127
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

A Long-Term Analysis of the Dependency of Land Surface Temperature on Land Surface Indexes

, , , &

References

  • Alexander, C. 2020. Normalised difference spectral indices and urban land cover as indicators of land surface temperature (LST). International Journal of Applied Earth Observation and Geoinformation 86:102013. doi: 10.1016/j.jag.2019.102013.
  • Artis, D. A., and W. H. Carnahan. 1982. Survey of emissivity variability in thermography of urban areas. Remote Sensing of Environment 12 (4):313–29. doi: 10.1016/0034-4257(82)90043-8.
  • Ayanlade, A. 2016. Seasonality in the daytime and night-time intensity of land surface temperature in a tropical city area. Science of the Total Environment 557–558:415–24. doi: 10.1016/j.scitotenv.2016.03.027.
  • Balew, A., and T. Korme. 2020. Monitoring land surface temperature in Bahir Dar city and its surrounding using Landsat images. Egyptian Journal of Remote Sensing and Space Science 23 (3):371–86. doi: 10.1016/j.ejrs.2020.02.001.
  • Carlson, T. N., and D. A. Ripley. 1997. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sensing of Environment 62 (3):241–52. doi: 10.1016/S0034-4257(97)00104-1.
  • Chen, X., and Y. Zhang. 2017. Impacts of urban surface characteristics on spatiotemporal pattern of land surface temperature in Kunming of China. Sustainable Cities and Society 32:87–99. doi: 10.1016/j.scs.2017.03.013.
  • Chen, X. L., H. M. Zhao, P. X. Li, and Z. Y. Yi. 2006. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sensing of Environment 104 (2):133–46. doi: 10.1016/j.rse.2005.11.016.
  • Deilami, K., M. Kamruzzaman. 2017. Modelling the urban heat island effect of smart growth policy scenarios in Brisbane. Land Use Policy 64:38–55.
  • Deilami, K., M. Kamruzzaman, and Y. Liu. 2018. Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures. International Journal of Applied Earth Observation and Geoinformation 67:38–55.
  • Derdouri, A., R. Wang, Y. Murayama, and T. Osaragi. 2021. Understanding the links between LULC changes and SUHI in cities: Insights from two-decadal studies (2001–2020). Remote Sensing 13 (18):3654. doi: 10.3390/rs13183654.
  • Dutta, D., S. Gupta, and C. M. Kishtawal. 2020. Linking LULC change with urban heat islands over 25 years: A case study of the urban-industrial city Durgapur, Eastern India. Journal of Spatial Science 65 (3):501–18. doi: 10.1080/14498596.2018.1537198.
  • Ferrelli, F., M. A. Huamantinco, D. A. Delgado, and M. C. Piccolo. 2018. Spatial and temporal analysis of the LST-NDVI relationship for the study of land cover changes and their contribution to urban planning in Monte Hermoso, Argentina. Doc Anal Geogr 64 (1):25–47. doi: 10.5565/rev/dag.355.
  • Feyisa, G. L., H. Meilby, G. D. Jenerette, and S. Pauliet. 2016. Locally optimized separability enhancement indices for urban land cover mapping: Exploring thermal environmental consequences of rapid urbanization in Addis Ababa, Ethiopia. Remote Sensing of Environment 175:14–31. doi: 10.1016/j.rse.2015.12.026.
  • Filho, W. L. F. C., D. de Barros Santiago, J. F. de Oliveira-Júnior, and C. A. Da Silva, Jr. 2019. Impact of urban decadal advance on land use and land cover and surface temperature in the city of Maceió. Land Use Policy 87:104026. doi: 10.1016/j.landusepol.2019.104026.
  • Guha, S., H. Govil. 2022. Annual assessment on the relationship between land surface temperature and six remote sensing indices using Landsat data from 1988 to 2019. Geocarto International. 37 (15):4292–4311. doi: 10.1080/10106049.2021.1886339
  • Guha, S., H. Govil, and S. Mukherjee. 2017. Dynamic analysis and ecological evaluation of urban heat islands in Raipur City, India. Journal of Applied Remote Sensing 11 (3):1. doi: 10.1117/1.JRS.11.036020.
  • Hashim, B. M., A. M. Ali, M. A. Sultan, S. Shahid, Z. M. Yaseen. 2022. Effect of land use land cover changes on land surface temperature during 1984–2020: a case study of Baghdad city using landsat image. Nat Hazards 112:1223–1246. doi: 10.1007/s11069-022-05224-y
  • Kalota, D. 2017. Exploring relation of land surface temperature with selected variables using geographically weighted regression and ordinary least square methods in Manipur State, India. Geocarto International 32 (10):1105–19. doi: 10.1080/10106049.2016.1195883.
  • Karakuş, C. B. 2019. The impact of land use/land cover (LULC) changes on land surface temperature in Sivas City Center and its surroundings and assessment of urban heat island. Asia-Pacific Journal of Atmospheric Sciences 55 (4):669–84. doi: 10.1007/s13143-019-00109-w.
  • Mondal, A., S. Guha, and S. Kundu. 2021. Dynamic status of land surface temperature and spectral indices in Imphal City, India from 1991 to 2021. Geomatics, Natural Hazards and Risk 12 (1):3265–86. doi: 10.1080/19475705.2021.2008023.
  • Mushore, T. D., O. Mutanga, and J. Odindi. 2022. Estimating urban LST using multiple remotely sensed spectral indices and elevation retrievals. Sustainable Cities and Society 78:103623. doi: 10.1016/j.scs.2021.103623.
  • Peng, J., P. Xie, Y. Liu, J. Ma. 2016. Urban Thermal Environment Dynamics and Associated Landscape Pattern Factors: A Case Study in the Beijing Metropolitan Region. Remote Sens Environ 173:145–155.
  • Sobrino, J. A., J. C. Jimenez-Munoz, and L. Paolini. 2004. Land surface temperature retrieval from Landsat TM5. Remote Sensing of Environment 9:434–40. doi: 10.1016/j.rse.2004.02.003.
  • Sobrino, J. A., N. Raissouni, and Z. Li. 2001. A comparative study of land surface emissivity retrieval from NOAA data. Remote Sensing of Environment 75 (2):256–66. doi: 10.1016/S0034-4257(00)00171-1.
  • Son, Y. S., M. K. Kang, and W. J. Yoon. 2014. Lithological and mineralogical survey of the Oyu Tolgoi region, South-eastern Gobi, Mongolia using ASTER reflectance and emissivity data. International Journal of Applied Earth Observation and Geoinformation 26:205–16.
  • Tucker, C. J. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment 8 (2):127–50. doi: 10.1016/0034-4257(79)90013-0.
  • Weng, Q. H., D. S. Lu, and J. Schubring. 2004. Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment 89 (4):467–83. doi: 10.1016/j.rse.2003.11.005.
  • Xu, H. 2006. Modification of normalized difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing 27 (14):3025–33. doi: 10.1080/01431160600589179.
  • Zha, Y., J. Gao, and S. Ni. 2003. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing 24 (3):583–94. doi: 10.1080/01431160304987.
  • Zhao, H. M., and X. L. Chen. 2005. Use of normalized difference bareness index in quickly mapping bare areas from TM/ETM+. Geoscience and Remote Sensing Symposium 3 (25–29):1666–68. doi: 10.1109/IGARSS.2005.1526319.
  • Zhao, M., H., Cai, Z., Qiao, X. Xu 2016. Influence of urban expansion on the urban heat island effect in Shanghai. Int J Geogr Inf Sci 30 (12): 2421–2441. doi: 10.1080/13658816.2016.1178389.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.