2,024
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Ultra-stable and versatile high-energy resolution setup for attosecond photoelectron spectroscopy

ORCID Icon, , , ORCID Icon, , ORCID Icon, , , , , , , , & show all
Article: 2250105 | Received 08 Nov 2022, Accepted 09 Aug 2023, Published online: 07 Sep 2023

References

  • Krausz F, Ivanov M. Attosecond physics. Rev Mod Phys. 2009;81:163. doi: 10.1103/RevModPhys.81.163
  • Borrego-Varillas R, Lucchini M, Nisoli M. Attosecond spectroscopy for the investigation of ultrafast dynamics in atomic, molecular and solid-state physics. Rep Prog Phys. 2022;85:066401. doi: 10.1088/1361-6633/ac5e7f
  • McPherson A, Gibson G, Jara H, et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. J Opt Soc Am B. 1987;4:595. doi: 10.1364/JOSAB.4.000595
  • Ferray M, L’Huillier A, Li XF, et al. Multiple-harmonic conversion of 1064 nm radiation in rare gases. J Phys B At Mol Opt Phys. 1987;21:L31. doi: 10.1088/0953-4075/21/3/001
  • Paul PM, Toma ES, Breger P, et al. Observation of a train of attosecond pulses from high harmonic generation. Science. 2001;292:1689. doi: 10.1126/science.1059413
  • Mairesse Y, de Bohan A, Frasinski LJ, et al. Attosecond Synchronization of high-harmonic Soft X-rays. Science. 2003;292:1540. doi: 10.1126/science.1090277
  • Hentschel M, Kienberger R, Spielmann C, et al. Attosecond metrology. Nature. 2001;414:509. doi: 10.1038/35107000
  • Goulielmakis E, Schultze M, Hofstetter M, et al. Single-Cycle Nonlinear Optics. Science. 2008;320:1614. doi: 10.1126/science.1157846
  • Zhao K, Zhang Q, Chini M, et al. Tailoring a 67 attosecond pulse through advantageous phase-mismatch. Opt Lett. 2012;37:3891. doi: 10.1364/OL.37.003891
  • Véniard V, Taïeb R, Maquet A. Phase dependence of (N+1)-color (N>1) IR-UV photoionization of atoms with higher harmonics. Phys Rev A. 1996;54:721. doi: 10.1103/PhysRevA.54.721
  • Muller HG. Reconstruction of attosecond harmonic beating by interference of two-photon transitions. App Phys B. 2002;74:S17–S21. doi: 10.1007/s00340-002-0894-8
  • Dahlström JM, L’Huillier A, Maquet A. Introduction to attosecond delays in photoionization. J Phys B At Mol Opt Phys. 2012;45:183001. doi: 10.1088/0953-4075/45/18/183001
  • Dahlström J, Guénot D, Klünder K, et al. Theory of attosecond delays in laser-assisted photoionization. Chem Phys. 2013;414:53. doi: 10.1016/j.chemphys.2012.01.017
  • Isinger M, Busto D, Mikaelsson S, et al. Accuracy and precision of the RABBIT technique. Phil Trans R Soc A. 2019;377:20170475. doi: 10.1098/rsta.2017.0475
  • Isinger M, Squibb RJ, Busto D, et al. Photoionization in the time and frequency domain. Science. 2017;358:893–896. doi: 10.1126/science.aao7043
  • Agostini P, DiMauro LF. The physics of attosecond light pulses. Rep Prog Phys. 2004;67:813–855. doi: 10.1088/0034-4885/67/6/R01
  • Krausz F, DiMauro LF. Attosecond physics. Rev Mod Phys. 2009;91:163–234. doi: 10.1103/RevModPhys.81.163
  • Pazourek R, Nagele S, Burgdörfer J. Attosecond chronoscopy of photoemission. Rev Mod Phys. 2015;87:765. doi: 10.1103/RevModPhys.87.765
  • Calegari F, Sansone G, Stagira S, et al. Advances in attosecond science. J Phys B At Mol Opt Phys. 2016;49:062001. doi: 10.1088/0953-4075/49/6/062001
  • Biegert J, Calegari F, Dudovich N, et al. Attosecond technology(ies) and science. J Phys B At Mol Opt Phys. 2021;54:070201. doi: 10.1088/1361-6455/abcdef
  • Weissenbilder R, Carlström S, Rego L, et al. How to optimize high-order harmonic generation in gases. Nat Rev Phys. 2022;4:713–722. doi: 10.1038/s42254-022-00522-7
  • Schultze M, Fieß M, Karpowicz N, et al. Delay in photoemission. Science. 2010;328:1658. doi: 10.1126/science.1189401
  • Klünder K, Dahlström JM, Gisselbrecht M, et al. Probing Single-photon ionization on the attosecond time scale. Phys Rev Lett. 2011;106:143002. doi: 10.1103/PhysRevLett.106.143002
  • Huppert M, Jordan I, Baykusheva D, et al. Attosecond delays in molecular photoionization. Phys Rev Lett. 2016;117:093001. doi: 10.1103/PhysRevLett.117.093001
  • Vos J, Cattaneo L, Patchkovskii S, et al. Orientation-dependent stereo Wigner time delay and electron localization in a small molecule. Science. 2018;360:1326. doi: 10.1126/science.aao4731
  • Cavalieri AL, Müller N, Uphues T, et al. Attosecond spectroscopy in condensed matter. Nature. 2007;449:1029. doi: 10.1038/nature06229
  • Kotur M, Guénot D, Jiménez-Galán A, et al. Spectral phase measurement of a Fano resonance using tunable attosecond pulses. Nat Commun. 2016;7:10566. doi: 10.1038/ncomms10566
  • Gruson V, Barreau L, Galan AJ, et al. Attosecond dynamics through a Fano resonance: monitoring the birth of a photoelectron. Science. 2016;354:734. doi: 10.1126/science.aah5188
  • Drescher M, Hentschel M, Kienberger R, et al. Time-resolved atomic inner-shell spectroscopy. Nature. 2002;419:803–807. doi: 10.1038/nature01143
  • Månsson EP, Guénot D, Arnold CL, et al. Double ionization probed on the attosecond timescale. Nat Phys. 2014;10:207–211. doi: 10.1038/nphys2880
  • Zhong S, Vinbladh J, Busto D, et al. Attosecond electron–spin dynamics in Xe 4d photoionization. Nat Commun. 2020;11:5042. doi: 10.1038/s41467-020-18847-1
  • Ossiander M, Siegrist F, Shirvanyan V, et al. Attosecond correlation dynamics. Nat Phys. 2017;13:280–285. doi: 10.1038/nphys3941
  • Cattaneo L, Vos J, Bello RY, et al. Attosecond coupled electron and nuclear dynamics in dissociative ionization of H2. Nat Phys. 2018;14:733–738. doi: 10.1038/s41567-018-0103-2
  • Nandi S, Plésiat E, Zhong S, et al. Attosecond timing of electron emission from a molecular shape resonance. Sci Adv. 2020;6:eaba7762. doi: 10.1126/sciadv.aba7762
  • Gong X, Jiang W, Tong J, et al. Asymmetric attosecond photoionization in molecular shape resonance. Phys Rev X. 2022;12:011002. doi: 10.1103/PhysRevX.12.011002
  • Zaïr A, Mével E, Cormier E, et al. Ultrastable collinear delay control setup for attosecond IR-XUV pump–probe experiment. J Opt Soc Am B. 2018;35:A110. doi: 10.1364/JOSAB.35.00A110
  • Ahmadi H, Kellerer S, Erte D, et al. Collinear setup for delay control in two-color attosecond measurements. J Phys: Photonics. 2020;2:024006. doi: 10.1088/2515-7647/ab823f
  • Chini M, Mashiko H, Wang H, et al. Delay control in attosecond pump-probe experiments. Opt Express. 2009;17:21459. doi: 10.1364/OE.17.021459
  • Sabbar M, Heuser S, Boge R, et al. Combining attosecond XUV pulses with coincidence spectroscopy. Rev Sci Instru. 2014;85:103113. doi: 10.1063/1.4898017
  • Huppert M, Jordan I, Wörner HJ. Attosecond beamline with actively stabilized and spatially separated beam paths. Rev Sci Instru. 2015;86:123106. doi: 10.1063/1.4937623
  • Weber SJ, Manschwetus B, Billon M, et al. Flexible attosecond beamline for high harmonic spectroscopy and XUV/near-IR pump probe experiments requiring long acquisition times. Rev Sci Instru. 2015;86:033108. doi: 10.1063/1.4914464
  • Vaughan J, Bahder J, Unzicker B, et al. Design of an optically-locked interferometer for attosecond pump-probe setups. Opt Express. 2019;27:30989. doi: 10.1364/OE.27.030989
  • Mandal A, Sidhu MS, Rost JM, et al. Attosecond delay lines: design, characterization and applications. Eur Phys J Spec Top. 2021;230:4195–4213. doi: 10.1140/epjs/s11734-021-00261-3
  • Li M, Wang H, Li X, et al. Stable attosecond beamline equipped with high resolution electron and XUV spectrometer based on high-harmonics generation. J Electron Spectrosc Relat Phenom. 2023;263:147287. doi: 10.1016/j.elspec.2023.147287
  • Schlaepfer F, Volkov M, Hartmann A, et al. Phase stabilization of an attosecond beamline combining two IR colors. Opt Express. 2019;27:22385. doi: 10.1364/OE.27.022385
  • Osolodkov M, Furch FJ, Schell F, et al. Generation and characterisation of few-pulse attosecond pulse trains at 100 kHz repetition rate. J Phys B At Mol Opt Phys. 2020;53:194003. doi: 10.1088/1361-6455/aba77d
  • Srinivas H, Shobeiry F, Bharti D, et al. High-repetition rate attosecond beamline for multi-particle coincidence experiments. Opt Express. 2022;30:13630. doi: 10.1364/OE.454553
  • Luttmann M, Bresteau D, Hergott JF, et al. In situ sub-50-attosecond active stabilization of the delay between infrared and extreme-ultraviolet light pulses. Phys Rev Appl. 2021;15:034036. doi: 10.1103/PhysRevApplied.15.034036
  • Busto D, Barreau L, Isinger M, et al. Time–frequency representation of autoionization dynamics in helium. J Phys B At Mol Opt Phys. 2018;51:044002. doi: 10.1088/1361-6455/aaa057
  • Busto D, Laurell H, Shapiro DF, et al. Probing electronic decoherence with high-resolution attosecond photoelectron interferometry. Euro Phys J D. 2022;76:112. doi: 10.1140/epjd/s10053-022-00438-y
  • Haessler S, Fabre B, Higuet J, et al. Phase-resolved attosecond near-threshold photoionization of molecular nitrogen. Phys Rev A. 2009;80:011404(R). doi: 10.1103/PhysRevA.80.011404
  • Wang AL, Serov VV, Kamalov A, et al. Role of nuclear-electronic coupling in attosecond photoionization of H2, Phys Rev A. 2021;104:063119. doi: 10.1103/PhysRevA.104.063119
  • Chini M, Zhao K, Chang Z. The generation, characterization and applications of broadband isolated attosecond pulses. Nat Photon. 2014;8:178–186. doi: 10.1038/nphoton.2013.362
  • Li J, Lu J, Chew A, et al. Attosecond science based on high harmonic generation from gases and solids. Nat Commun. 2020;11:2748. doi: 10.1038/s41467-020-16480-6
  • Midorikawa K. Progress on table-top isolated attosecond light sources. Nat Photon. 2022;16:267–278 doi:10.1038/s41566-022-00961-9.
  • Nisoli M, Decleva P, Calegari F, et al. Attosecond electron dynamics in molecules. Chem Rev. 2017;117:10760. doi: 10.1021/acs.chemrev.6b00453
  • Kraus PM, Zürch M, Cushing SK, et al. The ultrafast X-ray spectroscopic revolution in chemical dynamics. Nat Rev Chem. 2018;2:82–94. doi: 10.1038/s41570-018-0008-8
  • Schultze M, Ramasesha K, Pemmaraju CD, et al. Attosecond band-gap dynamics in silicon. Science. 2014;346:1348. doi: 10.1126/science.1260311
  • Neppl S, Ernstorfer R, Cavalieri AL, et al. Direct observation of electron propagation and dielectric screening on the atomic length scale. Nature. 2015;517:342–346. doi: 10.1038/nature14094
  • Tao Z, Chen C, Szilvási T, et al. Direct time-domain observation of attosecond final-state lifetimes in photoemission from solids. Science. 2016;353:62–67. doi: 10.1126/science.aaf6793
  • Lewenstein M, Ciappina MFJR-D, Pisanty E, et al. Generation of optical Schrödinger cat states in intense laser–matter interactions. Nat Phys. 2021;17:1104–1108. doi: 10.1038/s41567-021-01317-w
  • Stammer P, Rivera-Dean J, Lamprou T, et al. High photon number entangled states and coherent state superposition from the extreme ultraviolet to the far infrared. Phys Rev Lett. 2022;128:123603. doi: 10.1103/PhysRevLett.128.123603
  • Pfeifer T, Wollenhaupt M, Lein M. Ultrafast artificial intelligence: machine learning with atomic-scale quantum systems Arxiv. 2023;2303:12231. doi:10.48550/arXiv.2303.12231
  • Bourassin-Bouchet C, Barreau L, Gruson V, et al. Quantifying decoherence in attosecond metrology. Phys Rev X. 2020;10:031048. doi: 10.1103/PhysRevX.10.031048
  • Laurell H, Shapiro DF, Dittel C, et al. Continuous-variable quantum state tomography of photoelectrons. Phys Rev Res. 2022;4:033220. doi: 10.1103/PhysRevResearch.4.033220
  • Vrakking MJ. Control of attosecond entanglement and coherence. Phys Rev Lett. 2021;126:113203. doi: 10.1103/PhysRevLett.126.113203
  • Koll L, Maikowski L, Drescher L, et al. Experimental control of quantum-mechanical entanglement in an attosecond pump-probe experiment. Phys Rev Lett. 2022;128:043201. doi: 10.1103/PhysRevLett.128.043201
  • Pupeza I, Huber M, Trubetskov M, et al. Field-resolved infrared spectroscopy of biological systems. Nature. 2020;577:52. doi: 10.1038/s41586-019-1850-7
  • Kroon D, Guénot D, Kotur M, et al. Attosecond pulse walk-off in high-order harmonic generation. Opt Lett. 2014;39:2218. doi: 10.1364/OL.39.002218
  • Miranda M, Fordell T, Arnold CL, et al. Simultaneous compression and characterization of ultrashort laser pulses using chirped mirrors and glass wedges. Opt Express. 2012;20:688. doi: 10.1364/OE.20.000688
  • Sytcevich I, Guo C, Mikaelsson S, et al. Characterizing ultrashort laser pulses with second harmonic dispersion scans. J Opt Soc Am B. 2021;38:1546. doi: 10.1364/JOSAB.412535
  • Swoboda M, Fordell T, Klünder K, et al. Phase measurement of resonant two-photon ionization in helium. Phys Rev Lett. 2010;104:103003. doi: 10.1103/PhysRevLett.104.103003
  • Kheifets AS, Bray AW. RABBITT phase transition across the ionization threshold. Phys Rev A. 2021;103:L011101. doi: 10.1103/PhysRevA.103.L011101
  • Drescher L, Witting T, Kornilov O, et al. Phase dependence of resonant and antiresonant two-photon excitations. Phys Rev A. 2022;105:L011101. doi: 10.1103/PhysRevA.105.L011101
  • Autuori A, Platzer D, Lejman M, et al. Anisotropic dynamics of two-photon ionization: an attosecond movie of photoemission. Sci Adv. 2022;8:eabl7594. doi: 10.1126/sciadv.abl7594
  • Neoricic L, Busto D, Laurell H, et al. Resonant two-photon ionization of helium atoms studied by attosecond interferometry. Front Phys. 2022;10:964586. doi: 10.3389/fphy.2022.964586
  • Vinbladh J, Dahlström JM, Lindroth E. Many-body calculations of two-photon, two-color matrix elements for attosecond delays. Phys Rev A. 2019;100:043424. doi: 10.1103/PhysRevA.100.043424
  • Galán ÁJ, Argenti L, Martín F. Modulation of attosecond beating in resonant two-photon ionization. Phys Rev Lett. 2014;113:263001. doi: 10.1103/PhysRevLett.113.263001
  • Galán ÁJ, Martín F, Argenti L. Two-photon finite-pulse model for resonant transitions in attosecond experiments. Phys Rev A. 2016;93:023429. doi: 10.1103/PhysRevA.93.023429
  • Turconi M, Barreau L, Busto D, et al. Spin–orbit-resolved spectral phase measurements around a Fano resonance. J Phys B At Mol Opt Phys. 2020;53:184003. doi: 10.1088/1361-6455/ab9f0b