1,309
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Liverwort diversity in Polylepis pauta forests of Ecuador under different climatic conditions

&
Pages 138-146 | Received 30 Mar 2020, Accepted 28 Jul 2020, Published online: 20 Aug 2020

References

  • Gradstein SR, Churchill SP, Salazar-Allen N. Guide to the bryophytes of tropical America. Mem NY Bot Gard. 2001;86:1–577.
  • Pócs T. Tropical forest bryophytes. In: Smith AJE, editor. Bryophyte ecology. Dordrecht: Springer; 1982. p. 59–104.
  • Wilson R, Heinrichs J, Hentschel J, et al. Steady diversification of derived liverworts under Tertiary climatic fluctuations. Biol Lett. 2007;3:566–569.
  • Feldberg K, Schneider H, Stadler T, et al. Epiphytic leafy liverworts diversified in angiosperm-dominated forests. Sci Rep. 2013;4:5974.
  • Gradstein SR. The lowland cloud forest of French Guiana – a liverwort hotspot. Cryptog Bryol. 2006;27:141–152.
  • Gehrig-Downie C, Obregón A, Bendix J, et al. Diversity and vertical distribution of epiphytic liverworts in lowland rain forest and lowland cloud forest of French Guiana. J Bryol. 2013;35:243–254.
  • Campos L, Mota de Oliveira S, Benavides J, et al. Vertical distribution and diversity of epiphytic bryophytes in the Colombian Amazon. J Bryol. 2019;41:328–340.
  • Gradstein SR, Van Reenen G, Griffin D III. Species richness and origin of the bryophyte flora of the Colombian Andes. Acta Bot Neerl. 1989;38:439–448.
  • Frahm JP, Gradstein SR. An altitudinal zonation of tropical rain forests using bryophytes. J Biogeogr. 1991;18:669–678.
  • Wolf JHD. Diversity patterns and biomass of epiphytic bryophytes and lichens along an altitudinal gradient in the northern Andes. Ann Missouri Bot Gard. 1993;80:928–960.
  • Ah-Peng C, Wilding N, Kluge J, et al. Bryophyte diversity and range size distribution along two altitudinal gradients: continent vs. island. Acta Oecologica. 2012;42:58–65.
  • Pócs T. The epiphytic biomass and its effect on the water-balance of two rain forest types in the Uluguru Mountains (Tanzania, East-Africa). Acta Bot Acad Sci Hungaricae. 1980;26:143–167.
  • Clark KL, Nadkarni NM, Gholz HL. Retention of inorganic nitrogen by epiphytic bryophytes in a tropical montane forest. Biotropica. 2005;37:328–336.
  • Ah-Peng C, Williamson CA, Flores O, et al. The role of epiphytic bryophytes in interception, storage, and the regulated release of atmospheric moisture in a tropical montane cloud forest. J Hydrol. 2017;548:665–673.
  • Mendieta-Leiva G, Porada P, Bader M. Interactions of epiphytes with precipitation partitioning. In: Van Stan IJ, Gutmann E, Friesen J, editors. Interactions of epiphytes with precipitation partitioning. Switzerland: Springer Nature; 2020. p. 133–146.
  • Acebey A, Gradstein SR, Krömer T. Species richness and habitat diversification of corticolous bryophytes in submontane rain forest and fallows of Bolivia. J Trop Ecol. 2003;18:9–18.
  • Holz I, Gradstein SR. Cryptogamic epiphytes in primary and recovering upper montane oak forests of Costa Rica – species richness, community composition and ecology. Plant Ecol. 2005;178:89–109.
  • Sporn SG, Bos MM, Hoffstätter-Müncheberg M, et al. Microclimate determines community composition but not richness of epiphytic understory bryophytes of rainforest and cacao agroforest in Indonesia. Funct Plant Biol. 2009;36:171–179.
  • Kürschner H, Frey W, Parolly G. Patterns and adaptive trends of life forms, life strategies and ecomorphological structures in tropical epiphytic bryophytes. Nova Hedwigia. 1999;69:73–99.
  • Parolly G, Kürschner H. Syntaxonomy, life forms, life strategies and ecomorphology of the subandean woodlands and Polylepis forests in Central Ecuador. Bot Jahrbücher. 2005;126:211–252.
  • Pardow A, Gehrig-Downie C, Gradstein SR, et al. Functional diversity of bryophytes in two tropical lowland forests from French Guiana: using bryophyte life-forms to detect areas of high biodiversity. Biodivers Conserv. 2012;21:3637–3655.
  • Mota de Oliveira S. The double role of pigmentation and convolute leaves in community assemblage of Amazonian epiphytic Lejeuneaceae. PeerJ. 2018;6:5921.
  • Gareca EE, Hermy M, Fjeldså J, et al. Polylepis woodland remnants as biodiversity islands in the Bolivian high Andes. Biodivers Conserv. 2010;19:3327–3346.
  • Kessler M. Polylepis-Wälder Boliviens: taxa, Ökologie, Verbreitung und Geschichte. Diss Bot. 1995;246:1–276.
  • Kessler M, Moraes R, Kvist LP, et al. Bosques de Polylepis. In: Moraes R, Öllgaard B, Kvist LP, et al., editors. Botánica económica de los Andes Centrales. La Paz: Universidad de San Andrés/Plural Editores; 2006. p. 110–120.
  • Romoleroux K, Cárate Tandalla D, Erler R, et al. Plantas vasculares de los bosques de Polylepis en los páramos de Oyacachi. Quito: Centro de Publicaciones, Pontificia Universidad Católica del Ecuador; 2017.
  • Gradstein SR, León-Yánez S. Liverworts (Marchantiophyta) of Polylepis pauta forests from Ecuador with description of Leptoscyphus leoniae sp. nov. and Plagiochila pautaphila sp. nov. Nova Hedwigia. 2018;106:35–48.
  • Gradstein SR, Benitez A. Liverworts new to Ecuador with description of Plagiochila priceana sp. nov. and Syzygiella burghardtii sp. nov. Cryptog Bryol. 2016;38:335–348.
  • Gradstein SR. The liverworts and hornworts of Colombia and Ecuador. Mem NY Bot Gard. 2020 (in press).
  • Fjeldså J, Kessler M. Conservación de la biodiversidad de los bosques de Polylepis de las tierras altas de Bolivia: una contribución al manejo sustentable en los Andes. DIVA Technical Report 11. Santa Cruz de la Sierra: Editorial FAN; 2004.
  • Hensen I, Cierjacks A, Hirsch H, et al. Historic and recent fragmentation coupled with altitude affect the genetic population structure of one of the world’s highest tropical tree line species. Glob Ecol Biogeogr. 2011;21(4):455–464.
  • Caiza J, Segovia C, Romoleroux K, editors. Libro de Resúmenes V Congreso Internacional de Ecología y Conservación de los Bosques de Polylepis. 1st ed. Quito: Pontificia Universidad Católica del Ecuador and Universidad de las Fuerzas Armadas; 2019.
  • Sylvester SP, Sylvester MDPV, Kessler M. Inaccessible ledges as refuges for the natural vegetation of the high Andes. J Veg Sci. 2014;25:1225–1234.
  • Delgado J, Vargas Y. Musgos (Bryophyta) de bosques de Polylepis sericea Wedd. (Rosaceae) del Estado Mérida (Venezuela). Bol Soc Argentina Bot. 2017;52:295–313.
  • Aldana-M C. Briofitas de los bosques de Polylepis pepei (Provincia Murillo, La Paz, Bolivia): comunidades y ecología. La Paz: Universidad Mayor de San Andrés; 2008.
  • Bendix J, Lauer W. Die Niederschlagsjahreszeiten in Ecuador und ihre klimadynamische Interpretation. Erdkunde. 1992;46:118–134.
  • Bendix J, Rafiqpoor MD. Studies on the thermal conditions of soils at the upper tree line of the páramo of Papallacta (Eastern Cordillera of Ecuador). Erdkunde. 2001;55:257–276.
  • Lauer W, Rafiqpoor MD, Theisen I. Physiogeographie, Vegetation und Syntaxonomie der Flora des Páramo de Papallacta (Ostkordillere Ecuador). Stuttgart: Franz Steiner Verlag; 2001.
  • Robin C, Eissen J-P, Samaniego P, et al. Evolution of the late Pleistocene Mojanda–Fuya Fuya volcanic complex (Ecuador), by progressive adakitic involvement in mantle magma sources. Bull Volcanol. 2009;71(3):233–258.
  • Villota A, Behling H, León-Yánez S. Three millennia of vegetation and environmental dynamics in the Lagunas de Mojanda region, northern Ecuador. Acta Palaeobot. 2017;57:407–421.
  • Bendix J, Rollenbeck R, Göttlicher D, et al. Cloud occurrence and cloud properties in Ecuador. Clim Res. 2006;30:133–147.
  • FONAG. Anuario Hidrometeorológico. Quito; 2018.
  • Holz I, Gradstein SR, Heinrichs J, et al. Bryophyte diversity, microhabitat differentiation and distribution of life forms in Costa Rican upper montane Quercus forest. Bryologist. 2002;105:334–348.
  • Bates J. Is “life form” a useful concept in bryophyte ecology? Oikos. 1998;82(2):232–237.
  • Gradstein SR, Sporn SG. Diversity of epiphytic bryophytes along land use gradients in the tropics. Nova Hedwigia Beih. 2010;138:309–321.
  • Gradstein SR, Montfoort D, Cornelissen J. Phytogeography and species richness of the bryophyte flora of the Guianas, with special attention to the lowland rain forest. Trop Bryol. 1990;2:117–125.
  • Gradstein SR, Nadkarni NM, Krömer T, et al. A protocol for rapid and representative sampling of vascular and non-vascular epiphyte diversity of tropical rain forests. Selbyana. 2003;24:105–111.
  • Gradstein SR, Frahm JP. Die floristische Höhengliederung der Moose entlang des Bryotrop-transectes in Peru. Beih Nova Hedwigia. 1987;88:105–113.
  • Kessler M, Abrahamczyk S, Bos M, et al. Alpha versus beta diversity of plants and animals along a tropical land-use gradient. Ecol Appl. 2009;19:2142–2156.
  • Tilk M, Ots K, Tullus T. Effect of environmental factors on the composition of terrestrial bryophyte and lichen species in Scots pine forests on fixed sand dunes. For Syst. 2018;27:e015.
  • Kürschner H, Parolly G. Stammepiphytische Moosgesellschaften am Andenostabhang und im Amazonas-Tiefland von Nord-Peru. Nova Hedwigia. 1998;66:1–88.
  • Tuba Z, Slack NG, Stark LR, editors. Bryophyte ecology and climate change. Cambridge: Cambridge University Press; 2011.
  • Romoleroux K. Rosaceae. Flora Ecuador. 1996;56:1–151.