3,032
Views
4
CrossRef citations to date
0
Altmetric
Articles

Understanding the evolutionary history of a high Andean endemic: the Ecuadorian hillstar (Oreotrochilus chimborazo)

Comprendiendo la historia evolutiva de un ave endémica de los altos Andes: la Estrellita Ecuatoriana (Oreotrochilus chimborazo)

&
Pages 37-50 | Received 25 Aug 2015, Accepted 14 Feb 2016, Published online: 17 Mar 2016

References

  • Fjeldså J, Bowie RCK, Rahbek C. The role of mountain ranges in the diversification of birds. Annu. Rev. Ecol. Evol. Syst. 2012;43:249–265.10.1146/annurev-ecolsys-102710-145113
  • Cadena CD, Klicka J, Ricklefs RE. Evolutionary differentiation in the Neotropical montane region: molecular phylogenetics and phylogeography of Buarremon brush-finches (Aves, Emberizidae). Mol. Phylogenet. Evol. 2007;44:993–1016.10.1016/j.ympev.2006.12.012
  • Bonaccorso E. Historical biogeography and speciation in the Neotropical highlands: molecular phylogenetics of the jay genus Cyanolyca. Mol. Phylogenet. Evol. 2009;50:618–632.10.1016/j.ympev.2008.12.012
  • Winger BM, Bates JM. The tempo of trait divergence in geographic isolation: avian speciation across the Marañon valley of Peru: tempo of avian speciation across the Marañon. Evolution. 2015;69:772–787.10.1111/evo.2015.69.issue-3
  • Graves GR. Linearity of geographic range and its possible effect on the population structure of Andean birds. The Auk. 1988;105:47–52.
  • Weir JT. Implications of genetic differentiation in Neotropical montane forest birds. Ann. Mo. Bot. Gard. 2009;96:410–433.10.3417/2008011
  • Schuchmann K, Del Hoyo J. Family Trochilidae (Hummingbirds). Handb. Birds World. 1999;5:468–680.
  • Ridgely R, Greenfield P. The birds of ecuador: status, distribution, and taxonomy, Vol. 1. Ithaca (NY): Cornell University Press; 2001.
  • Fjeldså J, Krabbe N. Birds of the High Andes. Svendborg: Zoological Museum, University of Copenhagen and Apollo Books; 1990.
  • Wallace AR. Island life : or, the phenomena and causes of insular faunas and floras, including a revision and attempted solution of the problem of geological climates [Internet]. 3rd and rev. ed. London : Macmillan; 1911. Available from: http://www.biodiversitylibrary.org/bibliography/52127.
  • Ortiz-Crespo FI, Bleiweiss R. The northern limit of the hummingbird genus Oreotrochilus in South America. The Auk. 1982;2:376–378.
  • Lönnberg E, Rendahl H. A contribution to the ornithology of Ecuador. Ark. För Zool. Stockh. 1922;14:1–87.
  • Sauer W. Geología del Ecuador [Geology of Ecuador]. Quito: Ministerio de Educación; 1965.
  • Woods S, Ortiz-Crespo F, Ramsay PM. Presence of giant hummingbird Patagona gigas and Ecuadorian Hillstar Oreotrochilus chimborazo jamesoni at the Ecuador-Colombia border. Cotinga. 1998;10:37–40.
  • Smith GTC. A high altitude hummingbird on the Volcano Cotopaxi. Ibis. 1969;111:17–22.
  • Solano-Ugalde A. High in the Andes: colonial nesting of Ecuadorian Hillstar (Oreotrochilus chimborazo: trochilidae) under a bridge. Ornitol. Colomb. 2008;6:86–88.
  • Vuilleumier F. On the occurrence and identity of Oreotrochilus Chimborazo at the Guamani Pass. Ecuador. Ibis. 1976;118:425–425.
  • Benítez V, Sánchez D, Larrea M. Evaluación ecológica rápida de la avifauna en el Parque Nacional Llanganates: un reporte de las evaluaciones ecológicas y socioeconómicas rápidas [Rapid environmental assessment of the avifauna of Llanganates National Park]. Quito: EcoCiencia Ministerio del Ambiente, Herbario Nacional de Ecuador, Museo de Ecuatoriano de Ciencias Naturales, Instituto Internacional de Reconstrucción Rural; 2000. p. 67–107.
  • Beltrán K, Salgado S, Cuesta F, et al. Distribución espacial, sistemas ecológicos y caracterización florística de los páramos en el Ecuador [Spatial distribution, ecological systems and floristic characterization of the paramos of Ecuador]. Quito: EcoCiencia; 2009
  • Ahlman R. Ecuadorian Hillstar by Roger Ahlman [Internet]. PBase- Roger Ahlman- Ecuadorian Hillstar; 2011 [cited 2015 Jun 7]. Available from: http://www.pbase.com/ahlman/image/134844820
  • Gavrilets S. Fitness landscapes and the origin of species (MPB-41). Princeton: University Press Princeton; 2004.
  • Price T, 1953-. Speciation in birds. 2008 [cited 2014 Dec 23]. Available from: http://agris.fao.org/agris-search/search.do?recordID=US201300125044.
  • Chesser RT. Evolution in the high Andes: the phylogenetics of Muscisaxicola ground-tyrants. Mol. Phylogenet. Evol. 2000;15:369–380.10.1006/mpev.1999.0774
  • Chaves JA, Weir JT, Smith TB. Diversification in Adelomyia hummingbirds follows Andean uplift. Mol. Ecol. 2011;20:4564–4576.10.1111/j.1365-294X.2011.05304.x
  • Sanín C, Cadena CD, Maley JM, et al. Paraphyly of Cinclodes fuscus (Aves: Passeriformes: Furnariidae): implications for taxonomy and biogeography. Mol. Phylogenet. Evol. 2009;53:547–555.10.1016/j.ympev.2009.06.022
  • Rheindt FE, Cuervo AM, Brumfield RT. Rampant polyphyly indicates cryptic diversity in a clade of Neotropical flycatchers (Aves: Tyrannidae). Biol. J. Linn. Soc. 2013;108:889–900.10.1111/bij.2013.108.issue-4
  • Mata H, Fontana CS, Maurício GN, et al. Molecular phylogeny and biogeography of the eastern Tapaculos (Aves: Rhinocryptidae: Scytalopus, Eleoscytalopus): cryptic diversification in Brazilian Atlantic forest. Mol. Phylogenet. Evol. 2009;53:450–462.10.1016/j.ympev.2009.07.017
  • Fernandes AM, Gonzalez J, Wink M, et al. Multilocus phylogeography of the wedge-billed woodcreeper Glyphorynchus spirurus (Aves, Furnariidae) in lowland Amazonia: widespread cryptic diversity and paraphyly reveal a complex diversification pattern. Mol. Phylogenet. Evol. 2013;66:270–282.10.1016/j.ympev.2012.09.033
  • Robbins MB, Stiles FG. A new species of Pygmy-Owl (Strigidae: Glaucidium) from the Pacific Slope of the Northern Andes. The Auk. 1999;116:305–315.10.2307/4089365
  • Krabbe N. Arid valleys as dispersal barriers to high-Andean forest birds in Ecuador. Cotinga. 2008;29:28–30.
  • McGuire JA, Witt CC, Remsen JV, et al. Molecular phylogenetics and the diversification of hummingbirds. Curr. Biol. 2014;24:910–916.10.1016/j.cub.2014.03.016
  • McGuire JA, Witt CC, Altshuler DL, et al. Phylogenetic systematics and biogeography of hummingbirds: bayesian and maximum likelihood analyses of partitioned data and selection of an appropriate partitioning strategy. Syst. Biol. 2007;56:837–856.10.1080/10635150701656360
  • Elith J, Phillips SJ, Hastie T, et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011;17:43–57.10.1111/ddi.2010.17.issue-1
  • Phillips SJ, Dudík M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography. 2008;31:161–175.10.1111/j.0906-7590.2008.5203.x
  • eBird. eBird: an online database of bird distribution and abundance [Internet]. eBird; 2015. Available from: http://www.ebird.org
  • Hijmans RJ, Cameron SE, Parra JL, et al. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005;25:1965–1978.10.1002/(ISSN)1097-0088
  • Barve N, Barve V, Jiménez-Valverde A, et al. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Model. 2011;222:1810–1819.10.1016/j.ecolmodel.2011.02.011
  • Lillesand TM, Kiefer RW, Chipman JW. Remote sensing and image interpretation. New York (NY): Wiley; 2004.
  • Myneni R, Hoffman S, Knyazikhin Y, et al. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ. 2002;83:214–231.10.1016/S0034-4257(02)00074-3
  • Buermann W, Saatchi S, Smith TB, et al. Predicting species distributions across the Amazonian and Andean regions using remote sensing data. J. Biogeogr. 2008;35:1160–1176.10.1111/jbi.2008.35.issue-7
  • Pearson RG, Raxworthy CJ, Nakamura M. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 2007;34:102–117.
  • Peterson AT, Papeş M, Soberón J. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol. Model. 2008;213:63–72.10.1016/j.ecolmodel.2007.11.008
  • Chomczynski P. A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. BioTechniques. 1993;15:536–537.
  • Sorenson MD, Ast JC, Dimcheff DE, et al. Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrates. Mol. Phylogenet. Evol. 1999;12:105–114.10.1006/mpev.1998.0602
  • Kimball RT, Braun EL, Barker FK, et al. A well-tested set of primers to amplify regions spread across the avian genome. Mol. Phylogenet. Evol. 2009;50:654–660.10.1016/j.ympev.2008.11.018
  • Arèvalo E, Davis SK, Sites JW. Mitochondrial DNA sequence divergence and phylogenetic relationships among eight chromosome races of the Sceloporus grammicus complex (phrynosomatidae) in central Mexico. Syst. Biol. 1994;43:387–418.10.1093/sysbio/43.3.387
  • Thompson JD, Gibson TJ, Plewniak F, et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997;25:4876–4882.10.1093/nar/25.24.4876
  • Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25:1451–1452.10.1093/bioinformatics/btp187
  • Clement M, Posada D, Crandall KA. TCS: a computer program to estimate gene genealogies. Mol. Ecol. 2000;9:1657–1659.10.1046/j.1365-294x.2000.01020.x
  • Altshuler DL, Dudley R, McGuire JA. Resolution of a paradox: hummingbird flight at high elevation does not come without a cost. Proc. Nat. Acad. Sci. U.S.A. 2004;101:17731–17736.10.1073/pnas.0405260101
  • Kirchman JJ, Witt CC, McGuire JA, et al. DNA from a 100-year-old holotype confirms the validity of a potentially extinct hummingbird species. Biol. Lett. 2009;rsbl20090545. Available from: http://rsbl.royalsocietypublishing.org/content/roybiolett/early/2009/09/17/rsbl.2009.0545.full.pdf
  • Zwickl DJ. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion [Internet] [Ph. D. dissertation]. The University of Texas at Austin; 2006. Available from: http://garli.googlecode.com
  • Lewis PO, Holder MT, Swofford DL. Phycas: software for bayesian phylogenetic analysis. Syst. Biol. 2015;64:525–531.10.1093/sysbio/syu132
  • Lanfear R, Calcott B, Ho SYW, et al. Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 2012;29:1695–1701.10.1093/molbev/mss020
  • Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 1981;17:368–376.10.1007/BF01734359
  • Kimura M. Estimation of evolutionary distances between homologous nucleotide sequences. Proc. Nat. Acad. Sci. U.S.A. 1981;78:454–458.10.1073/pnas.78.1.454
  • Hasegawa M, Kishino H, Yano T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 1985;22:160–174.10.1007/BF02101694
  • Maddison WP, Maddison DR. Mesquite: a modular system for evolutionary analysis [Internet]. 2015. Available from: http://mesquiteproject.org
  • R Core Team. R: a language and environment for statistical computing [Internet]. Vienna: R Foundation for Statistical Computing; 2014. Available from: http://www.R-project.org/
  • Excoffier L, Smouse PE, Quattro JM. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 1992;131:479–491.
  • Excoffier L, Laval G, Schneider S. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol. Bioinforma. Online. 2007;1:47–50.
  • Huelsenbeck JP, Rannala B. Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and complex substitution models. Syst. Biol. 2004;53:904–913.
  • Sklenář P, Lægaard S. Rain-shadow in the high Andes of Ecuador evidenced by páramo vegetation. Arct. Antarct. Alp. Res. 2003;35:8–17.10.1657/1523-0430(2003)035[0008:RSITHA]2.0.CO;2
  • Laegaard S. Influence of fire in the grass páramo vegetation of Ecuador. In: Balslev H and Luteyn JL, editors. Páramo: An Andean Ecosystem Under Human Influence. London: Academic Press; 1992. p. 151–170.
  • Lauer W, Rafiqpoor MD, Theisen I. Physiographie, Vegetation und Syntaxonomie der Flora des Páramo de Papallacta (Ostkordillere Ecuador) [Physiography, vegetation and syntaxonomy of the flora of Paramo de Papallacta (Eastern Cordillera Ecuador)]. Stuttgart: Franz Steiner Verlag Wiesbaden GMBH; 2001.
  • Podwojewski P, Poulenard J, Zambrana T, et al. Overgrazing effects on vegetation cover and properties of volcanic ash soil in the páramo of Llangahua and La Esperanza (Tungurahua, Ecuador). Soil Use Manag. 2002;18:45–55.10.1079/SUM2002100
  • Lozano P, Cleef AM, Bussmann RW. Phytogeography of the vascular páramo flora of Podocarpus National Park, south Ecuador. Arnaldoa. 2009;16:69–85.
  • Van der Hammen T, Cleef A. Development of the high Andean páramo flora and vegetation. In: Vuilleumier F, Monasterio FM, editors. High altitude tropical biogeography. Oxford: Oxford University Press; 1986. p. 153–201.
  • Van der Hammen T. The pleistocene changes of vegetation and climate in tropical South America. J. Biogeogr. 1974;1:3–26.10.2307/3038066
  • Hooghiemstra H, Wijninga VM, Cleef AM. The paleobotanical record of Colombia: implications for biogeography and biodiversity. Ann. Missouri Bot. Gard. 2006;93:297–325.10.3417/0026-6493(2006)93[297:TPROCI]2.0.CO;2
  • Bleiweiss R. Slow rate of molecular evolution in high-elevation hummingbirds. Proc. Nat. Acad. Sci. 1998;95:612–616.10.1073/pnas.95.2.612
  • Zink RM. The role of subspecies in obscuring avian biological diversity and misleading conservation policy. Proc. R. Soc. Lond. B Biol. Sci. 2004;271:561–564.10.1098/rspb.2003.2617
  • Phillimore AB, Owens IP. Are subspecies useful in evolutionary and conservation biology? Proc. R. Soc. B Biol. Sci. 2006;273:1049–1053.10.1098/rspb.2005.3425
  • Petren K, Grant BR, Grant PR. A phylogeny of Darwin’s finches based on microsatellite DNA length variation. Proc. R. Soc. Lond. B Biol. Sci. 1999;266:321–329.10.1098/rspb.1999.0641
  • Anderson RS. Los Coleópteros Carabidae del páramo en los Andes del Ecuador: sistemática, ecología y biogeografía [The coleopteran Carabidae of paramo in the Andes of Ecuador: systematics, ecology, and biogeography]. Coleopt. Bull. 2007;61:176–176.10.1649/0010-065X(2007)61[176:LCCDPE]2.0.CO;2