heterojunction: A time-dependent ultrafast dynamic study. J Phys Chem Lett. 2021;12:2312–2319. doi: 10.1021/acs.jpclett.1c00023.
  • Yu X, Sun Y, Xu WW, et al. Tuning photoelectron dynamic behavior of thiolate-protected MAu24 nanoclusters via heteroatom substitution. Nanoscale Horiz. 2022;7:1192–1200. doi: 10.1039/D2NH00281G.
  • Sun Y, Yu X, Liu P, et al. Isomerism effects in relaxation dynamics of Au24(SR)16 thiolate-protected gold nanoclusters. Nanotechnology. 2023;34:105701. doi: 10.1088/1361-6528/aca80d.
  • Li XN, Jiang LX, Wang LN, et al. An eight-atom iridium-aluminum oxide cluster IrAlO6+ catalytically oxidizes six CO molecules. J Phys Chem Lett. 2019;10:7850–7855. doi: 10.1021/acs.jpclett.9b03056.
  • Chen JJ, Li XN, Liu QY, et al. Water gas shift reaction catalyzed by rhodium-manganese oxide cluster anions. J Phys Chem Lett. 2021;12:8513–8520. doi: 10.1021/acs.jpclett.1c02267.
  • Chen LS, Liu YZ, Li XN, et al. An IrVO4+ cluster catalytically oxidizes four CO molecules: Importance of Ir-V multiple bonding. J Phys Chem Lett. 2021;12:6519–6525. doi: 10.1021/acs.jpclett.1c01584.
  • Liu Z, Wu X, Zhu Y, et al. Superatomic Rydberg state excitation. J Phys Chem Lett. 2021;12:11766–11771. doi: 10.1021/acs.jpclett.1c03520.
  • Huang W, Zhang Q, Wang R, et al. Super-excimer: Anomalous bonding in a metastable excited-state dimer of superatomic dimers. J Phys Chem Lett. 2022;13:8455–8461. doi: 10.1021/acs.jpclett.2c02271.
  • Li J, Wang R, Huang W, et al. Smallest endohedral metallofullerenes [Mg@C20]n (n = 4, 2, 0, −2, and −4): endo-ionic interaction in superatoms. J Phys Chem Lett. 2023;14:2862–2868. doi: 10.1021/acs.jpclett.3c00445.
  • Khanna SN, Jena P. Assembling crystals from clusters. Phys Rev Lett. 1992;69:1664–1667. doi: 10.1103/PhysRevLett.69.1664.
  • Bergeron DE, Castleman AW Jr., Morisato T, et al. Formation of Al13I−: evidence for the superhalogen character of Al13. Science. 2004;304:84–87. doi: 10.1126/science.1093902.
  • Li X, Wu HB, Wang XB, et al. s-p hybridization and electron shell structures in aluminum clusters: A photoelectron spectroscopy study. Phys Rev Lett. 1998;81:1909–1912. doi: 10.1103/PhysRevLett.81.1909.
  • Li J, Zhao Y, Bu YF, et al. On the theoretical construction of Nb2N2-based superatoms by external field strategies. Chem Phys Lett. 2020;754:137709. doi: 10.1016/j.cplett.2020.137709.
  • Gutsev GL, Boldyrev AI. DVM-Xα calculations on the electronic structure of “superalkali” cations. Chem Phys Lett. 1982;92:262–266. doi: 10.1016/0009-2614(82)80272-8.
  • Gutsev GL, Boldyrev AI. DVM-Xα calculations on the ionization potentials of MXk+1−complex anions and the electron affinities of MXk+1“superhalogens”. Chem Phys. 1981;56:277–283. doi: 10.1016/0301-0104(81)80150-4.
  • Castleman AW Jr., Khanna SN, Clusters. Superatoms, and building blocks of new materials. J Phys Chem C. 2009;113:2664–2675. doi: 10.1021/jp806850h.
  • Zhu MZ, Aikens CM, Hendrich MP, et al. Reversible switching of magnetism in thiolate-protected Au25 superatoms. J Am Chem Soc. 2009;131:2490–2492. doi: 10.1021/ja809157f.
  • Reber AC, Khanna SN, AW C Jr. Superatom compounds, clusters, and assemblies: Ultra alkali motifs and architectures. J Am Chem Soc. 2007;129:10189–10194. doi: 10.1021/ja071647n.
  • Chen S, Du W, Qin C, et al. Assembly of the thiolated Au1Ag22(S-Adm)123+ superatom complex into a framework material through direct linkage by SbF6¯ anions. Angew Chem Int Ed. 2020;59:7542–7547. doi: 10.1002/anie.202000073.
  • Cheng L, Yuan Y, Zhang X, et al. Superatom networks in thiolate-protected gold nanoparticles. Angew Chem Int Ed. 2013;52:9035–9039. doi: 10.1002/anie.201302926.
  • Dougherty DB, Feng M, Petek H, et al. Band formation in a molecular quantum well via 2D superatom orbital interactions. Phys Rev Lett. 2012;109:266802. doi: 10.1103/PhysRevLett.109.266802.
  • Li Y, Wu D, Li ZR. Compounds of superatom clusters: Preferred structures and significant nonlinear optical properties of the BLi6-X (X = F, LiF2, BeF3, BF4) motifs. Inorg Chem. 2008;47:9773–9778. doi: 10.1021/ic800184z.
  • Luo Z, Reber AC, Jia M, et al. What determines if a ligand activates or passivates a superatom cluster? Chem Sci. 2016;7:3067–3074. doi: 10.1039/C5SC04293C.
  • Pei Y, Lin S, Su J, et al. Structure prediction of Au44(SR)28: a chiral superatom cluster. J Am Chem Soc. 2013;135:19060–19063. doi: 10.1021/ja409788k.
  • Peppernick SJ, Gunaratne KDD, Castleman AW Jr. Superatom spectroscopy and the electronic state correlation between elements and isoelectronic molecular counterparts. Proc Natl Acad Sci U S A. 2010;107:975–980. doi: 10.1073/pnas.0911240107.
  • Reimers JR, Wang Y, Cankurtaran BO, et al. Chemical analysis of the superatom model for sulfur-stabilized gold nanoparticles. J Am Chem Soc. 2010;132:8378–8384. doi: 10.1021/ja101083v.
  • Stoll T, Sgro E, Jarrett JW, et al. Superatom state-resolved dynamics of the Au25(SC8H9)18¯ cluster from two-dimensional electronic spectroscopy. J Am Chem Soc. 2016;138:1788–1791. doi: 10.1021/jacs.5b12621.
  • Takano S, Hirai H, Muramatsu S, et al. Hydride-doped gold superatom (Au9H)2+: Synthesis, structure, and transformation. J Am Chem Soc. 2018;140:8380–8383. doi: 10.1021/jacs.8b03880.
  • Tofanelli MA, Ackerson CJ. Superatom electron configuration predicts thermal stability of Au25(SR)18 nanoclusters. J Am Chem Soc. 2012;134:16937–16940. doi: 10.1021/ja3072644.
  • Wang Y, Su H, Xu C, et al. An intermetallic Au24Ag20 superatom nanocluster stabilized by labile ligands. J Am Chem Soc. 2015;137:4324–4327. doi: 10.1021/jacs.5b01232.
  • Weber TM, Hoening M, Niederpruem T, et al. Mesoscopic Rydberg-blockaded ensembles in the superatom regime and beyond. Nat Phys. 2015;11:157–161. doi: 10.1038/nphys3214.
  • Walter M, Akola J, Lopez-Acevedo O. A unified view of ligand-protected gold clusters as superatom complexes. Proc Natl Acad Sci U S A. 2008;105:9157–9162. doi: 10.1073/pnas.0801001105.
  • Chou MY, Cleland A, Cohen ML. Total energies, abundances, and electronic shell structure of lithium, sodium, and potassium clusters. Solid State Commun. 1984;52:645–648. doi: 10.1016/0038-1098(84)90725-7.
  • Leuchtner RE, Harms AC, Castleman AW Jr. Thermal metal cluster anion reactions: Behavior of aluminum clusters with oxygen. J Chem Phys. 1989;91:2753–2754. doi: 10.1063/1.456988.
  • Li J, Li X, Zhai HJ, et al. Au20: a tetrahedral cluster. Science. 2003;299:864–867. doi: 10.1126/science.1079879.
  • Clayborne PA, Lopez-Acevedo O, Whetten RL, et al. The Al50Cp*12 Cluster: A 138-electron closed shell (L = 6) superatom. Eur J Inorg Chem. 2011;17:2649–2652. doi: 10.1002/ejic.201100374.
  • Kumar V, Kawazoe Y. Metal-encapsulated fullerenelike and cubic caged clusters of silicon. Phys Rev Lett. 2001;87:045503. doi: 10.1103/PhysRevLett.87.045503.
  • Kumar V, Kawazoe Y. Metal-encapsulated caged clusters of germanium with large gaps and different growth behavior than silicon. Phys Rev Lett. 2002;88:235504. doi: 10.1103/PhysRevLett.88.235504.
  • Wade K. The structural significance of the number of skeletal bonding electron-pairs in carboranes, the higher boranes and borane anions, and various transition-metal carbonyl cluster compounds. J Chem Soc D. 1971;:792–793. doi: 10.1039/c29710000792.
  • Mingos DMP. A general theory for cluster and ring compounds of the main group and transition elements. Nat Phys Sci. 1972;236:99–102. doi: 10.1038/physci236099a0.
  • Mingos DMP. Polyhedral skeletal electron pair approach. Acc Chem Res. 1984;17:311–319. doi: 10.1021/ar00105a003.
  • Pathak B, Samanta D, Ahuja R, et al. Borane derivatives: A new class of super- and hyperhalogens. Chemphyschem. 2011;12:2423–2428. doi: 10.1002/cphc.201100320.
  • Li X, Grubisic A, Stokes ST, et al. Unexpected stability of Al4H6: a borane analog? Science. 2007;315:356–358. doi: 10.1126/science.1133767.
  • Cui LF, Huang X, Wang LM, et al. Sn122-: Stannaspherene. J Am Chem Soc. 2006;128:8390–8391. doi: 10.1021/ja062052f.
  • Cui LF, Huang X, Wang LM, etal. Pb122-: Plumbaspherene. J Phys Chem A. 2006;110:10169–10172. doi: 10.1021/jp063617x.
  • Lewis GN. The atom and the molecule. J Am Chem Soc. 1916;38:762–785. doi: 10.1021/ja02261a002.
  • Langmuir I. The arrangement of electrons in atoms and molecules. J Am Chem Soc. 1919;41:868–934. doi: 10.1021/ja02227a002.
  • Gutsev GL, Bartlett RJ, Boldyrev AI, et al. Adiabatic electron affinities of small superhalogens: LiF2, LiCl2, NaF2, and NaCl2. J Chem Phys. 1997;107:3867–3875. doi: 10.1063/1.474764.
  • Koirala P, Willis M, Kiran B, et al. Superhalogen properties of fluorinated coinage metal clusters. J Phys Chem C. 2010;114:16018–16024. doi: 10.1021/jp101807s.
  • Paduani C, Wu MM, Willis M, et al. Theoretical study of the stability and electronic structure of Al(BH4)n=1→4 and Al(BF4) n=1→4 and their hyperhalogen behavior. J Phys Chem A. 2011;115:10237–10243. doi: 10.1021/jp206330d.
  • Bradforth SE, Kim EH, Arnold DW, et al. Photoelectron spectroscopy of CN−, NCO−, and NCS−. J Chem Phys. 1993;98:800–810. doi: 10.1063/1.464244.
  • Lievens P, Thoen P, Bouckaert S, et al. Ionization potentials of LinO (2⩽n⩽70) clusters: Experiment and theory. J Chem Phys. 1999;110:10316–10329. doi: 10.1063/1.478965.
  • Willis M, Gotz M, Kandalam AK, et al. Hyperhalogens: Discovery of a new class of highly electronegative species. Angew Chem Int Ed. 2010;49:8966–8970. doi: 10.1002/anie.201002212.
  • Langmuir I. Types of valence. Science. 1921;54:59–67. doi: 10.1126/science.54.1386.59.
  • Pyykko P, Runeberg N. Icosahedral WAu12: a predicted closed-shell species, stabilized by aurophilic attraction and relativity and in accord with the 18-electron rule. Angew Chem Int Ed. 2002;41:2174–2176. doi: 10.1002/1521-3773(20020617)41:12<2174:AID-ANIE2174>3.0.CO;2-8.
  • Stuyver T, Danovich D, Joy J, et al. External electric field effects on chemical structure and reactivity. WIREs Comput Mol Sci. 2020;10:e1438. doi: 10.1002/wcms.1438.
  • Shaik S, Ramanan R, Danovich D, et al. Structure and reactivity/selectivity control by oriented-external electric fields. Chem Soc Rev. 2018;47:5125–5145. doi: 10.1039/C8CS00354H.
  • Shaik S, Mandal D, Ramanan R. Oriented electric fields as future smart reagents in chemistry. Nat Chem. 2016;8:1091–1098. doi: 10.1038/nchem.2651.
  • Aragonès AC, Haworth NL, Darwish N, et al. Electrostatic catalysis of a Diels–Alder reaction. Nature. 2016;531:88–91. doi: 10.1038/nature16989.
  • Sun WM, Li CY, Kang J, et al. Superatom compounds under oriented external electric fields: Simultaneously enhanced bond energies and nonlinear optical responses. J Phys Chem C. 2018;122:7867–7876. doi: 10.1021/acs.jpcc.8b01896.
  • He HM, Li Y, Yang H, et al. Efficient external electric field manipulated nonlinear optical switches of all-metal electride molecules with infrared transparency: Nonbonding electron transfer forms an excess electron lone pair. J Phys Chem C. 2017;121:958–968. doi: 10.1021/acs.jpcc.6b11919.
  • Zhao Y, Wang J, Huang HC, et al. Tuning the electronic properties and performance of low-temperature CO oxidation of the gold cluster by oriented external electronic field. J Phys Chem Lett. 2020;11:1093–1099. doi: 10.1021/acs.jpclett.9b03794.
  • Zhao Y, Chen J, Yang H, et al. A density functional theory calculation on the geometrical structures and electronic properties of Ag19 under the oriented external electric field. Chem Phys Lett. 2020;754:137703. doi: 10.1016/j.cplett.2020.137703.
  • Duan YJ, Zhao Y, Cheng SB, et al. On the precise and continuous regulation of the superatomic and spectroscopic behaviors of the quasi-cubic W4C4 cluster by the oriented external electric field. J Phys Chem A. 2022;126:29–35. doi: 10.1021/acs.jpca.1c08452.
  • Chen J, Yang H, Wang J, et al. Revealing the effect of the oriented external electronic field on the superatom-polymeric Zr3O3 cluster: Superhalogen modulation and spectroscopic characteristics. Spectrochim Acta A. 2020;237:118400. doi: 10.1016/j.saa.2020.118400.
  • Chen J, Wei Q, Yang H, et al. On the structures, electronic properties, and superhalogen regulation of the MnB6¯ cluster: A density functional theory investigation. Chem Phys Lett. 2020;754:137723. doi: 10.1016/j.cplett.2020.137723.
  • Chauhan V, Sahoo S, Khanna SN. Ni9Te6(PEt3)8C60 is a superatomic superalkali superparamagnetic cluster assembled material (S3-CAM). J Am Chem Soc. 2016;138:1916–1921. doi: 10.1021/jacs.5b10986.
  • Chauhan V, Reber AC, Khanna SN. Strong lowering of ionization energy of metallic clusters by organic ligands without changing shell filling. Nat Commun. 2018;9:2357. doi: 10.1038/s41467-018-04799-0.
  • Li J, Cui MW, Yang H, et al. Ligand-field regulated superalkali behavior of the aluminum-based clusters with distinct shell occupancy. Chin Chem Lett. 2022;33:5147–5151. doi: 10.1016/j.cclet.2022.02.039.
  • Li J, Huang HC, Wang J, et al. Polymeric tungsten carbide nanoclusters: structural evolution, ligand modulation, and assembled nanomaterials. Nanoscale. 2019;11:19903–19911. doi: 10.1039/C9NR05613K.
  • Liu GX, Pinkard A, Ciborowski SM, et al. Tuning the electronic properties of hexanuclear cobalt sulfide superatoms via ligand substitution. Chem Sci. 2019;10:1760–1766. doi: 10.1039/C8SC03862G.
  • Liu GX, Chauhan V, Aydt AP, et al. Ligand effect on the electronic structure of cobalt sulfide clusters: A combined experimental and theoretical study. J Phys Chem C. 2019;123:25121–25127. doi: 10.1021/acs.jpcc.9b04153.
  • Li J, Huang HC, Chen J, et al. Organic ligand mediated evolution from aluminum-based superalkalis to superatomic molecules and one-dimensional nanowires. Nano Res. 2022;15:1162–1170. doi: 10.1007/s12274-021-3619-1.
  • Wang J, Zhao Y, Li J, et al. Unveiling the electronic structures and ligation effect of the superatom-polymeric zirconium oxide clusters: a computational study. Phys Chem Chem Phys. 2019;21:14865–14872. doi: 10.1039/C9CP01870K.
  • Chauhan V, Reber AC, Khanna SN. Metal chalcogenide clusters with closed electronic shells and the electronic properties of alkalis and halogens. J Am Chem Soc. 2017;139:1871–1877. doi: 10.1021/jacs.6b09416.
  • Chauhan V, Khanna SN. Strong effect of organic ligands on the electronic structure of metal-chalcogenide clusters. J Phys Chem A. 2018;122:6014–6020. doi: 10.1021/acs.jpca.8b03355.
  • Reber AC, Khanna SN. The effect of chalcogen and metal on the electronic properties and stability of metal–chalcogenides clusters, TM6Xn(PH3)6 (TM = Mo, Cr, Re, Co, Ni; X = Se, Te; n = 8,5). Eur Phys J D. 2018;72:199. doi: 10.1140/epjd/e2018-90223-7.
  • Wang H, Li J, Chen J, et al. Solvent field regulated superhalogen in pure and doped gold cluster anions. Chin Chem Lett. 2023;108222:108222. doi: 10.1016/j.cclet.2023.108222.
  • Dong XX, Zhao Y, Li J, et al. Dual external field-engineered hyperhalogen. J Phys Chem Lett. 2022;13:3942–3948. doi: 10.1021/acs.jpclett.2c00916.
  • Huang XY, Tang C, Li JQ, et al. Electric field–induced selective catalysis of single-molecule reaction. Sci Adv. 2019;5:eaaw3072. doi: 10.1126/sciadv.aaw3072.
  • Chen HL, Jiang F, Hu C, et al. Electron-catalyzed dehydrogenation in a single-molecule junction. J Am Chem Soc. 2021;143:8476–8487. doi: 10.1021/jacs.1c03141.