6,800
Views
37
CrossRef citations to date
0
Altmetric
Review

Effects of climate change on Andean biodiversity: a synthesis of studies published until 2015

, , &
Pages 181-194 | Received 24 Dec 2015, Accepted 09 Oct 2016, Published online: 11 Nov 2016

References

  • Vitousek PM. Beyond global warming: ecology and global change. Ecology. 1994;75:1861–1876.10.2307/1941591
  • Myers N, Mittermeier RA, Mittermeier CG, et al. Biodiversity hotspots for conservation priorities. Nature. 2000;403:853–858.10.1038/35002501
  • Báez S, Borgtoft H, Fjeldså J, et al. People and Biodiversity: Two Case Studies From the Andean Foothills of Ecuador. Diva Technical Report 3. Centre for Research on the Cultural and Biological Diversity of the Andean Rainforest (DIVA). The Danish Environmental Research Programme, Aarhus, Denmark. 2008. p. 1–142.
  • Hofstede R, Ambrose K, Báez S, et al. Biodiversity-based livelihoods in the ceja andina forest zone of Northern Ecuador: multi-stakeholder learning processes for the sustainable use of cloud forest areas. In: Bruijnzeel LA, Scatena FN, Hamilton LS, editors. Tropical Montane Cloud Forests: Science for Conservation and Management. Cambridge: Cambridge University Press; 2010. p. 644–651.
  • Báez S, Ambrose K, Hofstede R. Ecological and social bases for the restoration of a high Andean cloud forest: preliminary results and lessons from a case study in Northern Ecuador. In: Bruijnzeel LA, Scatena FN, Hamilton LS, editors. Tropical Montane Cloud Forests: Science for Conservation and Management. Cambridge: Cambridge University Press; 2010. p. 628–643.
  • Thomas E, Douterlungne D, Vandebroek I, et al. Human impact on wild firewood species in the rural Andes community of Apillapampa, Bolivia. Environ Monit Assess. 2011;178:333–347.10.1007/s10661-010-1693-z
  • de la Torre L, Navarrete H, Muriel M, et al, editors. Enciclopedia de las Plantas Útiles del Ecuador [Encyclopedia of useful plants of Ecuador]. Quito: Herbario QCA de la Escuela de Biología, Pontificia Universidad Católica del Ecuador; 2008.
  • Pickersgill B. Domestication of plants in the Americas: insights from Mendelian and molecular genetics. Ann Bot. 2007;100:925–940.10.1093/aob/mcm193
  • Cincotta RP, Wisnewski J, Engelman R. Human population in the biodiversity hotspots. Nature. 2000;404:990–992.10.1038/35010105
  • Feeley K, Silman M, Duque A. Where are the tropical plants? A call for better inclusion of tropical plants in studies investigating and predicting the effects of climate change. Front Biogeogr. 2015;7:174–176.
  • Gottfried M, Pauli H, Futschik A, et al. Continent-wide response of mountain vegetation to climate change. Nat Clim Change. 2012;2:111–115.10.1038/nclimate1329
  • Pauli H, Gottfried M, Reiter K, et al. Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994–2004) at the GLORIA master site Schrankogel, Tyrol, Austria. Global Change Biol. 2007;13:147–156.10.1111/gcb.2007.13.issue-1
  • Malcolm JR, Liu C, Neilson RP, et al. Global warming and extinctions of endemic species from biodiversity hotspots. Conserv Biol. 2006;20:538–548.10.1111/cbi.2006.20.issue-2
  • Duque A, Stevenson PR, Feeley KJ. Thermophilization of adult and juvenile tree communities in the northern tropical Andes. Proc Natl Acad Sci. 2015;112:10744–10749.10.1073/pnas.1506570112
  • Feeley KJ, Silman MR, Bush M, et al. Upslope migration of Andean trees. J Biogeogr. 2011;38:783–791.10.1111/jbi.2011.38.issue-4
  • Báez S, Malizia A, Carilla J, et al. Large-scale patterns of turnover and basal area change in Andean forests. PloS One. 2015;10:e0126594.10.1371/journal.pone.0126594
  • Mora C, Frazier AG, Longman RJ, et al. The projected timing of climate departure from recent variability. Nature. 2013;502:183–187.10.1038/nature12540
  • Vuille M, Bradley RS, Werner M, et al. 20th century climate change in the tropical Andes: observations and model results. Clim Change. 2003;59:75–99.10.1023/A:1024406427519
  • Vuille M, Francou B, Wagnon P, et al. Climate change and tropical Andean glaciers: past, present and future. Earth-Sci Rev. 2008;89:79–96.10.1016/j.earscirev.2008.04.002
  • Urrutia R, Vuille M. Climate change projections for the tropical Andes using a regional climate model: temperature and precipitation simulations for the end of the 21st century. J Geophys Res Atmos. 2009;114:D02108.
  • Pitman N, Widmer J, Jerkins CN, et al. Volume and geographical distribution of ecological research in the Andes and the Amazon, 1995–2008. Trop Conserv Sci. 2011;4:64–81.10.1177/194008291100400107
  • Morueta-Holme N, Engemann K, Sandoval-Acuña P, et al. Strong upslope shifts in Chimborazo’s vegetation over two centuries since Humboldt. Proc Natl Acad Sci. 2015;112:12741–12745.10.1073/pnas.1509938112
  • Cárdenas R. Fine-scale climatic variation drives altitudinal niche partitioning of tabanid flies in a tropical montane cloud forest, Ecuadorian Chocó. Insect Conserv Divers; 2016;9:87–96.
  • Cárate-Tandalla D, Leuschner C, Homeier J. Performance of seedlings of a shade-tolerant tropical tree species after moderate addition of N and P. Front Earth Sci. 2015;3:75.
  • Hillyer R, Silman MR. Changes in species interactions across a 2.5 km elevation gradient: effects on plant migration in response to climate change. Global Change Biol. 2010;16:3205–3214.10.1111/j.1365-2486.2010.02268.x
  • Sheldon KS, Yang S, Tewksbury JJ. Climate change and community disassembly: impacts of warming on tropical and temperate montane community structure. Ecol Lett. 2011;14:1191–1200.10.1111/ele.2011.14.issue-12
  • Gibb H, Sanders NJ, Dunn RR, et al. Climate mediates the effects of disturbance on ant assemblage structure. Proc R Soc Lond B Biol Sci. 2015;282. Article ID 20150418.
  • Basset Y, Barrios H, Segar S, et al. The butterflies of Barro Colorado Island, Panama: local extinction since the 1930s. PloS One. 2015;10:e0136623.10.1371/journal.pone.0136623
  • Borer ET, Harpole WS, Adler PB, et al. Finding generality in ecology: a model for globally distributed experiments. Methods Ecol Evol. 2013;5:65–73.
  • Anderson-Teixeira KJ, Davies SJ, Bennett AC, et al. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Global Change Biol. 2015;21:528–549.10.1111/gcb.12712
  • CONDESAN. Red de Bosques Andinos [Andean Forests Network]. 2016 [cited 2016 Aug 8]. Available from: http://www.condesan.org/redbosques
  • Cuesta F, Muriel P, Beck S, et al. Biodiversidad y Cambio Climático en los Andes Tropicales – Conformación de una red de investigación para monitorear sus impactos y delinear acciones de adaptación [Biodiversity and Climate Change in the Tropical Andes – Conformation of a research network to monitor its impacts and delineate adaptation actions]. Red Gloria-Andes. Condesan, Secretaría General de la Comunidad Andina, Red Gloria-Andes. Quito: CONDESAN, Secretaría General de la Comunidad Andina; 2012.
  • Cuesta F, Muriel P, Llambí LD, et al. Latitudinal and altitudinal patterns of plant community diversity on mountain summits across the tropical Andes. Ecography. in review.
  • Donoso DA. Long-term stable equilibrium of a tropical ant community. Funct Indic. in review.
  • Kaspari M, Clay NA, Lucas J, et al. Thermal adaptation and phosphorus shape thermal performance in an assemblage of rainforest ants. Ecology. 2016;97:1038–1047.
  • Homeier J, Hertel D, Camenzind T, et al. Tropical Andean forests are highly susceptible to nutrient inputs – rapid effects of experimental N and P addition to an Ecuadorian montane forest. PloS One. 2012;7:e47128.10.1371/journal.pone.0047128
  • Dalling JW, Heineman K, Gonzalez G, et al. Geographic, environmental and biotic sources of variation in the nutrient relations of tropical montane forests. J Trop Ecol. 2016;32:368–383.
  • Young BE, Lips KR, Reaser JK, et al. Population declines and priorities for amphibian conservation in Latin America. Conserv Biol. 2001;15:1213–1223.10.1046/j.1523-1739.2001.00218.x
  • Ron SR, Duellman WE, Coloma LA, et al. Population decline of the Jambato toad Atelopus ignescens (Anura: Bufonidae) in the Andes of Ecuador. J Herpetol. 2003;37:116–126.10.1670/0022-1511(2003)037[0116:PDOTJT]2.0.CO;2
  • Daniels LD, Veblen TT. Spatiotemporal influences of climate on altitudinal treeline in northern Patagonia. Ecology. 2004;85:1284–1296.10.1890/03-0092
  • Molau U. Mountain biodiversity patterns at low and high latitudes. Ambio. 2004;13:24–28.
  • Bustamante MR, Ron SR, Coloma LA. Cambios en la diversidad en siete comunidades de Anuros en los Andes de Ecuador [Changes in the diversity of seven anuran communities in the Andes of Ecuador]. Biotropica. 2005;37:180–189.10.1111/btp.2005.37.issue-2
  • Lara A, Villalba R, Wolodarsky-Franke A, et al. Spatial and temporal variation in Nothofagus pumilio growth at tree line along its latitudinal range (35°40′-55° S) in the Chilean Andes. J Biogeogr. 2005;32:879–893.10.1111/jbi.2005.32.issue-5
  • Lampo M, Rodríguez-Contreras A, La Marca E, et al. A chytridiomycosis epidemic and a severe dry season precede the disappearance of Atelopus species from the Venezuelan Andes. Herpetol J. 2006;16:395–402.
  • Bader MY, van Geloof I, Rietkerk M. High solar radiation hinders tree regeneration above the alpine treeline in northern Ecuador. Plant Ecol. 2007;191:33–45.10.1007/s11258-006-9212-6
  • Seimon TA, Seimon A, Daszak P, et al. Upward range extension of Andean anurans and chytridiomycosis to extreme elevations in response to tropical deglaciation. Global Change Biol. 2007;13:288–299.10.1111/gcb.2007.13.issue-1
  • Tercero-Bucardo N, Kitzberger T, Veblen TT, et al. A field experiment on climatic and herbivore impacts on post-fire tree regeneration in north-western Patagonia. J Ecol. 2007;95:771–779.10.1111/jec.2007.95.issue-4
  • Torres-Díaz C, Cavieres LA, Muñoz-Ramírez C, et al. Consecuencias de las variaciones microclimáticas sobre la visita de insectos polinizadores en dos especies de Chaetanthera (Asteraceae) en los Andes de Chile central [Consequences of microclimatic variations on pollinator insect visits to two species of Chaetanthera (Asteraceae) in the Andes of Central Chile]. Revista Chilena de Historia Natural. 2007;80:455–468.
  • Dangles O, Carpio C, Barragan AR, et al. Temperature as a key driver of ecological sorting among invasive pest species in the Tropical Andes. Ecol Appl. 2008;18:1795–1809.10.1890/07-1638.1
  • Killeen TJ, Solórzano LA. Conservation strategies to mitigate impacts from climate change in Amazonia. Philos Trans R Soc Lond B Biol Sci. 2008;363:1881–1888.10.1098/rstb.2007.0018
  • Lips KR, Diffendorfer J, Mendelson JR, et al. Riding the wave: reconciling the roles of disease and climate change in amphibian declines. PLoS Biol. 2008;6:e72.10.1371/journal.pbio.0060072
  • Gosling WD, Hanselman JA, Christopher K, et al. Long-term drivers of change in Polylepis woodland distribution in the central Andes. J Veg Sci. 2009;20:1041–1052.10.1111/jvs.2009.20.issue-6
  • Lawler JJ, Shafer SL, Bancroft BA, et al. Projected climate-induced faunal change in the Western Hemisphere. Ecology. 2009;90:588–597.10.1890/08-0823.1
  • Lawler JJ, Shafer SL, White D, et al. Projected climate impacts for the amphibians of the Western Hemisphere. Conserv Biol. 2010;24:38–50.10.1111/cbi.2010.24.issue-1
  • Ledo A, Montes F, Condes S. Species dynamics in a montane cloud forest: identifying factors involved in changes in tree diversity and functional characteristics. For Ecol Manag. 2009;258(Suppl 1):S75–S84.10.1016/j.foreco.2009.07.055
  • Molina-Montenegro M, Briones R, Cavieres L. Does global warming induce segregation among alien and native beetle species in a mountain-top? Ecol Res. 2009;24:31–36.10.1007/s11284-008-0477-1
  • Pauchard A, Kueffer C, Dietz H, et al. Ain’t no mountain high enough: plant invasions reaching new elevations. Front Ecol Environ. 2009;7:479–486.10.1890/080072
  • Zotz G, Bader MY. Epiphytic plants in a changing world-global: change effects on vascular and non-vascular epiphytes. In: Lüttge U, Beyschlag W, Büdel B, et al., editors. Progress in Botany. Berlin: Springer Berlin Heidelberg; 2009. p. 147–170.10.1007/978-3-540-68421-3
  • Altamirano A, Field R, Cayuela L, et al. Woody species diversity in temperate Andean forests: the need for new conservation strategies. Biol Conserv. 2010;143:2080–2091.10.1016/j.biocon.2010.05.016
  • Bendix J, Behling H, Peters T, et al. Functional biodiversity and climate change along an altitudinal gradient in a tropical mountain rainforest. In: Tscharntke T, Leuschner C, Veldkamp E, et al., editors. Tropical rainforests and agroforests under global change. Berlin: Springer Berlin Heidelberg; 2010. p. 239–268.10.1007/978-3-642-00493-3
  • Feeley KJ, Silman MR. Land-use and climate change effects on population size and extinction risk of Andean plants. Global Change Biol. 2010;16:3215–3222.10.1111/j.1365-2486.2010.02197.x
  • Pacheco S, Malizia L, Cayuela L. Effects of climate change on subtropical forests of South America. Trop Conserv Sci. 2010;3:423–437.10.1177/194008291000300407
  • Paritsis J, Veblen TT. Dendroecological analysis of defoliator outbreaks on Nothofagus pumilio and their relation to climate variability in the Patagonian Andes. Global Change Biol. 2011;17:239–253.10.1111/gcb.2010.17.issue-1
  • Sierra-Almeida A, Cavieres LA. Summer freezing resistance decreased in high-elevation plants exposed to experimental warming in the central Chilean Andes. Oecologia. 2010;163:267–276.10.1007/s00442-010-1592-6
  • Buermann W, Chaves JA, Dudley R, et al. Projected changes in elevational distribution and flight performance of montane Neotropical hummingbirds in response to climate change. Global Change Biol. 2011;17:1671–1680.10.1111/gcb.2011.17.issue-4
  • Forero-Medina G, Terborgh J, Socolar SJ, et al. Elevational ranges of birds on a tropical montane gradient lag behind warming temperatures. PloS One. 2011;6:e28535.10.1371/journal.pone.0028535
  • Hof C, Araujo MB, Jetz W, et al. Additive threats from pathogens, climate and land-use change for global amphibian diversity. Nature. 2011;480:516–519.
  • Hylander S, Jephson T, Lebret K, et al. Climate-induced input of turbid glacial meltwater affects vertical distribution and community composition of phyto- and zooplankton. J Plankton Res. 2011.
  • Latta SC, Tinoco BA, Astudillo PX, et al. Patterns and magnitude of temporal change in avian communities in the Ecuadorian Andes. Condor. 2011;113:24–40.10.1525/cond.2011.090252
  • Pinault L, Hunter F. New highland distribution records of multiple Anopheles species in the Ecuadorian Andes. Malar J. 2011;10:236.10.1186/1475-2875-10-236
  • Bremond L, Boom A, Favier C. Neotropical C3/C4 grass distributions – present, past and future. Global Change Biol. 2012;18:2324–2334.10.1111/j.1365-2486.2012.02690.x
  • Cavieres LA, Sierra-Almeida A. Facilitative interactions do not wane with warming at high elevations in the Andes. Oecologia. 2012;170:575–584.10.1007/s00442-012-2316-x
  • Rapp JM, Silman MR, Clark JS, et al. Intra- and interspecific tree growth across a long altitudinal gradient in the Peruvian Andes. Ecology. 2012;93:2061–2072.10.1890/11-1725.1
  • Sanfuentes C, Sierra-Almeida A, Cavieres LA. Efecto del aumento de la temperatura en la fotosíntesis de una especie alto-andina en dos altitudes [Effects of the raise of temperature in the photosynthesis of a high-Andean species in two altitudes]. Gayana Bot. 2012;69:37–45.10.4067/S0717-66432012000100005
  • Arroyo MTK, Dudley LS, Jespersen G, et al. Temperature-driven flower longevity in a high-alpine species of Oxalis influences reproductive assurance. New Phytol. 2013;200:1260–1268.10.1111/nph.12443
  • Dangles O, Herrera M, Mazoyer C, et al. Temperature-dependent shifts in herbivore performance and interactions drive nonlinear changes in crop damages. Global Change Biol. 2013;19:1056–1063.10.1111/gcb.12104
  • Ferrero ME, Villalba R, De Membiela M, et al. Tree-growth responses across environmental gradients in subtropical Argentinean forests. Plant Ecol. 2013;214:1321–1334.10.1007/s11258-013-0254-2
  • Jankowski JE, Merkord CL, Rios WF, et al. The relationship of tropical bird communities to tree species composition and vegetation structure along an Andean elevational gradient. J Biogeogr. 2013;40:950–962.10.1111/jbi.2013.40.issue-5
  • Kroschel J, Sporleder M, Tonnang HEZ, et al. Predicting climate-change-caused changes in global temperature on potato tuber moth Phthorimaea operculella (Zeller) distribution and abundance using phenology modeling and GIS mapping. Agric For Meteorol. 2013;170:228–241.10.1016/j.agrformet.2012.06.017
  • Lutz DA, Powell RL, Silman MR. Four decades of Andean timberline migration and implications for biodiversity loss with climate change. PloS One. 2013;8:e74496.10.1371/journal.pone.0074496
  • Piper FI, Fajardo A, Cavieres LA. Simulated warming does not impair seedling survival and growth of Nothofagus pumilio in the southern Andes. Perspect Plant Ecol Evol Syst. 2013;15:97–105.10.1016/j.ppees.2013.02.003
  • Rehm EM, Feeley KJ. Forest patches and the upward migration of timberline in the southern Peruvian Andes. For Ecol Manag. 2013;305:204–211.10.1016/j.foreco.2013.05.041
  • Velásquez-Tibatá J, Salaman P, Graham CH. Effects of climate change on species distribution, community structure, and conservation of birds in protected areas in Colombia. Reg Environ Change. 2013;13:235–248.10.1007/s10113-012-0329-y
  • Anthelme F, Jacobsen D, Macek P, et al. Biodiversity patterns and continental insularity in the tropical high Andes. Arct Antarc Alp Res. 2014;46:811–828.10.1657/1938-4246-46.4.811
  • González C, Paz A, Ferro C. Predicted altitudinal shifts and reduced spatial distribution of Leishmania infantum vector species under climate change scenarios in Colombia. Acta Trop. 2014;129:83–90.10.1016/j.actatropica.2013.08.014
  • Ramirez-Villegas J, Cuesta F, Devenish C, et al. Using species distributions models for designing conservation strategies of tropical Andean biodiversity under climate change. J Nat Conserv. 2014;22:391–404.10.1016/j.jnc.2014.03.007
  • Álvarez C, Veblen TT, Christie DA, et al. Relationships between climate variability and radial growth of Nothofagus pumilio near altitudinal treeline in the Andes of northern Patagonia, Chile. For Ecol Manag. 2015;342:112–121.10.1016/j.foreco.2015.01.018
  • Avalos VdR, Hernández J. Projected distribution shifts and protected area coverage of range-restricted Andean birds under climate change. Global Ecol Conserv. 2015;4:459–469.10.1016/j.gecco.2015.08.004
  • Cauvy-Fraunié S, Espinosa R, Andino P, et al. Invertebrate metacommunity structure and dynamics in an Andean glacial stream network facing climate change. PloS One. 2015;10:e0136793.10.1371/journal.pone.0136793
  • Crespo-Pérez V, Régnière J, Chuine I, et al. Changes in the distribution of multispecies pest assemblages affect levels of crop damage in warming tropical Andes. Global Change Biol. 2015;21:82–96.10.1111/gcb.2014.21.issue-1
  • Jantz SM, Barker B, Brooks TM, et al. Future habitat loss and extinctions driven by land-use change in biodiversity hotspots under four scenarios of climate-change mitigation. Conserv Biol. 2015;29:1122–1131.10.1111/cobi.2015.29.issue-4
  • Medone P, Ceccarelli S, Parham PE, et al. The impact of climate change on the geographical distribution of two vectors of Chagas disease: implications for the force of infection. Philos Trans R Soc Lond B Biol Sci. 2015;370.
  • Michelutti N, Wolfe AP, Cooke CA, et al. Climate change forces new ecological states in tropical Andean lakes. PloS One. 2015;10:e0115338.10.1371/journal.pone.0115338
  • Ortega-Andrade HM, Prieto-Torres DA, Gómez-Lora I, et al. Ecological and geographical analysis of the distribution of the mountain tapir (Tapirus pinchaque) in Ecuador: importance of protected areas in future scenarios of global warming. PloS One. 2015;10:e0121137.10.1371/journal.pone.0121137
  • Rehm EM, Feeley KJ. The inability of tropical cloud forest species to invade grasslands above treeline during climate change: potential explanations and consequences. Ecography. 2015;38:1167–1175.10.1111/ecog.01050
  • Rehm EM, Feeley KJ. Freezing temperatures as a limit to forest recruitment above tropical Andean treelines. Ecology. 2015;96:1856–1865.10.1890/14-1992.1